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ABSTRACT

In this work, we study robust deep learning against abnormal training data from
the perspective of example weighting built in empirical loss functions, i.e., gradi-
ent magnitude with respect to logits, an angle that is not thoroughly studied so far.
Consequently, we have two key findings: (1) Mean Absolute Error (MAE) Does
Not Treat Examples Equally. We present new observations and insightful analysis
about MAE, which is theoretically proved to be noise-robust. First, we reveal its
underfitting problem in practice. Second, we analyse that MAE’s noise-robustness
is from emphasising on uncertain examples instead of treating training samples
equally, as claimed in prior work. (2) The Variance of Gradient Magnitude Mat-
ters. We propose an effective and simple solution to enhance MAE’s fitting ability
while preserving its noise-robustness. Without changing MAE’s overall weighting
scheme, i.e., what examples get higher weights, we simply change its weighting
variance non-linearly so that the impact ratio between two examples are adjusted.
Our solution is termed Improved MAE (IMAE). We prove IMAE’s effectiveness
using extensive experiments: image classification under clean labels, synthetic
label noise, and real-world unknown noise.

1 INTRODUCTION

In this work, we target at robust deep learning, which is indispensable when it comes to large-scale
industrial applications. It is non-affordable to guarantee the quality of training data as its scale
grows dramatically. Consequently, abnormal examples1 generally exist in large-scale real-world
scenarios Berrada et al. (2018), which is caused by many factors, such as incomplete annotation,
wrong labelling, subjectiveness, bias and so forth. Unfortunately, DNNs trained with categorical
cross entropy (CCE) can fit random patterns Zhang et al. (2017).

∗This work was mainly done at Queen’s University Belfast and University of Oxford.
†For the source code, based on the requests for academic research and kindness to cite our work, we will

release and maintain it in https://github.com/XinshaoAmosWang/DeepCriticalLearning.
‡Prof. David A. Clifton was supported by the NIHR Oxford Biomedical Research Centre, the InnoHK Hong

Kong Centre for Cerebro-cardiovascular Health Engineering (COCHE), and the Pandemic Sciences Institute at
the University of Oxford. Prof. David A. Clifton was also funded by an NIHR Research Professorship and an
RAEng Research Chair.

1A training example is denoted as an observation-label pair, where the observation can be an image or video
while the label defines its semantic information. We regard a training example as abnormal unrestrictedly
whenever its observation and label are semantically unmatched, e.g., out-of-distribution examples (the obser-
vations contain only background or objects that do not belong to any training class), or examples with wrongly
annotated labels.
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Table 1: Classification accuracy (%) of CCE,
MAE, and IMAE on CIFAR-10 Krizhevsky
(2009). 40% of training examples, i.e., the noisy
subset, have wrong labels. We test each model’s
performance on test set, noisy subset and clean
subset of training data. The backbone is ResNet56
owning enough capacity He et al. (2016).

Loss Test set
(Generalisation)

Noisy subset
(Noise-tolerance)

Clean subset
(Learning ability)

CCE 63.3 75.0 96.2
MAE 66.9 8.1 74.3 (worst)

IMAE 81.5 (best) 6.5 (best) 93.1

Figure 1: Sample’s weight along with sample’s
probability being classified to its labelled class
in CCE, MAE, IMAE with T = 8. If prob-
abilities are uniformly distributed, the variances
of CCE’s, MAE’s and IMAE’s weighting curves
are 0.33, 0.09 and 4.55, respectively.

Great advances have been made towards training DNNs robustly when abnormal training examples
exist Arpit et al. (2017); Chang et al. (2017); Ren et al. (2018); Jiang et al. (2018). The robust loss
function is one of them. In this paper, we study a so-claimed robust loss function, mean absolute
error (MAE) following Ghosh et al. (2017); Zhang & Sabuncu (2018). According to the theoretical
analysis of CCE and MAE in Ghosh et al. (2017), CCE is sensitive to label noise while MAE is
noise-tolerant. Thereafter, generalised cross entropy (GCE) Zhang & Sabuncu (2018) concludes
MAE treats training samples equally, thus being noise-robust.

However, our empirical observation and technical analysis lead us to a contradictory and more rea-
sonable conclusion.
Observation: In Table 1, when 40% noise exists, compared with CCE, MAE underfits to clean train-
ing data points, thus fitting much fewer abnormal examples.
Conclusion: In Figure 1, MAE emphasises more on uncertain examples, whose probabilities of being
classified to its labelled class are around 0.5, thus being noise-robust.

Specifically, according to Table 1, MAE is much more noise-tolerant than CCE. However, its ability
of learning meaningful patterns is much weaker, fitting only 74.3% of the clean subset. We provide
an intuitive interpretation for this according to Figure 1: The variance of MAE’s weight curve along
with probability is only 0.09. As a result, the impact ratio between two examples is too small.2
The impact ratio reflects the relative impact of one example versus another for updating parameters.
Due to MAE’s small weight variance, informative samples cannot contribute enough against non-
informative ones. Therefore, MAE cannot learn meaningful patterns well and is not widely used.

To adjust MAE’s weight variance, we design an effective and simple solution, IMAE, which non-
linearly transforms MAE’s weighting scheme by an exponential function. On the one hand, by
preserving MAE’s overall weighting scheme, IMAE is noise-robust. On the other hand, by making
the gradient magnitude’s variance over training examples controllable, it learns meaningful patterns
much better.

We demonstrate the effectiveness of IMAE under different scenarios. Most importantly, these em-
pirical evidences justify that our interpretation of MAE’s underfitting problem is reasonable and our
proposed solution is superior. Our key findings are summarised as follows:

• CCE overfits to noise easily because it emphasises on low-probability examples to which
abnormal ones generally belong. Although CCE’s weight variance is not large (0.33), its
fitting ability benefits from emphasising on low-probability examples.

• MAE is noise-robust by focusing on uncertain (medium-probability) examples instead of
treating all equally. However, MAE generally underfits due to its small weights variance
(0.09), leading to small impact ratio between even far different examples.

