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Abstract

Finding the right allocation of virtual machines (VM) in cloud data centers is one of the key optimization
problems in cloud computing. Accordingly, many algorithms have been proposed for the problem. However,
lacking a single, generally accepted formulation of the VM allocation problem, there are many subtle differences
in the problem formulations that these algorithms address; moreover, in several cases, the exact problem formu-
lation is not even defined explicitly. Hence in this paper, we present a comprehensive generic model of the VM
allocation problem. We also show how the often-investigated problem variants fit into this general model.
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1 Introduction
Workload allocation in data centers (DCs) has been an important optimization problem for decades [7]. More
recently, the wide spread of virtualization technologies and the cloud computing paradigm have established several
new possibilities for resource provisioning and workload allocation [4], opening up new optimization opportunities.

Virtualization makes it possible to co-locate multiple applications on the same physical machine (PM) in log-
ically isolated virtual machines (VMs). This way, a high utilization of the available physical resources can be
achieved, thus amortizing the capital and operational expenditures associated with the purchase, operation, and
maintenance of the DC resources. What is more, live migration of VMs makes it possible to move a VM from one
PM to another one without noticeable service interruption [2]. This enables the dynamic re-optimization of the
allocation of VMs to PMs, reacting to changes in the VMs’ workload and the PMs’ availability.

Consolidating multiple VMs on relatively few PMs helps not only to achieve good utilization of hardware
resources, but also to save energy because unused PMs can be switched off or at least to a low-energy state such as
sleep mode. However, too aggressive consolidation may lead to performance degradation. In particular, if the load
of some VMs starts to grow, this may result in an overload of the accommodating PM’s resources. In many cases,
the expected performance levels are laid down in a service level agreement (SLA), defining also penalties if the
provider fails to comply. Thus, the provider must find the right balance between the conflicting goals of utilization,
energy efficiency, and performance [11].

Beside virtualization and live migration, the most important characteristic of the cloud computing paradigm
is the availability of online services with practically unbounded capacity that can be provisioned elastically as
needed. This includes Software-as-a-Service, Platform-as-a-Service, and Infrastructure-as-a-Service [21]. In the
latter case, VMs are directly offered to customers; in the first two cases, VMs can be used to provision virtualized
resources for the services in a flexible manner. Given the multitude of available public cloud offerings with different
capabilities and pricing schemes, it is increasingly difficult for customers to make the best selection for their needs.
The problem is further complicated by hybrid cloud setups that are increasingly popular in enterprises [5]. In this
case, VMs can be either placed on PMs in the own DC(s) or using offerings from external providers, thus further
enlarging the search space.

Since the allocation of VMs is an important and challenging optimization problem, several algorithms have
been proposed for it. However, as shown in a recent survey, the existing literature includes a multitude of different
problem formulations, making the existing approaches hardly comparable [13]. Even worse, some existing works
failed to explicitly and precisely define the version of the problem that they are addressing, so that this must be
figured out from the algorithm that they proposed or from the way the algorithm was evaluated.

We believe that addressing an algorithmic problem should start with problem modeling: a thorough consider-
ation of the problem’s characteristics and their importance or non-importance, leading to one or more precisely
defined – preferably formalized – problem formulation(s) that capture the important characteristics of the problem.
Then and only then should algorithms be proposed if the problem is already well-understood and well-defined.
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It seems that in the case of the VM allocation problem, this critically important phase was skipped, resulting
in a rather chaotic situation where algorithms for “the VM allocation problem” actually address many different
problems with sometimes subtle, sometimes serious differences.

The aim of this paper is to remedy this deficiency. Specifically, we devise a rather general formulation of the
VM allocation problem that includes most of the problem formulations studied so far in the literature as special
cases. We provide a taxonomy of important special cases and analyze their complexity. Section 2 contains the
general problem model and Section 3 discusses special cases, followed by our conclusions in Section 4.

2 General problem model
We consider a Cloud Provider (CP) that provides VMs for its customers. For provisioning, the CP can use either
its own PMs or external cloud providers (eCPs). The CP attempts to find the right balance between the conflict-
ing goals of cost-efficiency, energy-efficiency, and performance. In the following, we describe the details of the
problem.

