3 research outputs found

    Virtual distances methodology as verification technique for AACMMs with a capacitive sensor based indexed metrology platform

    Get PDF
    This paper presents a new verification procedure for articulated arm coordinate measuring machines (AACMMs) together with a capacitive sensor-based indexed metrology platform (IMP) based on the generation of virtual reference distances. The novelty of this procedure lays on the possibility of creating virtual points, virtual gauges and virtual distances through the indexed metrology platform鈥檚 mathematical model taking as a reference the measurements of a ball bar gauge located in a fixed position of the instrument鈥檚 working volume. The measurements are carried out with the AACMM assembled on the IMP from the six rotating positions of the platform. In this way, an unlimited number and types of reference distances could be created without the need of using a physical gauge, therefore optimizing the testing time, the number of gauge positions and the space needed in the calibration and verification procedures. Four evaluation methods are presented to assess the volumetric performance of the AACMM. The results obtained proved the suitability of the virtual distances methodology as an alternative procedure for verification of AACMMs using the indexed metrology platform

    Desarrollo, implementaci贸n y ensayo de t茅cnicas de verificaci贸n y calibraci贸n de instrumentos port谩tiles de medici贸n por coordenadas mediante plataforma multi-registro

    Get PDF
    La necesidad de verificaci贸n o inspecci贸n de unas determinadas caracter铆sticas de un producto cobra importancia en procesos de homologaci贸n y aseguramiento de la calidad en entornos industriales o laboratorios, donde es necesario certificar que el producto cumple con unos requerimientos establecidos, bien a nivel dimensional o funcional. Dentro de la verificaci贸n dimensional de precisi贸n, los instrumentos port谩tiles de medici贸n por coordenadas han evolucionado, debido a su flexibilidad, portabilidad y coste frente a las m谩quinas de medici贸n por coordenadas convencionales (MMC), como ocurre en el caso de los brazos articulados de medici贸n por coordenadas. Otros instrumentos port谩tiles de medici贸n como el l谩ser tracker est谩n dirigidos a mediciones de alto rango, en piezas o equipos de grandes dimensiones donde una verificaci贸n geom茅trica convencional no es viable. Sin embargo, el propio uso y manipulaci贸n de estos equipos, acentuado por su condici贸n de portabilidad, que permite su operaci贸n en entornos con ambientes no tan controlados, hace que sea necesaria su peri贸dica calibraci贸n y verificaci贸n, con objeto de asegurar sus correctas caracter铆sticas metrol贸gicas y por lo tanto generando una medici贸n con resultados fiables. Estas tareas suelen ser intensivas en tiempo y mano de obra, inhabilitando el equipo durante su realizaci贸n con la merma de productividad derivada. Por este motivo, surgi贸 el trabajo de tesis que se presenta a continuaci贸n, cuyo principal objetivo es definir, desarrollar, ensayar e implementar nuevas t茅cnicas de calibraci贸n y verificaci贸n para instrumentos port谩tiles de medici贸n, brazos articulados de medici贸n y l谩ser tracker con una plataforma multi-registro. La plataforma multi-registro es un instrumento dotado de una alta repetibilidad de posicionamiento y presenta como principales ventajas la posibilidad de obtener puntos fijos en un sistema de referencia global y la generaci贸n de distancias patr贸n virtuales, ambas t茅cnicas presentadas en esta tesis. Es el instrumento port谩til fijado sobre la plataforma, el que rota en las seis posiciones de la plataforma en lugar del patr贸n de medida, pudi茅ndose generar un n煤mero mayor de posiciones de ensayo sin necesidad de un movimiento f铆sico del patr贸n, evaluando en cada rotaci贸n un nuevo volumen de trabajo del instrumento de medici贸n. Para la validaci贸n de estas t茅cnicas de calibraci贸n y verificaci贸n, se realiza en este trabajo una revisi贸n del estado del arte tanto a nivel de equipos como de t茅cnicas de evaluaci贸n, analizando normativa aplicable a procedimientos de evaluaci贸n. Se definen e integran los modelos cinem谩ticos y matem谩ticos de brazo, l谩ser tracker y plataforma, realiz谩ndose en el caso del brazo articulado de medici贸n, un proceso de identificaci贸n de par谩metros que permite minimizar los errores en el procedimiento de calibraci贸n. Posteriormente se lleva a cabo la fase experimental de los procedimientos de evaluaci贸n propuestos a nivel te贸rico, para l谩ser tracker y brazo articulado de medici贸n con la plataforma multi-registro, incluyendo el concepto de distancias virtuales. Para finalizar, se realiza un c谩lculo de estimaci贸n de la incertidumbre de la plataforma multi-registro aplicando el m茅todo de Monte Carlo, identificando las posibles fuentes de error asociadas al comportamiento est谩tico y din谩mico de la misma. Como conclusi贸n del trabajo se valid贸 la utilizaci贸n de la plataforma multi-registro en procedimientos de verificaci贸n de instrumentos de medici贸n, brazos articulados de medici贸n por coordenadas y l谩ser trackers.The need of inspection and verification for certain features of a product, has a paramount importance in quality assurance and product release processes carried out in industrial applications or laboratories, where dimensional or functional product requirements should be fulfilled. Within high precision dimensional verification, portable coordinate measuring machines (PCMM) like articulated arm coordinate measuring machines (AACMMs) have had a great success in the market due to their flexibility, portable condition and lower cost in comparison with the conventional coordinate measuring machines (CMMs). In regard to high range measuring systems like laser trackers, they are focused on big dimension parts where the conventional geometrical verification is not suitable. Nevertheless, the use and manipulation of this type of equipment, stressed by their portable condition, allows their use in non-controlled environment conditions, making necessary their periodical calibration and verification in order to assure their proper metrological features and the derived reliable measuring results. These tasks are cost, time and labor intensive and normally disables the equipment during the execution generating the consequent productivity loss. On these grounds, we present the following doctoral dissertation whose main target is to define, develop, implement and test new calibration and verification techniques for portable measuring instruments, articulated arm coordinate measuring machines and laser trackers by means of an indexed metrology platform. The indexed metrology platform has a high positioning repeatability and shows as main advantages the possibility to generate fixed points in a global coordinate reference system and the ability to create virtual reference distances, being both methodologies presented in this doctoral dissertation. The portable measuring instrument, fixed on the platform, rotates along the six rotation positions of the platform instead of moving the calibrated gauge that remains fixed generating a bigger number of test positions in an easy way. Each time the platform rotates to a new position, a new working volume of the instrument is evaluated. In order to validate these proposed calibration and verification procedures, firstly a revision of the state of the art in regard to portable measuring instruments and evaluation techniques is carried out, followed by an analysis of the applicable standards for laser tracker and articulated arm measuring coordinate machines, which will be used as a base for the procedures definition. Then the kinematic and mathematical models for the three equipment, AACMM, laser tracker and the indexed metrology platform are defined and integrated. Regarding AACMM calibration, a parameter identification procedure is carried out to minimize the error in the measuring process. In addition, it is presented in this work the experimental phase and results of the aforesaid verification theoretical procedures proposed, for the laser tracker and the AACMM with the indexed metrology platform, including the virtual distance concept. Finally, an uncertainty estimation of the indexed metrology platform is completed based on Monte Carlo method, identifying the possible error sources in relation with the static and dynamic behavior of the platform
    corecore