3,250 research outputs found

    IMAE for Noise-Robust Learning: Mean Absolute Error Does Not Treat Examples Equally and Gradient Magnitude's Variance Matters

    Get PDF
    In this work, we study robust deep learning against abnormal training data from the perspective of example weighting built in empirical loss functions, i.e., gradient magnitude with respect to logits, an angle that is not thoroughly studied so far. Consequently, we have two key findings: (1) Mean Absolute Error (MAE) Does Not Treat Examples Equally. We present new observations and insightful analysis about MAE, which is theoretically proved to be noise-robust. First, we reveal its underfitting problem in practice. Second, we analyse that MAE's noise-robustness is from emphasising on uncertain examples instead of treating training samples equally, as claimed in prior work. (2) The Variance of Gradient Magnitude Matters. We propose an effective and simple solution to enhance MAE's fitting ability while preserving its noise-robustness. Without changing MAE's overall weighting scheme, i.e., what examples get higher weights, we simply change its weighting variance non-linearly so that the impact ratio between two examples are adjusted. Our solution is termed Improved MAE (IMAE). We prove IMAE's effectiveness using extensive experiments: image classification under clean labels, synthetic label noise, and real-world unknown noise. We conclude IMAE is superior to CCE, the most popular loss for training DNNs.Comment: Updated Version. IMAE for Noise-Robust Learning: Mean Absolute Error Does Not Treat Examples Equally and Gradient Magnitude's Variance Matters Code: \url{https://github.com/XinshaoAmosWang/Improving-Mean-Absolute-Error-against-CCE}. Please feel free to contact for discussions or implementation problem

    Camera Alignment and Weighted Contrastive Learning for Domain Adaptation in Video Person ReID

    Full text link
    Systems for person re-identification (ReID) can achieve a high accuracy when trained on large fully-labeled image datasets. However, the domain shift typically associated with diverse operational capture conditions (e.g., camera viewpoints and lighting) may translate to a significant decline in performance. This paper focuses on unsupervised domain adaptation (UDA) for video-based ReID - a relevant scenario that is less explored in the literature. In this scenario, the ReID model must adapt to a complex target domain defined by a network of diverse video cameras based on tracklet information. State-of-art methods cluster unlabeled target data, yet domain shifts across target cameras (sub-domains) can lead to poor initialization of clustering methods that propagates noise across epochs, thus preventing the ReID model to accurately associate samples of same identity. In this paper, an UDA method is introduced for video person ReID that leverages knowledge on video tracklets, and on the distribution of frames captured over target cameras to improve the performance of CNN backbones trained using pseudo-labels. Our method relies on an adversarial approach, where a camera-discriminator network is introduced to extract discriminant camera-independent representations, facilitating the subsequent clustering. In addition, a weighted contrastive loss is proposed to leverage the confidence of clusters, and mitigate the risk of incorrect identity associations. Experimental results obtained on three challenging video-based person ReID datasets - PRID2011, iLIDS-VID, and MARS - indicate that our proposed method can outperform related state-of-the-art methods. Our code is available at: \url{https://github.com/dmekhazni/CAWCL-ReID}Comment: IEEE/CVF Winter Conference on Applications of Computer Vision(WACV) 202

    Pedestrian Attribute Recognition: A Survey

    Full text link
    Recognizing pedestrian attributes is an important task in computer vision community due to it plays an important role in video surveillance. Many algorithms has been proposed to handle this task. The goal of this paper is to review existing works using traditional methods or based on deep learning networks. Firstly, we introduce the background of pedestrian attributes recognition (PAR, for short), including the fundamental concepts of pedestrian attributes and corresponding challenges. Secondly, we introduce existing benchmarks, including popular datasets and evaluation criterion. Thirdly, we analyse the concept of multi-task learning and multi-label learning, and also explain the relations between these two learning algorithms and pedestrian attribute recognition. We also review some popular network architectures which have widely applied in the deep learning community. Fourthly, we analyse popular solutions for this task, such as attributes group, part-based, \emph{etc}. Fifthly, we shown some applications which takes pedestrian attributes into consideration and achieve better performance. Finally, we summarized this paper and give several possible research directions for pedestrian attributes recognition. The project page of this paper can be found from the following website: \url{https://sites.google.com/view/ahu-pedestrianattributes/}.Comment: Check our project page for High Resolution version of this survey: https://sites.google.com/view/ahu-pedestrianattributes

    Self-paced Weight Consolidation for Continual Learning

    Full text link
    Continual learning algorithms which keep the parameters of new tasks close to that of previous tasks, are popular in preventing catastrophic forgetting in sequential task learning settings. However, 1) the performance for the new continual learner will be degraded without distinguishing the contributions of previously learned tasks; 2) the computational cost will be greatly increased with the number of tasks, since most existing algorithms need to regularize all previous tasks when learning new tasks. To address the above challenges, we propose a self-paced Weight Consolidation (spWC) framework to attain robust continual learning via evaluating the discriminative contributions of previous tasks. To be specific, we develop a self-paced regularization to reflect the priorities of past tasks via measuring difficulty based on key performance indicator (i.e., accuracy). When encountering a new task, all previous tasks are sorted from "difficult" to "easy" based on the priorities. Then the parameters of the new continual learner will be learned via selectively maintaining the knowledge amongst more difficult past tasks, which could well overcome catastrophic forgetting with less computational cost. We adopt an alternative convex search to iteratively update the model parameters and priority weights in the bi-convex formulation. The proposed spWC framework is plug-and-play, which is applicable to most continual learning algorithms (e.g., EWC, MAS and RCIL) in different directions (e.g., classification and segmentation). Experimental results on several public benchmark datasets demonstrate that our proposed framework can effectively improve performance when compared with other popular continual learning algorithms

    Visual object category discovery in images and videos

    Get PDF
    textThe current trend in visual recognition research is to place a strict division between the supervised and unsupervised learning paradigms, which is problematic for two main reasons. On the one hand, supervised methods require training data for each and every category that the system learns; training data may not always be available and is expensive to obtain. On the other hand, unsupervised methods must determine the optimal visual cues and distance metrics that distinguish one category from another to group images into semantically meaningful categories; however, for unlabeled data, these are unknown a priori. I propose a visual category discovery framework that transcends the two paradigms and learns accurate models with few labeled exemplars. The main insight is to automatically focus on the prevalent objects in images and videos, and learn models from them for category grouping, segmentation, and summarization. To implement this idea, I first present a context-aware category discovery framework that discovers novel categories by leveraging context from previously learned categories. I devise a novel object-graph descriptor to model the interaction between a set of known categories and the unknown to-be-discovered categories, and group regions that have similar appearance and similar object-graphs. I then present a collective segmentation framework that simultaneously discovers the segmentations and groupings of objects by leveraging the shared patterns in the unlabeled image collection. It discovers an ensemble of representative instances for each unknown category, and builds top-down models from them to refine the segmentation of the remaining instances. Finally, building on these techniques, I show how to produce compact visual summaries for first-person egocentric videos that focus on the important people and objects. The system leverages novel egocentric and high-level saliency features to predict important regions in the video, and produces a concise visual summary that is driven by those regions. I compare against existing state-of-the-art methods for category discovery and segmentation on several challenging benchmark datasets. I demonstrate that we can discover visual concepts more accurately by focusing on the prevalent objects in images and videos, and show clear advantages of departing from the status quo division between the supervised and unsupervised learning paradigms. The main impact of my thesis is that it lays the groundwork for building large-scale visual discovery systems that can automatically discover visual concepts with minimal human supervision.Electrical and Computer Engineerin
    corecore