2.1 Hosts
Let D denote the set of data centers available to the CP. For data center d ∈ D, let Pd denote the set of PMs
available in d, also including any switched-off PMs. Furthermore, P =

⋃
{Pd : d ∈ D} is the set of all PMs.

Each PM p ∈ P is characterized by the following numbers:

• cores(p) ∈ N: number of processor cores

• cpu_capacity(p) ∈ R+: processing power per CPU core, e.g., in MIPS (million instructions per second)

• capacity(p, r) ∈ R+: capacity of resource type r ∈ R. For example, R can contain the resource types RAM
and HDD, so that the capacity of these resources are given for each PM (e.g., in GB). This should be the net
capacity available for VMs, not including the capacity reserved for the OS, the virtualization platform, and
other system services

Our approach to model the CPU explicitly and all other resources of a PM through the generic capacity
function has several advantages. First, this gives maximum flexibility regarding the number of resource types that
are taken into account. For instance, also caches, SSD drives, network interfaces, or GPUs can be considered, if
relevant. On the other hand, the CPU is quite special, particularly because of multi-core technology. A multi-
core processor is not equivalent to a single-core processor of capacity cores(p) · cpu_capacity(p). It is also not
appropriate to model each core as a separate resource, because VMs’ processing power demand is not specific to
each core of the PM, but rather to the set of its cores as a whole. The other reason why it makes sense to model the
CPU separately is the impact that the CPU load has on energy consumption.

Each PM p ∈ P has a set of possible states, denoted by States(p). States(p) always contains the state On, in
which the PM is capable of running VMs. In addition, States(p) may contain a finite number of low-power states
(e.g., Off and Sleep). Each PM p ∈ P and state ∈ States(p) is associated with a static power consumption
of static_power(p, state) per time unit. In addition, the On state also incurs a dynamic power consumption
depending on the PM’s load, as defined later. The possible state transitions are given in the form a directed graph
(States(p), T ransitions(p)), where a transition ∈ Transitions(p) is an arc from one state to another. For
each transition ∈ Transitions(p), delay(transition) and energy(transition) denote the time it takes to
move from the source to the target state and the energy consumption associated with the transition, respectively.
(It should be noted that most existing works do not model PM states and transitions in such detail; an exception is
the work of Guenter et al. [10].)

Let E denote the set of eCPs from which the CP can lease VMs. For each eCP e ∈ E, Types(e) denotes
the set of VM types that can be leased from e, and Types =

⋃
{Types(e) : e ∈ E} is the set of VM types

available from at least one eCP. Each VM type type ∈ Types is characterized by the same set of parameters as
PMs: cores(type), cpu_capacity(type), and capacity(type, r) for all r ∈ R. In addition, for an eCP e ∈ E and
a VM type type ∈ Types(e), fee(type, e) specifies the fee per time unit for leasing one instance of the given VM
type from this eCP. It should be noted that the same VM type may be available from multiple eCPs, potentially for
different fees.

Since VMs can be either hosted by a PM or mapped to a VM type of an eCP, let

Hosts = P ∪ {(e, type) : e ∈ E, type ∈ Types(e)}

denote the set of all possible hosts.
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2.2 VMs
What we defined so far is mostly constant: although sometimes new PMs are installed or existing PMs are taken
out of service, eCPs sometimes introduce new VM types or change rental fees, such changes are rare, and can be
seen as special events. On the other hand, the load of VMs changes incessantly, sometimes quite quickly. For the
purpose of modeling such time-variant aspects, let Time ⊆ R denote the set of investigated time instances. We
make no restriction on Time: it can be discrete or continuous, finite or infinite etc.

The set of VMs in time instance t ∈ Time is denoted by V (t). For each VM v ∈ V (t), cores(v) is the number
of processor cores of v. The CPU load of v in time instance t is a cores(v)-dimensional vector: vcpu_load(v, t) ∈
Rcores(v)

+ , specifying the computational load per core, e.g., in MIPS. The load of the other resources is given by
vload(v, r, t) ∈ R+ for a VM v ∈ V (t), resource type r ∈ R, and time instance t ∈ Time.