• Our proposed IMAE achieves new state-of-the-art on robust training against synthetic label
noise and realistic unknown noise simply by adjusting MAE’s weight variance, which is
inspiring.

2The terms, examples’ weight or impact, and examples’ gradient magnitude w.r.t. logits, are used inter-
changeably because we define the weight by gradient’s magnitude. The impact ratio between two examples is
changed only when gradients’ magnitude is scaled non-linearly.
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2 PRELIMINARIES

We denote a training mini-batch as X = {(xi, yi)}Ni=1, where there are N samples. (xi, yi) rep-
resents i-th training sample xi ∈ RD and its annotated class label yi ∈ {1, 2, ..., C}. D is the
dimensionality of input samples and C is the number of all training classes. Let fθ be a deep neural
network, which transforms xi to a representation fi = fθ(xi) ∈ RE , E is the dimensionality of
target space and θ indicates the parameters to be learned.

To optimise fθ during training, a linear classifier is generally trained jointly Liu et al. (2016). In
general, the linear classifier follows the output embeddings and is composed of one C-neuron fully
connected (FC) layer, one softmax normalisation layer and one loss layer. The FC layer can be
represented as zi = W>fi ∈ RC , where W = [w1,w2, ...,wC ] ∈ RE×C consists of C weight
vectors (the bias term is omitted for brevity). zij = w>j fi is a logit which indicates the compatibility
between sample xi and class j. To produce the probabilities of sample xi belonging to different
classes, we normalise its logit vector zi using a softmax function: p(j|xi) = exp(zij)∑C

m=1 exp(zim)
, where

p(j|xi) is the probability of sample xi being predicted to class j.

Let q(j|xi) be the ground-truth probability of xi belonging to class j, i.e., q(j|xi) = 1 if j = yi,
q(j|xi) = 0 otherwise. In the loss layer, if we use CCE, the minimisation objective per iteration is:

LCCE(X; fθ,W) = − 1

N

N∑
i=1

C∑
j=1

q(j|xi) log p(j|xi) = −
1

N

N∑
i=1

log p(yi|xi). (1)

If MAE is applied, the minimisation objective becomes:

LMAE(X; fθ,W) =
1

N

N∑
i=1

C∑
j=1

|p(j|xi)− q(j|xi)| =
2

N

N∑
i=1

(1− p(yi|xi)), (2)

where | · | is the absolute function.

In summary, we learn a softmax deep network gθ,W, which outputs logits: zi = gθ,W(xi) =
W>fθ(xi) ∈ RC . In classification tasks, we use z = gθ,W(x) to produce logits for a test image
x. While in verification or retrieval tasks Wang et al. (2019a;b;c), we only use f = fθ(x) as an
embedding function. The overall pipeline is described in Figure 2. The output of the softmax layer
is p.

Definition 1 (Uncertain Examples). We define uncertain examples to be those data points whose
p(yi|xi) are around 0.5. Given an example xi, if its p(yi|xi) is closer to 0.5, its uncertainty is
higher.
Remark 1. This definition of uncertain examples is intuitive. If p(yi|xi) is closer to 1, the confidence
of xi being class yi is higher. If p(yi|xi) is closer to 0, the confidence of xi belonging to one of other
classes is higher. However, if p(yi|xi) is around 0.5, we are more uncertain about whether xi being
class yi. Therefore, we can understand uncertainty from the perspective of binary classification
(Logistic Regression), i.e., whether xi being class yi or not.
Remark 2. We have the premise that abnormal (noisy) examples have smaller probabilities in
general. This premise is widely used and demonstrated by our empirical observations. For example,
in Figure 4 and Tables 1, 6, the accuracy of noisy subset is less than that of clean subset consistently.
Remark 3. The uncertainty of an example is determined by its probability of being classified to its
annotated label. This example can belong to one of the training classes (uncertain in-distribution
example), or a class which does not exist in the training set (uncertain out-of-distribution example).

3 GRADIENT MAGNITUDE SERVING AS WEIGHT

As shown in Figure 2, gθ,W can be viewed as a black box and the update of θ and W is based on the
back-propagation of logits’ gradient. Therefore, an example’s contribution can be measured by the
magnitude of its partial derivative w.r.t. z. It can be regarded as example weighting that is naturally
built-in in loss functions. For brevity and clarity, we summarise the results here and put the detailed
derivation in our supplementary material.
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Figure 2: Pipeline of a softmax deep network.
There are two reasons for analysing loss functions
based on ∂L

∂z : (1) In gradient back-propagation,
the gradients of examples in a mini-batch are
fused when computing ∂L

∂z . (2) Intermediate dif-
ferences of ∂L∂p lead to ultimate differences of ∂L∂z .
Therefore, our analysis of ∂L

∂z is more direct ver-
sus that of ∂L∂p in Zhang & Sabuncu (2018).

Figure 3: Although the loss expression of
IMAE is not an elementary function, we vi-
sualise it by integral, i.e., the area under curve
from py to 1.

3.1 DERIVATION OF SOFTMAX, CCE AND MAE LAYERS

According to p(j|xi), Eq. (1), Eq. (2), we have

∂p(yi|xi)

∂zij

=

{
p(yi|xi)(1− p(yi|xi)), j = yi

−p(yi|xi)p(j|xi), j 6= yi
;

(3)

∂LCCE(xi)

∂p(j|xi)
=

{
−p(yi|xi)

−1, j = yi
0, j 6= yi

;

(4)

∂LMAE(xi)

∂p(j|xi)
=

{
−2, j = yi
0, j 6= yi

.

(5)

3.2 PERSPECTIVE OF DERIVATIVES W.R.T. LOGITS OTHER THAN PROBABILITIES

Prior conclusion according to ∂LCCE(xi)
∂p(j|xi)

, ∂LMAE(xi)
∂p(j|xi)

: Zhang & Sabuncu (2018) concludes that CCE
is sensitive to abnormal examples while MAE is robust by treating all data points equally according
to Eq. (4) and Eq. (5), respectively.

