5 research outputs found

    LMSCNet: Lightweight Multiscale 3D Semantic Completion

    Full text link
    We introduce a new approach for multiscale 3D semantic scene completion from sparse 3D occupancy grid like voxelized LiDAR scans. As opposed to the literature, we use a 2D UNet backbone with comprehensive multiscale skip connections to enhance feature flow, along with 3D segmentation heads. On the SemanticKITTI benchmark, our method performs on par on semantic completion and better on completion than all other published methods - while being significantly lighter and faster. As such it provides a great performance/speed trade-off for mobile-robotics applications. The ablation studies demonstrate our method is robust to lower density inputs, and that it enables very high speed semantic completion at the coarsest level. Qualitative results of our approach are provided at http://tiny.cc/lmscnet.Comment: For a demo video, see http://tiny.cc/lmscne

    Attention-based Multi-modal Fusion Network for Semantic Scene Completion

    Full text link
    This paper presents an end-to-end 3D convolutional network named attention-based multi-modal fusion network (AMFNet) for the semantic scene completion (SSC) task of inferring the occupancy and semantic labels of a volumetric 3D scene from single-view RGB-D images. Compared with previous methods which use only the semantic features extracted from RGB-D images, the proposed AMFNet learns to perform effective 3D scene completion and semantic segmentation simultaneously via leveraging the experience of inferring 2D semantic segmentation from RGB-D images as well as the reliable depth cues in spatial dimension. It is achieved by employing a multi-modal fusion architecture boosted from 2D semantic segmentation and a 3D semantic completion network empowered by residual attention blocks. We validate our method on both the synthetic SUNCG-RGBD dataset and the real NYUv2 dataset and the results show that our method respectively achieves the gains of 2.5% and 2.6% on the synthetic SUNCG-RGBD dataset and the real NYUv2 dataset against the state-of-the-art method.Comment: Accepted by AAAI 202
    corecore