It should be noted that all the cores of a PM’s CPU are expected to have the same capacity. In contrast, the
cores of the CPU of a VM do not have to have the same load.

2.3 Mapping VMs to hosts
The CP’s task is to maintain a mapping of the VMs to the available hosts. Formally, this is a function

Map : {(v, t) : t ∈ Time, v ∈ V (t)} → Hosts.

Map(v, t) defines the mapping of VM v in time instance t to either a PM or a VM type of an eCP. Furthermore,
if Map(v, t) = p ∈ P , that is, the VM v is mapped to a PM p, then also the mapping of processor cores must be
defined, since p may have more cores than v and each core of p may be shared by multiple VM cores, possibly
belonging to multiple VMs. Hence in such a case, the function

Map_corev : {1, . . . , cores(v)} × Time→ {1, . . . , cores(p)}

defines for each core of v the accommodating core of p, in a given time instance.
Given the mapping of VMs, the load of a PM can be calculated. For a PM p ∈ P and time instance t ∈ Time,

let
V (p, t) = {v ∈ V (t) : Map(v, t) = p}

be the set of VMs mapped to p in t. The CPU load of p in time instance t is a cores(p)-dimensional vector:
pcpu_load(p, t) ∈ Rcores(p)

+ , the ith coordinate of which is the sum of the load of the VM cores mapped to the ith
core of p, that is:

pcpu_load(p, t)i =
∑

v∈V (p,t),
Map_corev(j,t)=i

vcpu_load(v, t)j .

Similarly, for a resource type r ∈ R, the load of PM p with respect to r in time t is

pload(p, r, t) =
∑

v∈V (p,t)

vload(v, r, t).

The dynamic power consumption of a PM p is a monotonously increasing function of its CPU load. This
function can be different for each PM. Hence, for a PM p ∈ P , let dynamic_powerp : Rcores(p)

+ → R+ define the
dynamic power consumption of p per time unit as a function of the load of its cores. This function is monotonously
increasing in all of its coordinates. If PM p is in the On state between time instances t1 and t2, then its dynamic
energy consumption in this time interval is given by∫ t2

t=t1

dynamic_powerp(pcpu_load(p, t))dt. (1)

2.4 Data transfer
For each pair of VMs, there may be communication between them. The intensity of the communication between
VMs v1, v2 ∈ V in time instance t ∈ Time is denoted by vcomm(v1, v2, t), given for example in MB/s. If there
is no communication between the two VMs in t, then vcomm(v1, v2, t) = 0. The communication between a pair
of hosts h1, h2 ∈ H is the sum of the communication between the VMs that they accommodate, i.e.,

pcomm(h1, h2, t) =
∑

v1,v2∈V (t),
Map(v1,t)=h1,
Map(v2,t)=h2

vcomm(v1, v2, t).
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For each pair of hosts h1, h2 ∈ Hosts, the bandwidth available for the communication between them is
bandwidth(h1, h2), given for example in MB/s.

2.5 Live migration
The migration of a VM v from a host h1 to another host h2 takes time mig_time(v, h1, h2). During this period
of time, both h1 and h2 are occupied by v. This phenomenon can be modeled by the introduction of an extra
VM v′. Let tstart and tend denote the time instances in which the migration starts and ends, respectively. Before
tstart, only v exists, and is mapped to h1. Between tstart and tend, v continues to occupy h1, but starting with
tstart, also v′ appears, mapped to h2. In tend, v is removed from h1, and only v′ remains. Furthermore, data
transfer of intensity mig_comm(v) takes place between v and v′ during the migration period, which is added to
pcomm(h1, h2, t).

2.6 SLA violations
Normally, the load of each resource must be within its capacity. A resource overload, on the other hand, may lead
to an SLA violation. Specifically:

• If, for a PM p ∈ P and one of its processor cores 1 ≤ i ≤ cores(p), pcpu_load(p, t)i ≥ cpu_capacity(p),
then this processor core is overloaded, resulting in SLA violation for all VMs using this core, i.e., for each
VM v ∈ V (p, t), for which there is a core of v, 1 ≤ j ≤ cores(v), such that Map_corev(j, t) = i.