In this work, we propose to further analyse ∂LCCE(xi)
∂zij

, ∂LMAE(xi)
∂zij

as dis-
cussed in Figure 2. According to Eq. (3), (4) and (5), we calculate:
∂LCCE(xi)

∂zij
=

{
p(yi|xi)− 1, j = yi
p(j|xi), j 6= yi

. (6)
∂LMAE(xi)

∂zij
=

{
2p(yi|xi)(p(yi|xi)− 1), j = yi
2p(yi|xi)p(j|xi), j 6= yi

. (7)

Gradient magnitude treated as weight. In CCE and MAE, training samples are weighted because
different ones own different gradient magnitude w.r.t. logit vector z. We choose to measure one gra-
dient’s magnitude by its L1 norm because of its simpler statistics than other norms. If one sample’s
gradient is larger, its impact is larger during gradient back-propagation.

For CCE, based on Eq. (6), the weight of sample xi is:

wCCE(xi) = ||
∂LCCE(xi)

∂zi
||1 = 2(1− p(yi|xi)), (8)

where || · ||1 denotes L1 norm. For MAE, based on Eq. (7), the weight of sample xi is:

wMAE(xi) = ||
∂LMAE(xi)

∂zi
||1 = 4p(yi|xi)(1− p(yi|xi)). (9)

According to Eq. (8) and Eq. (9), in both CCE and MAE, examples’ impact is determined by their
probabilities being predicted to annotated labels.

4 IMPROVED MAE
IMAE transforms MAE’s weighting scheme non-linearly:

wIMAE(xi) = exp(Tp(yi|xi)(1− p(yi|xi))), (10)

where T controls the exponential base. In back-propagation, we simply scale the gradient w.r.t.
logits as follows:

∂LIMAE(xi)

∂zi
=

∂LMAE(xi)

∂zi

wIMAE(xi)

wMAE(xi)
⇒ ||∂LIMAE(xi)

∂zi
||1 = wIMAE(xi). (11)

IMAE is a family of robust losses when T changes, as summarised in Table 2 and Figure 3.
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Table 2: Summary of CCE, MAE and IMAE. (x, y) is a training example. For simplicity, py =
p(y|x), and pj = p(j|x), j 6= y,

∑
j 6=y pj + py = 1. Prior analysis on loss functions is based

on the loss expression or ∂L
∂p . Instead, we are the first to study the differences of loss functions

according to ||∂L∂z ||1. Our empirical evidences justifies its rationality. Note that we have L(py) =∫
∂L
∂py

dpy, L(1) = 0, therefore L(py) =
∫ 1

py
− ∂L
∂py

dpy . We remark IMAE is neither symmetric nor
bounded, which challenges the robustness theories studied in Ghosh et al. (2017); Zhang & Sabuncu
(2018); Wang et al. (2019d).

∂L
∂p

∂py
∂z

∂L
∂z

=
∑C

j=1
∂L
∂pj
×

∂pj
∂z

Loss Expression
L = L(py) =∫ 1
py
− ∂L

∂py
dpy

∂L
∂py

∂L
∂pj

,

j 6= y

∂py
∂zy

∂py
∂zj

,

j 6= y

∂L
∂zy

∂L
∂zj

,

j 6= y

|| ∂L
∂z
||1

CCE − log py − 1
py

0 py(1− py) −pypj py − 1 pj 2(1− py)
MAE 2(1− py) -2 0 py(1− py) −pypj 2py(py − 1) 2pypj 4py(1− py)

IMAE
∫ 1
py

exp(Tpy(1−py))

2py(1−py)
dpy

exp(Tpy(1−py))

2py(py−1)
0 py(1− py) −pypj

exp(Tpy(1−py))

−2

exp(Tpy(1−py))pj
2(1−py) exp(Tpy(1− py))

4.1 DESIGN MOTIVATION: TO ADJUST GRADIENT MAGNITUDE’S VARIANCE AND IMPACT
RATIO

Linear scaling also changes magnitude variance. However, it cannot adjust impact ratio, i.e., the
ratio between two gradients’ magnitude. That is why we have tried linear scaling and find it does
not work.

Instead, the exponential function is non-linear so that the impact ratio of one sample versus another is
re-adjusted compared with original MAE. The hyper-parameter T controls how significant gradient
magnitude’s variance and impact ratio are changed.

Furthermore, assuming that samples’ probabilities are uniformly distributed, we compute the gradi-
ents’ variance of MAE and IMAE over training data points:

σMAE =

∫ 1

0

w2
MAE(p) dp− (

∫ 1

0

wMAE(p) dp)
2 (12)

σIMAE =

∫ 1

0

w2
IMAE(p) dp− (

∫ 1

0

wIMAE(p) dp)
2. (13)

We have σMAE = 0.09. When T = 8, σIMAE = 4.55.

4.2 DISCUSSION OF MAE AND CCE

The weighting curves of CCE, MAE and IMAE are compared in Figure 1. Our key findings are
summarised in the end of introduction. We further discuss them as follows:

• MAE’s weighting scheme is appealing and practical in that samples with medium proba-
bilities are emphasized. Generally, high-probability samples are clean and already trained
well. While low-probability ones are highly likely to be noisy as a model improves during
training. Although all samples are not trained well and probabilities are not meaningful at
the beginning, it also does not hurt to focus on medium-probability ones.

• MAE’s gradient magnitude’s variance over data points is only 0.09. As a consequence, the
impact ratio of one example versus another is too small. Therefore, the majority contribute
almost equally. Therefore, MAE generally underfits to training data.

• Does high loss value usually back-propagate high gradients to update parameters? The an-
swer is NO. Therefore, those theorems based on loss values, e.g., symmetric or bounded
conditions are insufficient for analysing robustness of DNNs Ghosh et al. (2017). Actu-
ally, IMAE is neither symmetric nor bounded. However, it is proved to be noise-robust
empirically.

