2,392 research outputs found

    Adaptive runtime techniques for power and resource management on multi-core systems

    Full text link
    Energy-related costs are among the major contributors to the total cost of ownership of data centers and high-performance computing (HPC) clusters. As a result, future data centers must be energy-efficient to meet the continuously increasing computational demand. Constraining the power consumption of the servers is a widely used approach for managing energy costs and complying with power delivery limitations. In tandem, virtualization has become a common practice, as virtualization reduces hardware and power requirements by enabling consolidation of multiple applications on to a smaller set of physical resources. However, administration and management of data center resources have become more complex due to the growing number of virtualized servers installed in data centers. Therefore, designing autonomous and adaptive energy efficiency approaches is crucial to achieve sustainable and cost-efficient operation in data centers. Many modern data centers running enterprise workloads successfully implement energy efficiency approaches today. However, the nature of multi-threaded applications, which are becoming more common in all computing domains, brings additional design and management challenges. Tackling these challenges requires a deeper understanding of the interactions between the applications and the underlying hardware nodes. Although cluster-level management techniques bring significant benefits, node-level techniques provide more visibility into application characteristics, which can then be used to further improve the overall energy efficiency of the data centers. This thesis proposes adaptive runtime power and resource management techniques on multi-core systems. It demonstrates that taking the multi-threaded workload characteristics into account during management significantly improves the energy efficiency of the server nodes, which are the basic building blocks of data centers. The key distinguishing features of this work are as follows: We implement the proposed runtime techniques on state-of-the-art commodity multi-core servers and show that their energy efficiency can be significantly improved by (1) taking multi-threaded application specific characteristics into account while making resource allocation decisions, (2) accurately tracking dynamically changing power constraints by using low-overhead application-aware runtime techniques, and (3) coordinating dynamic adaptive decisions at various layers of the computing stack, specifically at system and application levels. Our results show that efficient resource distribution under power constraints yields energy savings of up to 24% compared to existing approaches, along with the ability to meet power constraints 98% of the time for a diverse set of multi-threaded applications

    The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

    Get PDF
    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific modeling as-a-service requires dynamic scaling of server infrastructure to adapt to changing user workloads. This paper presents the Virtual Machine (VM) Scaler, an autonomic resource manager for IaaS Clouds. We have developed VM-Scaler, a REST/JSON-based web services application which supports infrastructure provisioning and management to support scientific modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler harnesses the Amazon Elastic Compute Cloud (EC2) application programming interface to support model- service scalability, cloud management, and infrastructure configuration for supporting modeling workloads. VM-Scaler provides cloud control while abstracting the underlying IaaS cloud from the end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3. VM-Scaler provides a platform to improve scientific model deployment by supporting experimentation with: hot spot detection schemes, VM management and placement approaches, and model job scheduling/proxy services

    The Virtual Machine (VM) Scaler: An Infrastructure Manager Supporting Environmental Modeling on IaaS Clouds

    Get PDF
    Infrastructure-as-a-service (IaaS) clouds provide a new medium for deployment of environmental modeling applications. Harnessing advancements in virtualization, IaaS clouds can provide dynamic scalable infrastructure to better support scientific modeling computational demands. Providing scientific modeling as-a-service requires dynamic scaling of server infrastructure to adapt to changing user workloads. This paper presents the Virtual Machine (VM) Scaler, an autonomic resource manager for IaaS Clouds. We have developed VM-Scaler, a REST/JSON-based web services application which supports infrastructure provisioning and management to support scientific modeling for the Cloud Services Innovation Platform (CSIP) [Lloyd et al. 2012]. VM-Scaler harnesses the Amazon Elastic Compute Cloud (EC2) application programming interface to support model- service scalability, cloud management, and infrastructure configuration for supporting modeling workloads. VM-Scaler provides cloud control while abstracting the underlying IaaS cloud from the end user. VM-Scaler is extensible to support any EC2 compatible cloud and currently supports the Amazon public cloud and Eucalyptus private clouds versions 3.1 and 3.3. VM-Scaler provides a platform to improve scientific model deployment by supporting experimentation with: hot spot detection schemes, VM management and placement approaches, and model job scheduling/proxy services

    A Unified Operating System for Clouds and Manycore: fos

    Get PDF
    Single chip processors with thousands of cores will be available in the next ten years and clouds of multicore processors afford the operating system designer thousands of cores today. Constructing operating systems for manycore and cloud systems face similar challenges. This work identifies these shared challenges and introduces our solution: a factored operating system (fos) designed to meet the scalability, faultiness, variability of demand, and programming challenges of OSâ s for single-chip thousand-core manycore systems as well as current day cloud computers. Current monolithic operating systems are not well suited for manycores and clouds as they have taken an evolutionary approach to scaling such as adding fine grain locks and redesigning subsystems, however these approaches do not increase scalability quickly enough. fos addresses the OS scalability challenge by using a message passing design and is composed out of a collection of Internet inspired servers. Each operating system service is factored into a set of communicating servers which in aggregate implement a system service. These servers are designed much in the way that distributed Internet services are designed, but provide traditional kernel services instead of Internet services. Also, fos embraces the elasticity of cloud and manycore platforms by adapting resource utilization to match demand. fos facilitates writing applications across the cloud by providing a single system image across both future 1000+ core manycores and current day Infrastructure as a Service cloud computers. In contrast, current cloud environments do not provide a single system image and introduce complexity for the user by requiring different programming models for intra- vs inter-machine communication, and by requiring the use of non-OS standard management tools
    • …
    corecore