• Similarly, if, for a PM p ∈ P and resource type r ∈ R, pload(p, r, t) ≥ capacity(p, r), then this resource
is overloaded, resulting in SLA violation for all VMs using this resource, i.e., for each VM v ∈ V (p, t), for
which vload(v, r, t) > 0.

• Assume that Map(v, t) = (e, type), where e ∈ E. An SLA violation occurs relating to v, if either
vcpu_load(v, t)i ≥ cpu_capacity(type) for some 1 ≤ i ≤ cores(v) or if vload(v, r, t) ≥ capacity(type, r)
for some r ∈ R.

• If, for a pair of hosts h1, h2 ∈ Hosts, pcomm(h1, h2, t) ≥ bandwidth(h1, h2), then the communica-
tion channel between the two hosts is overloaded, resulting in SLA violation for all VMs contributing to
the communication between these hosts. That is, the set of affected VMs is

⋃
{{v1, v2} : Map(v1, t) =

h1,Map(v2, t) = h2, vcomm(v1, v2, t) > 0}.

It should be noted that, in practice, loads will never exceed capacities. However, the loads in the above defi-
nitions are calculated as the sum of the loads of the relevant VMs; such a sum can exceed the capacity, and this
indeed is a sign of an overload.

In any case, if there is an SLA violation relating to VM v, this leads to a penalty of

SLA_fee(v,∆t), (2)

where ∆t is the duration of the SLA violation. The SLA violation fee may be linear in ∆t, but it is also possible
that longer persisting SLA violations are progressively penalized [9].

In principle, there can be two kinds of SLAs: hard SLAs must be fulfilled in any case, whereas soft SLAs can
be violated, but this incurs a penalty. Our above definition allows both: hard SLAs can be modeled with an infinite
SLA_fee, whereas soft SLAs are modeled with finite SLA_fee.

2.7 Optimization objectives
Based on the above definitions, the total power consumption of the CP for a time interval [t1, t2] can be calculated
as the sum of the following components:

• For each PM p, the interval [t1, t2] can be divided into subintervals, in which p remained in the same state.
For such a subinterval of length ∆t, the static power consumption of p is static_power(p, state) ·∆t. The
sum of these values is the total static power consumption of p.

• For each PM p and each state transition of p, energy(transition) is consumed.

• For each PM p and each subinterval of [t1, t2] in which p is in state On, the dynamic power consumption is
calculated as in Equation (1).

The total monetary cost can be calculated as the sum of the following components:
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• The fees to be paid to eCPs. Assume that for t ∈ [t1, t2], Map(v, t) = (e, type), where e ∈ E. This incurs
a cost of (t2 − t1) · fee(type, e). This must be summed for all VMs mapped to an eCP.

• SLA violation fees, calculated according to Equation 2, for all SLA violations.

• The cost of the consumed power, which is the total power consumption, as calculated above, times the unit
power cost.

The objective is to minimize the total monetary costs, by means of optimal arrangement of the Map and
Map_core functions and the PMs’ states. As a special case, if the other costs are assumed to be 0, the objective is
to minimize the overall power consumption of the CP.

It should be noted that there is no need to explicitly constrain or minimize the number of migrations. Rather,
the impact of migrations is already contained in the objective function in the form of increased power consumption
and potentially SLA violations because of increased system load. (With appropriate costs of migrations and SLA
fees, it is possible to also model constraints on migrations, if necessary.)

3 Important special cases and subproblems
The above problem formulation is very general. Most authors investigated simpler problem formulations. We
introduced some important special cases and subproblems in [13] and categorized the existing literature on the
basis of these problem variants. In the following, we show how these problem variants can be obtained as special
cases of our general model. It should be noted that the addressed problem variants are not necessarily mutually
exclusive, so that combinations of them are also possible.

3.1 The Single-DC problem
The subproblem that has received the most attention is the Single-DC problem. In this case, |D| = 1 and |E| = 0,
i.e., the CP has a single DC with a number of PMs, and its aim is to optimize the utilization of these PMs. |P |
is assumed to be high enough to serve all customer requests, so that no eCPs are needed. Since all PMs are co-
located, bandwidth is usually assumed to be uniform and sufficiently high so that the constraint that it represents
can be ignored.