These analytical discussions are demonstrated in our empirical studies in Table 6 and Figures 4, 10.
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5 EXPERIMENTS

We demonstrate the effectiveness of IMAE as follows:

Outperforming the state-of-the-art. IMAE is compared with recent baselines in Sections 5.1 and
5.2 in different scenarios: (1) Clean labels; (2) Synthetic symmetric and asymmetric noisy labels;
(3) Realistic agnostic noise.

Analysis of the training dynamics of IMAE against CCE and MAE. We thoroughly visualise and
compare the training dynamics of IMAE, CCE and MAE in Section 5.3 for empirical justification.

Supplementary studies. In our supplementary material, we further prove IMAE’s effectiveness by:
(1) The results on a video retrieval task (video person re-identification); (2) The results of different
stochastic optimisers; (3) The ablation study of T .

5.1 IMAGE CLASSIFICATION ON CIFAR-100 WITH SYNTHETIC NOISE

Dataset. CIFAR-100 Krizhevsky (2009) contains 100 classes, 500 images per class for training and
100 images per class for testing. The image size is 32× 32.

Synthetic label noise generation. (1) Class-independent (uniform or symmetric) noise: With a
probability of r, the label of each image is replaced by one of the other class labels uniformly. (2)
Class-dependent (non-uniform or asymmetric) noise: The 100 classes of CIFAR-100 are grouped
into 20 coarse ones. Every coarse one has 5 fine classes. Following Wang et al. (2019d), we first
randomly select 2 out of 5 classes, and then their labels are flipped to each other with a probabil-
ity of r. r denotes the noise rate. All instances generated from the same original image by data
augmentation share the same label. All test labels are kept intact.

Implementation details. We follow the settings of recent SL Wang et al. (2019d) and train
ResNet44 He et al. (2016) for a fair comparison with their reported results. We also use the same
data augmentation techniques: random horizontal flips and crops of 32 × 32 on the images after
being padded with 4 pixels on each side. All networks are trained using SGD with a momentum of
0.9, a weight decay of 0.0005 and an initial learning rate of 0.1.

Baselines. IMAE is compared against standard CCE, MAE, and six recent robust training baselines:
1) Forward (or Backward) applies a noise-transition matrix to multiply the network’s predictions (or
losses) for label correction purpose (Patrini et al., 2017); 2) Bootstrapping learns on new labels gen-
erated by a convex combination (soft or hard combinations) of the original ones and their predictions
(Reed et al., 2015). 3) D2L achieves noise-robustness by restricting the dimensionality expansion
of learned subspaces during training (Ma et al., 2018); 4) SL boosts CCE with a noise-robust coun-
terpart, i.e., reverse cross entropy (Wang et al., 2019d); 5) GCE aims to achieve a balance between
MAE and CCE Zhang & Sabuncu (2018); 6) Label Smoothing (LS) trains DNNs on softly smoothed
labels instead of one-hot ones; We remark that Lee et al. (2019) is not benchmarked for two reasons:
(1) The used network is not ResNet-44 by checking with the authors; (2) The proposed algorithm
is orthogonal to ours because it targets at the inference stage and is a generative classifier on top of
pre-trained deep representations. Our IMAE focuses on the training stage and is a softmax-based
neural classifier.

Results. We display the results in Tables 3 and 4. We observe that IMAE is superior to the state-of-
the-art. We fix the random seed as 123 and do not use any random computational accelerator for the
purpose of exact reproducibility.

5.2 IMAGE CLASSIFICATION ON CLOTHING1M WITH REALISTIC UNKNOWN NOISE

Dataset. Clothing1M Xiao et al. (2015) contains one million clothing images of fourteen classes
from online shopping websites. Its noise type is agnostic. The noise rate is around 38.46%. Addi-
tionally, it includes 50k, 14k, and 10k images with clean labels for training, validation, and testing,
respectively. To compare fairly with existing algorithms without exploiting auxiliary information
from trusted clean data, we also train only on the noisy training data.

Implementation details. We follow Patrini et al. (2017); Tanaka et al. (2018); Wang et al. (2019d)
and train ResNet50 initialised by pretrained ImageNet model Russakovsky et al. (2015). We apply an
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Table 3: The results on CIFAR-100 using ResNet44. Results from SL and D2L are different due to
different optimisation details. In our experiments, we fix the random seed as 123 and do not use any
random computational accelerator for the purpose of exact reproducibility. The best results on each
block and our IMAE are bolded.

Method Clean
Labels

Symmetric Noisy Labels

r=0.2 r=0.4 r=0.6

Results
From
SL

CCE 64.3 59.3 50.8 25.4
LS 63.7 58.8 50.1 24.7

Boot-hard 63.3 57.9 48.2 12.3
Forward 64.0 59.8 53.1 24.7

D2L 64.6 59.2 52.0 35.3
GCE 64.4 59.1 53.3 36.2
SL 66.8 60.0 53.7 41.5

Results
From
D2L

CCE 68.2 52.9 42.9 30.1
Boot-hard 68.3 58.5 44.4 36.7
Boot-soft 67.9 57.3 41.9 32.3
Forward 68.5 60.3 51.3 41.2

Backward 68.5 58.7 45.4 34.5
D2L 68.6 62.2 52.0 42.3

Our
Trained
Results

CCE 70.0 60.4 53.2 42.1
MAE 8.2 6.4 7.3 5.2
IMAE 69.2 63.4 54.7 43.9

Table 4: The results on CIFAR-100 using ResNet44. The best results on each block are bolded.

Method Asymmetric Noisy Labels

r=0.2 r=0.3 r=0.4

Results From
SL

Wang et al. (2019d)

CCE 63.0 63.1 61.9
LS 63.0 62.3 61.6

Bootstrap 63.4 63.2 62.1
Forward 64.1 64.0 60.9

D2L 62.4 63.2 61.4
GCE 63.0 63.2 61.7
SL 65.6 65.1 63.1

Our trained
Results

CCE 66.4 64.7 60.3
MAE 7.3 6.3 7.3
IMAE 67.5 65.8 63.3

Table 5: Classification accuracy (%) on Clothing1M with ResNet50 He et al. (2016). The leftmost
block’s results are from SL Wang et al. (2019d) while the middle block’s are from Masking Han
et al. (2018).

