321,313 research outputs found

    The TASTE Toolset: turning human designed heterogeneous systems into computer built homogeneous software.

    Get PDF
    The TASTE tool-set results from spin-off studies of the ASSERT project, which started in 2004 with the objective to propose innovative and pragmatic solutions to develop real-time software. One of the primary targets was satellite flight software, but it appeared quickly that their characteristics were shared among various embedded systems. The solutions that we developed now comprise a process and several tools ; the development process is based on the idea that real-time, embedded systems are heterogeneous by nature and that a unique UML-like language was not helping neither their construction, nor their validation. Rather than inventing yet another "ultimate" language, TASTE makes the link between existing and mature technologies such as Simulink, SDL, ASN.1, C, Ada, and generates complete, homogeneous software-based systems that one can straightforwardly download and execute on a physical target. Our current prototype is moving toward a marketed product, and sequel studies are already in place to support, among others, FPGA systems

    Compact rover surveying and laser scanning for BIM development

    Get PDF
    This paper presents a custom made small rover based surveying, mapping and building information modeling solution. Majority of the commercially available mobile surveying systems are larger in size which restricts their maneuverability in the targeted indoor vicinities. Furthermore their functional cost is unaffordable for low budget projects belonging to developing markets. Keeping in view these challenges, an economical indigenous rover based scanning and mapping system has developed using orthogonal integration of two low cost RPLidar A1 laser scanners. All the instrumentation of the rover has been interfaced with Robot Operating System (ROS) for online processing and recording of all sensorial data. The ROS based pose and map estimations of the rover have performed using Simultaneous Localization and Mapping (SLAM) technique. The perceived class 1 laser scans data belonging to distinct vicinities with variable reflective properties have been successfully tested and validated for required structural modeling. Systematically the recorded scans have been used in offline mode to generate the 3D point cloud map of the surveyed environment. Later the structural planes extraction from the point cloud data has been done using Random Sampling and Consensus (RANSAC) technique. Finally the 2D floor plan and 3D building model have been developed using point cloud processing in appropriate software. Multiple interiors of existing buildings and under construction indoor sites have been scanned, mapped and modelled as presented in this paper. In addition, the validation of the as-built models have been performed by comparing with the actual architecture design of the surveyed buildings. In comparison to available surveying solutions present in the local market, the developed system has been found faster, accurate and user friendly to produce more enhanced structural results with minute details

    Model-based Cognitive Neuroscience: Multifield Mechanistic Integration in Practice

    Get PDF
    Autonomist accounts of cognitive science suggest that cognitive model building and theory construction (can or should) proceed independently of findings in neuroscience. Common functionalist justifications of autonomy rely on there being relatively few constraints between neural structure and cognitive function (e.g., Weiskopf, 2011). In contrast, an integrative mechanistic perspective stresses the mutual constraining of structure and function (e.g., Piccinini & Craver, 2011; Povich, 2015). In this paper, I show how model-based cognitive neuroscience (MBCN) epitomizes the integrative mechanistic perspective and concentrates the most revolutionary elements of the cognitive neuroscience revolution (Boone & Piccinini, 2016). I also show how the prominent subset account of functional realization supports the integrative mechanistic perspective I take on MBCN and use it to clarify the intralevel and interlevel components of integration

    Brain covariance selection: better individual functional connectivity models using population prior

    Get PDF
    Spontaneous brain activity, as observed in functional neuroimaging, has been shown to display reproducible structure that expresses brain architecture and carries markers of brain pathologies. An important view of modern neuroscience is that such large-scale structure of coherent activity reflects modularity properties of brain connectivity graphs. However, to date, there has been no demonstration that the limited and noisy data available in spontaneous activity observations could be used to learn full-brain probabilistic models that generalize to new data. Learning such models entails two main challenges: i) modeling full brain connectivity is a difficult estimation problem that faces the curse of dimensionality and ii) variability between subjects, coupled with the variability of functional signals between experimental runs, makes the use of multiple datasets challenging. We describe subject-level brain functional connectivity structure as a multivariate Gaussian process and introduce a new strategy to estimate it from group data, by imposing a common structure on the graphical model in the population. We show that individual models learned from functional Magnetic Resonance Imaging (fMRI) data using this population prior generalize better to unseen data than models based on alternative regularization schemes. To our knowledge, this is the first report of a cross-validated model of spontaneous brain activity. Finally, we use the estimated graphical model to explore the large-scale characteristics of functional architecture and show for the first time that known cognitive networks appear as the integrated communities of functional connectivity graph.Comment: in Advances in Neural Information Processing Systems, Vancouver : Canada (2010

    Multi-perspective requirements engineering for networked business systems: a framework for pattern composition

    Get PDF
    How business and software analysts explore, document, and negotiate requirements for enterprise systems is critical to the benefits their organizations will eventually derive. In this paper, we present a framework for analysis and redesign of networked business systems. It is based on libraries of patterns which are derived from existing Internet businesses. The framework includes three perspectives: Economic value, Business processes, and Application communication, each of which applies a goal-oriented method to compose patterns. By means of consistency relationships between perspectives, we demonstrate the usefulness of the patterns as a light-weight approach to exploration of business ideas

    Review of research in feature-based design

    Get PDF
    Research in feature-based design is reviewed. Feature-based design is regarded as a key factor towards CAD/CAPP integration from a process planning point of view. From a design point of view, feature-based design offers possibilities for supporting the design process better than current CAD systems do. The evolution of feature definitions is briefly discussed. Features and their role in the design process and as representatives of design-objects and design-object knowledge are discussed. The main research issues related to feature-based design are outlined. These are: feature representation, features and tolerances, feature validation, multiple viewpoints towards features, features and standardization, and features and languages. An overview of some academic feature-based design systems is provided. Future research issues in feature-based design are outlined. The conclusion is that feature-based design is still in its infancy, and that more research is needed for a better support of the design process and better integration with manufacturing, although major advances have already been made
    • …
    corecore