Some representative examples of papers dealing with this problem include [1, 2, 18, 20].

3.2 The Multi-DC problem
This can be seen as a generalization of the Single-DC problem, in which the CP possesses more than one DC. On
the other hand, this is still a special case of our general problem formulation, in which |D| > 1 and |E| = 0. An
important difference between the Single-DC and Multi-DC problems is that in the latter, communication between
DCs is a non-negligible factor. Moreover, the DCs can have different characteristics regarding energy efficiency
and carbon footprint. This problem variant, although important, has received relatively little attention [12, 15].

3.3 The Multi-IaaS problem
In this case, P = ∅, i.e., the CP does not own any PMs, it uses only leased VMs from multiple IaaS providers.
Since there are no PMs, all concerns related to them – states and state transitions, sharing of resources among
multiple VMs, load-dependent power consumption – are void. Power consumption plays no role, the only goal is
to minimize the monetary costs. On the other hand, |E| > 1, so that the choice among the external cloud providers
becomes a key question, based on offered VM characteristics and prices. In this case, it is common to also consider
the data transfer among VMs.

The Multi-IaaS problem has quite rich literature. Especially popular is the case when communication among
the VMs is given in form of a directed acyclic graph (DAG), the edges of which also represent dependencies.
Representative examples include [8, 17, 19].

3.4 Hybrid cloud
This is actually the most general case, in which |D| ≥ 1 and |E| ≥ 1. Despite its importance, only few works
address it [3, 6].
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3.5 The One-dimensional consolidation problem
In this often-investigated special case, only the computational demands and computational capacities are consid-
ered, and no other resources. In our general model, this special case is obtained when the CPU is the only resource
considered, and the CPU is taken to be single-core, making the problem truly one-dimensional. That is, R = ∅ and
cores ≡ 1.

Whether a single dimension is investigated or also others (e.g., memory or disk), is independent from the
number of DCs and eCPs. In other words, all of the above problem variants (Single-DC, Multi-DC, Multi-IaaS,
Hybrid cloud) can have a special case of one-dimensional optimization.

3.6 The On/Off problem
In this case, each PM has only two states: States(p) = {On,Off} for each p ∈ P . Furthermore, static_power(p,Off) =
0, static_power(p,On) is the same positive constant for each p ∈ P , and dynamic_powerp ≡ 0 for each
p ∈ P . Between the states On and Off , the transition is possible in both directions, with delay(transition) and
energy(transition) both assumed to be 0. As a consequence, the aim is simply to minimize the number PMs that
are on. This is an often-investigated special case of the Single-DC problem.

3.7 Connections to bin-packing
The special case of the Single-DC problem, in which a single dimension is considered, power modeling is reduced
to the On/Off problem, all PMs have the same capacity, there is no communication among VMs, migration costs
are 0, and hard SLAs are used, is equivalent to the well-known bin-packing problem, since the only objective is to
pack the VMs, as one-dimensional objects, into the minimal number of unit-capacity PMs. This has an important
consequence: since bin-packing is known to be NP-hard in the strong sense [14], it follows that all variants of the
VM allocation problem that contain this variant as special case are also NP-hard in the strong sense.

If multiple dimensions are taken into account, then we obtain a well-known multi-dimensional generalization
of bin-packing, the vector packing problem [16].

4 Conclusions
In this paper, we attempted to lay a more solid foundation for research on the VM allocation problem. Specif-
ically, we presented a detailed problem formalization that is general enough to capture all important aspects of
the problem. We showed how some often-investigated problem variants can be obtained as special cases of our
general model. Our work can also be seen as a taxonomy of problem variants, filling the problem modeling gap in
the literature between the physical problem and the proposed algorithms. We hope that this will catalyze further
high-quality research on VM allocation by showcasing the variety of problem aspects that need to be addressed as
well as by defining a set of standardized models to build on. This will hopefully improve the comparability of the
proposed algorithms, thus contributing to the maturation of the field.
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