CCE Boot-hard Forward D2L GCE SL S-adaptation Masking Joint
Optim.

Our trained results

CCE MAE IMAE

68.8 68.9 69.8 69.5 69.8 71.0 70.3 71.1 72.2 71.7 39.7 73.2

SGD optimiser with a momentum of 0.9 and a weight decay of 0.00002. We set the initial learning
rate to 0.01 and divide it by 10 after 10k and 15k iterations. We stop training at 30k iterations.
Regarding data augmentation, a raw input image is warped to 256×256, followed by a random crop
of 227×227 and a random horizontal mirroring. The batch size is 84. Every program is run on a
single Tesla V100 GPU with 32 GB RAM.

Competitors. Some recent baselines are compared: 1) S-adaptation explicitly estimates latent true
labels by an additional softmax layer Goldberger & Ben-Reuven (2017); 2) Masking speculates
the structure of a noise-transition matrix with human cognition Han et al. (2018); 3) Joint Optim.
iteratively optimises model’s parameters and latent true labels Tanaka et al. (2018). Others are

7



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale ML Models

introduced in Section 5.1. Note that Han et al. (2019) corrects labels gradually and Li et al. (2019)
exploits meta-learning. They are not technically related and not benchmarked consequently.

Results. We display the results in Table 5. IMAE outperforms the state-of-the-art, which proves
IMAE’s effectiveness under real-world scenarios with agnostic noise. Beyond, we remark that
IMAE is much simpler than those competitors except CCE, MAE.

5.3 EMPIRICAL ANALYSIS OF IMAE AGAINST BASIC BASELINES CCE AND MAE ON
CIFAR-10

Dataset. CIFAR-10 Krizhevsky (2009) contains 10 classes, 5k images per class for training and 1k
images per class for testing. The image size is 32× 32.

Implementation details 3. We follow the study on CIFAR-10 in He et al. (2016), which means we
use exactly the same architectures (ResNet20, ResNet56) and training settings: a weight decay of
0.0001, a momentum of 0.9, a batch size of 128. The learning rate starts at 0.1, then is divided by
10 at 32k and 48k iterations. Training stops at 100k iterations. Data augmentation is the same as
CIFAR-100. For IMAE, without tuning T case by case, we fix T = 0.5 when training data is clean
and T = 8 when noise exists although noisy rate is different.4

A well-accepted way to improve data fitting ability is increasing a model’s capacity. Therefore, we
train a shallower net ResNet20 and a deeper net ResNet56 for better analysis.

5.3.1 CIFAR-10 WITH INTACT LABELS

In Table 6, we first compare IMAE with CCE and MAE on clean CIFAR-10 using different nets
(ResNet20, ResNet56). We observe that IMAE is competitive with CCE and outperforms MAE
significantly.

5.3.2 CIFAR-10 WITH CORRUPTED LABELS

Following Zhang et al. (2017); Arpit et al. (2017), we test the robustness of deep models against
corrupted labels. We evaluate on uniform noise because it is more challenging than asymmetric
noise which is verified in Vahdat (2017).

Majority voting assumption. When generating uniform noise on CIFAR-10, even up to 80% noise
rate, clean examples are still the majority because 80% labels are corrupted to other 9 classes evenly.
We remark that the majority voting is our reasonable assumption. We believe that if the noise
becomes the majority, it is hard to discover meaningful patterns. Being natural and intuitive, the
majority define the meaningful data patterns to learn.

Results. The results are summarised in Table 6. For more comprehensive and clear comparison, we
display the training dynamics in Figures 4 (40% noise) and 10 (80% noise) of the supplementary
material. Note that general learning objectives are high final testing accuracy, low accuracy on
the noisy training subset, and high accuracy on the clean training subset. Therefore, we report the
hybrid accuracy on the combination of testing set and clean training set. We have the following
observations:

• Regarding CCE’s test accuracies, the best is always much higher than the final. In Figures 4
and 10, as training goes, CCE always tries to fit the noisy training subset better. Therefore,
CCE learns a lot of error information when severe noise exists. When it comes to MAE
and IMAE, the gap between the best and final accuracies is significantly smaller than that
of CCE regardless of net’s capacity.

• The training accuracies on both noisy and clean subsets are compared. Whatever the noise
rate and net’s capacity are, CCE fits the noisy subset much more. Although MAE fits the
noisy subset much less, it fits the clean subset worst. Instead, our IMAE fits the noisy
subset little and the clean subset competitively with CCE.

• IMAE obtains the best hybrid accuracy consistently.

3Our purpose is to study the behaviours of CCE, MAE and IMAE on CIFAR-10 instead of pushing its
state-of-the-art results.

4More discussion about the hyper-parameter T is given in our supplementary material.
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Table 6: Results (%) of CCE, MAE and IMAE on CIFAR-10 with different noise rates. For clas-
sification accuracy on the testing set, we show the best result achieved during training and the final
result when training stops, which are indicated by ‘Best’ and ‘Final’, respectively. For training accu-
racy, the results on noisy and clean subsets are displayed. The hybrid accuracy represents the result
on the combination of testing set and clean training set. We report training and hybrid accuracies of
the final model when training terminates. The ultimate objective is to achieve high hybrid accuracy,
since both training and testing data points may occur in a deployed system. The best result on each
column block is bolded. ‘–’ indicates there is no noisy subset.

Backbone Noise rate Loss Testing accuracy Training accuracy: Naive fitting Hybrid accuracy:
Meaningful patterns

Best Final Noisy subset Clean subset

ResNet20

0%
CCE 91.5 91.3 – 100 98.5
MAE 89.3 89.2 – 95.8 94.7
IMAE 91.7 91.4 – 99.8 98.4

40%
CCE 81.2 67.0 34.3 93.3 72.6
MAE 76.2 75.9 6.8 84.6 79.7
IMAE 84.3 84.0 5.5 94.0 88.2

80%
CCE 43.0 20.3 38.3 57.0 22.0
MAE 27.7 27.5 9.7 29.4 27.8
IMAE 52.0 41.0 16.8 64.8 41.5

ResNet56

0%
CCE 92.4 92.2 – 100 98.7
MAE 89.0 89.0 – 96.1 94.9
IMAE 92.2 92.2 – 99.8 98.5

40%
CCE 81.6 63.3 75.0 96.2 63.6
MAE 67.0 66.9 8.1 74.3 70.2
IMAE 82.2 81.5 6.5 93.1 86.5

80%
CCE 38.2 16.4 52.5 62.3 18.7
MAE 15.2 15.1 9.6 15.6 15.1
IMAE 37.1 34.0 13.0 44.7 34.8

(a) ResNet20: Testing set (higher is
better).

(b) ResNet20: Noisy subset (lower
is better).

(c) ResNet20: Clean subset (higher
is better).

(d) ResNet56: Testing set (higher is
better).

(e) ResNet56: Noisy subset (lower is
better).

(f) ResNet56: Clean subset (higher
is better).

Figure 4: CIFAR-10 with noise rate r = 40%. The accuracies on testing set, noisy subset and
clean subset of training set along with training iterations. The legend on the top left is shared by all
subfigures. Better viewed in colour.

6 RELATED WORK

IMAE is a family of robust loss functions, inspired by the intrinsic example weighting scheme of
MAE. Therefore, our work is related to some prior work about example weighting and robust loss
functions.
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6.1 EXAMPLE WEIGHTING

In Ren et al. (2018), a meta-learning algorithm weights data points according to their gradient di-
rections. The meta-learning algorithm is optimised on a clean validation set. In contrast, our IMAE
assigns weights to samples based on their gradient magnitude and does not require extra clean set.
MentorNet Jiang et al. (2018) learns data-driven weighting scheme, which guides StudentNet to fo-
cus on samples whose labels are more trustful. In Active Bias Chang et al. (2017) and Focal Loss
Lin et al. (2017), uncertain and hard examples are emphasised, respectively. Other related work on
weighting samples includes curriculum learning Bengio et al. (2009), self-paced learning Kumar
et al. (2010), and hard examples mining Shrivastava et al. (2016); Wang et al. (2019b). In summary,
what makes ours special is that the weighting scheme inherits from MAE, which is naturally built-in
in the loss function without intuitive designing.

6.2 NOISE-ROBUST THEOREMS ON LOSS FUNCTIONS

Noise-robust theorems on loss functions from the angle of symmetric and bounded conditions on
loss values have been studied recently Ghosh et al. (2017); Zhang & Sabuncu (2018); Wang et al.
(2019d). Does a robust loss function have to be symmetric or bounded? The answer is NO according
to this work. Although IMAE is neither symmetric nor bounded, we have extensive empirical studies
to support its effectiveness.

7 CONCLUSION

We firstly present a thorough study of CCE and MAE technically and empirically. Compared with
previous work, we introduce our observations and new conclusions: 1) MAE underfits to meaning-
ful patterns; 2) MAE is noise-tolerant because of emphasising on medium-probability (uncertain)
examples instead of treating all samples equally. Secondly, we claim gradient magnitude’s vari-
ance matters. As a consequence, we propose an effective and simple solution for addressing MAE’s
underfitting issue while preserving its noise-robustness. IMAE is a family of robust loss functions
whose gradient magnitude’s variance is adjustable.

We remark that our empirically demonstrated claim–“Gradient Magnitude’s Variance Matters”–can
be applied for other algorithms as well, for example, CCE. However, it is beyond the scope of this
work since we focus on analysing MAE and how to improve MAE here. We will investigate this
claim in other loss functions in our future work.

Furthermore, we have a research plan to study the effectiveness of IMAE’s variants for the robust-
ness against adversarial perturbations Kurakin et al. (2017); Moosavi-Dezfooli et al. (2017), e.g.,
incorporating IMAE’s variants with iterative trimmed loss minimisation Shen & Sanghavi (2019).
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Supplementary Material for IMAE

A THE IMPACT OF T ON GRADIENT MAGNITUDE’S VARIANCE

Assuming samples’ probabilities are uniformly distributed, we calculate the variances of IMAE’s
weighting curves with different T . As illustrated in Sec. 4 of the main paper, we rewrite the Eq.
(10) (We use e to replace exp for brevity):

wIMAE(p) = eT ·p(1−p), (14)

where p is the probability of one randomly sampled example being predicted to its annotated label.
According to Eq. (13) in the main paper, we have,

σIMAE =

∫ 1

0

w2
IMAE(p) dp− (

∫ 1

0

wIMAE(p) dp)
2

=

∫ 1

0

e2Tp(1−p) dp− (
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0

eTp(1−p) dp)2

=

√
π erf

(√
2T
2
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e
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2
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−
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2

)
e
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2

T
.

(15)

erf is the error function. Therefore we obtain the weighting variances σIMAE of IMAE with different
T , as displayed in Table 7.

Table 7: The weight variance (gradient magnitude’s variance) of IMAE when T changes.

T 16 8 4 2 1 0.5 0
σIMAE 354.113 4.546 0.299 0.040 0.007 0.002 0

Figure 5: Sample’s weight along with probability in IMAE with different T (IMAE-T ). The hyper-
parameter T controls gradient magnitude’s variance, and impact ratio between examples conse-
quently. Better viewed in colour.

B THE IMPACT OF T ON VALIDATION ACCURACY

We visualise and compare the effect of T on CIFAR-10 test performance. These experiments follow
exactly the same settings of the main paper.
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(a) Test accuracies of IMAE-T trained on intact train-
ing labels.

(b) Test accuracies of IMAE-T trained on corrupted
training labels.

Figure 6: The accuracy on CIFAR-10 test set along with training iterations. We display the results
when training on intact training set and corrupted training set. Better viewed in colour.

(a) The training accuracies of IMAE-T on intact
training set.

(b) The training accuracies of IMAE-T on corrupted
training set.

Figure 7: The accuracy on CIFAR-10 training sets along with training iterations. We show the
results when training on intact training set and corrupted training set. Better viewed in colour.

We try two cases: (1). Training labels are intact (r = 0); (2). Training labels are corrupted randomly
with a probability of 0.4 (r = 40%). In both cases, the test set is kept intact for evaluation. The
backbone network is ResNet20.

B.1 CIFAR-10 WITH INTACT TRAINING LABELS

The test results are shown and compared in Figure 6a.

When training labels are clean, it is unhelpful to differentiate training samples in a high de-
gree, e.g., the performance is even lower when T = 16. The final test accuracies are similar
when T ranges from 0 to 8.

B.2 CIFAR-10 WITH CORRUPTED TRAINING LABELS

The results are presented and compared in Figure 6b. Because there exists 40% label noise, as
training goes, the test accuracy drops, which means the model overfits noisy data gradually.

14



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale ML Models

However, we observe that higher differentiation degree (larger T ) works better and is much
less susceptible to overfitting to noisy data. In Figure 6b, the final test accuracies of IMAE-16 and
IMAE-8 are much higher than those of other models.

C THE IMPACT OF T ON TRAINING ACCURACY

Following the practice in the main paper, we also visualise and compare the accuracies on the train-
ing sets, which indicate how different models fit to training data as training goes, thus leading to
different generalisation performance in the test phase. We present how each model fits its corre-
sponding training set in Figure 7.

C.1 FITTING OF INTACT TRAINING SET

As compared in Figure 7a, all models fit training data similarly when T ranges from 0 to 8.
However, when T = 16, the differentiation degree becomes too large as shown in Table 7. When
differentiation degree is too large, only a quite small proportion of training data can contribute. Con-
sequently, IMAE-16 underfits training data compared with other models. That is why IMAE-16
has the worst test performance as shown in Figure 6a.

C.2 FITTING OF CORRUPTED TRAINING SET

The training accuracies of corrupted training set are displayed in Figure 7b. We have two observa-
tions:

• In cases where noise rate is high, as T increases, the fitting of training data first be-
comes better, and then becomes worse. Specifically, when T increases from 0 to 8, the
training accuracy grows gradually, which means the fitting of training data becomes better.
However, when T = 16, the weighting variance becomes very large (Table 7). As a result,
IMAE-16’s fitting of training data becomes much worse than IMAE-8’s.

• Fitting corrupted training data better does not mean better generalisation perfor-
mance. On the one hand, although IMAE-16 fits the training data much worse than IMAE-
8 (Figure 7b), IMAE-16’s test accuracy is slightly better than IMAE-8’s (Figure 6b). On the
other hand, similar to IMAE-8, IMAE-4 fits its training data well (Figure 7b), but IMAE-4’s
test performance is much worse than IMAE-8’s (Figure 6b).

D CHOOSING T IN PRACTICE

In summary, the training accuracy (fitting of training data) is uninformative for estimating a model’s
generalisation performance according to our findings in Section C.2. Therefore, it is better to opti-
mise T on a validation set in practice.

For empirical demonstration, since the overlap rate between corrupted and intact training sets is
only (1 − r) = 60%, we treat the original intact training set as a validation set. The validation
performance of IMAE-16, IMAE-8 and IMAE-4 is compared in Figure 8. We observe that IMAE-
16 and IMAE-8 own similar validation performance, while IMAE-4’s validation accuracy is lower.
Furthermore, their validation performance is consistent with their test performance (Figure 6b).
Therefore, we conclude that it is a good practice to optimise T on a validation set in different cases.

E VIDEO PERSON RE-IDENTIFICATION

Dataset and evaluation settings. MARS contains 20,715 videos of 1,261 persons Zheng et al.
(2016). There are 1,067,516 frames in total. Because person videos are collected by tracking and
detection algorithms, abnormal examples exist as shown in Figure 9. The exact noise rate is un-
known. Following standard settings, we use 8,298 videos of 625 persons for training and 12,180
videos of other 636 persons for testing. We report the cumulated matching characteristics (CMC)
and mean average precision (mAP) results.

15



Published at ICLR 2023 Workshop on Trustworthy and Reliable Large-Scale ML Models

Figure 8: IMAE-16’s, IMAE-8’s and IMAE-4’s accuracies on the clean training set when they are
trained on the corrupted training set. The overlap rate between corrupted and intact training sets is
only (1 − r) = 60%. Therefore, we can use the original training set as a validation set. Better
viewed in colour.

Figure 9: Display of abnormal training examples highlighted by red boxes. The 1st row shows
synthetic abnormal examples from corrupted CIFAR-10 Krizhevsky (2009). The 2nd and 3rd rows
present realistic abnormal examples from video person re-identification benchmark MARS Zheng
et al. (2016). We remark three representatives: 1) The abnormal images with no person in 3rd row
contain no semantic information at all. 2) The last abnormal image in 2nd or 3rd row may contain
a person that does not belong to any person in the training set. 3) We cannot decide the object of
interest without any prior when an image contains more than one object, e.g., the 2nd and 3rd last
images in 2nd row contain two persons. Better viewed in colour.

Implementation details.5 Following Liu et al. (2017); Wang et al. (2019b), we train GoogleNet V2.
We also treat a video as an image set, which means we use only appearance information without
exploiting latent temporal information. A video’s representation is simply the average fusion of
its frames’ representations. We apply the same training settings for each loss. The learning rate
starts from 0.01 and is divided by 2 every 10k iterations. We stop training at 50k iterations. We
choose SGD optimiser with a weight decay of 0.0005 and momentum of 0.9. The batch size is set
to 180. We use standard data augmentation: a 227× 227 crop is randomly sampled and flipped after
resizing an original image to 256 × 256. At testing, following Wang et al. (2019b); Movshovitz-

5We explore the performance of different losses in real-world applications instead of pushing the state-of-
the-art results.
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Table 8: The results of algorithms using different stochastic optimisers on CIFAR-10 with 40%
class-independent (symmetric) label noise. The trained network is ResNet56 He et al. (2016). The
key hyper-parameters of all optimisers are shown. Other settings are fixed to be the same as pre-
sented in the implementation details of Section 5.3, e.g., weight decay = 0.0001. Since Adam is an
adaptive gradient method, we show several variants of it.

SGD
(lr: 0.01)

SGD + Momentum
(lr: 0.01)

Nesterov
(lr: 0.01)

Adam
(lr: 0.01,

delta: 0.1)

Adam
(lr: 0.005,
delta: 0.1)

Adam
(lr: 0.005,
delta: 1)

CCE 64.3 60.6 56.4 42.5 44.5 50.3
MAE 39.3 64.7 64.1 68.2 59.9 41.4
GCE 68.8 80.5 79.7 73.2 70.6 69.3
IMAE 82.0 83.5 83.7 75.5 76.3 78.6

(a) ResNet20: Testing set (higher is
better).

(b) ResNet20: Noisy subset (lower
is better).

(c) ResNet20: Clean subset (higher
is better).

(d) ResNet56: Testing set (higher is
better).

(e) ResNet56: Noisy subset (lower is
better).

(f) ResNet56: Clean subset (higher
is better).

Figure 10: CIFAR-10 with noise rate r = 80%. The accuracies on testing set, noisy subset and
clean subset of training set along with training iterations. The legend on the top left is shared by all
subfigures. Better viewed in colour.

Attias et al. (2017); Law et al. (2017), we first L2 normalise videos’ features and then calculate the
cosine similarity between every two features.

Results. We compare our method with CCE, MAE and GCE. We implement GCE with its best
settings. The results are shown in Table 9. IMAE outperforms other related methods by a significant
margin.

Table 9: The retrieval results of CCE, MAE, GCE and IMAE on MARS with GoogLeNet V2 Ioffe
& Szegedy (2015).

Metric CCE MAE GCE IMAE
mAP (%) 58.1 12.0 31.6 70.9
CMC-1 (%) 73.8 26.0 51.5 83.5

F THE RESULTS OF IMAE USING DIFFERENT STOCHASTIC OPTIMISERS

In this section, we study the performance of IMAE when different stochastic optimisers are used.
The results are presented in Table 8. We observe that IMAE’s results are the best consistently.
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G DERIVATION OF SOFTMAX, CCE AND MAE LAYERS

G.1 DERIVATION OF SOFTMAX LAYER

As the softmax layer is shared by CCE and MAE, we present the derivation of softmax layer first.
First, we have

p(yi|xi)−1 = 1 +
∑
j 6=yi

exp(zij − ziyi). (16)

If j = yi, for left and right sides of Eq. (16), we calculate their derivatives w.r.t. ziyi simultaneously:

−1
p(yi|xi)2

∂p(yi|xi)
ziyi

= −
∑
j 6=yi

exp(zij − ziyi)

=>
∂p(yi|xi)

ziyi
= p(yi|xi)(1− p(yi|xi)).

(17)

If j 6= yi, analogously we have:

−1
p(yi|xi)2

∂p(yi|xi)
zij

= exp(zij − ziyi)

=>
∂p(yi|xi)

zij
= −p(yi|xi)p(j|xi).

(18)

In summary, the derivation of softmax layer is:

∂p(yi|xi)
∂zij

=

{
p(yi|xi)(1− p(yi|xi)), j = yi
−p(yi|xi)p(j|xi), j 6= yi

(19)

G.2 DERIVATION OF LOSS LAYER: CCE

According to Eq. (1), we have

LCCE(xi; fθ,W) = − log p(yi|xi). (20)

Therefore, we obtain (the parameters are omitted for brevity),

∂LCCE(xi)

∂p(j|xi)
=

{
−p(yi|xi)−1, j = yi
0, j 6= yi

. (21)

G.3 DERIVATION OF LOSS LAYER: MAE

According to Eq. (2), we have

LMAE(xi; fθ,W) = 2(1− (p(yi|xi)). (22)

Therefore, we obtain
∂LMAE(xi)

∂p(j|xi)
=

{
−2, j = yi
0, j 6= yi

. (23)

G.4 DERIVATIVES W.R.T. zi

∂LCCE(xi)/∂zi: The calculation is based on Eq. (21) and Eq. (19).

If j = yi, we have:
∂LCCE(xi)

∂ziyi
=

C∑
j=1

∂LCCE(xi)

∂p(j|xi)
∂p(yi|xi)

ziyi

= p(yi|xi)− 1.

(24)
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If j 6= yi, it becomes:
∂LCCE(xi)

∂zij
=

C∑
j=1

∂LCCE(xi)

∂p(j|xi)
∂p(yi|xi)

zij

= p(j|xi).

(25)

In summary, ∂LCCE(xi)/∂zi can be represented as:

∂LCCE(xi)

∂zij
=

{
p(yi|xi)− 1, j = yi
p(j|xi), j 6= yi

. (26)

∂LMAE(xi)/∂zi: The calculation is analogous with that of ∂LCCE(xi)/∂zi. According to Eq. (23)
and Eq. (19), if j = yi:

∂LMAE(xi)

∂ziyi
=

C∑
j=1

∂LMAE(xi)

∂p(j|xi)
∂p(yi|xi)

ziyi

= −2p(yi|xi)(1− p(yi|xi)).

(27)

otherwise (j 6= yi):
∂LMAE(xi)

∂zij
=

C∑
j=1

∂LMAE(xi)

∂p(j|xi)
∂p(yi|xi)

zij

= 2p(yi|xi)p(j|xi).

(28)

In summary, ∂LMAE(xi)/∂zi is:

∂LMAE(xi)

∂zij
=

{
2p(yi|xi)(p(yi|xi)− 1), j = yi
2p(yi|xi)p(j|xi), j 6= yi

. (29)
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