765 research outputs found

    Objective quality prediction of image retargeting algorithms

    Get PDF
    Quality assessment of image retargeting results is useful when comparing different methods. However, performing the necessary user studies is a long, cumbersome process. In this paper, we propose a simple yet efficient objective quality assessment method based on five key factors: i) preservation of salient regions; ii) analysis of the influence of artifacts; iii) preservation of the global structure of the image; iv) compliance with well-established aesthetics rules; and v) preservation of symmetry. Experiments on the RetargetMe benchmark, as well as a comprehensive additional user study, demonstrate that our proposed objective quality assessment method outperforms other existing metrics, while correlating better with human judgements. This makes our metric a good predictor of subjective preference

    Efficient Depth-aware Image Deformation Adaptation for Curved Screen Displays

    Full text link

    Calipso: Physics-based Image and Video Editing through CAD Model Proxies

    Get PDF
    We present Calipso, an interactive method for editing images and videos in a physically-coherent manner. Our main idea is to realize physics-based manipulations by running a full physics simulation on proxy geometries given by non-rigidly aligned CAD models. Running these simulations allows us to apply new, unseen forces to move or deform selected objects, change physical parameters such as mass or elasticity, or even add entire new objects that interact with the rest of the underlying scene. In Calipso, the user makes edits directly in 3D; these edits are processed by the simulation and then transfered to the target 2D content using shape-to-image correspondences in a photo-realistic rendering process. To align the CAD models, we introduce an efficient CAD-to-image alignment procedure that jointly minimizes for rigid and non-rigid alignment while preserving the high-level structure of the input shape. Moreover, the user can choose to exploit image flow to estimate scene motion, producing coherent physical behavior with ambient dynamics. We demonstrate Calipso's physics-based editing on a wide range of examples producing myriad physical behavior while preserving geometric and visual consistency.Comment: 11 page

    Adaptation of Images and Videos for Different Screen Sizes

    Full text link
    With the increasing popularity of smartphones and similar mobile devices, the demand for media to consume on the go rises. As most images and videos today are captured with HD or even higher resolutions, there is a need to adapt them in a content-aware fashion before they can be watched comfortably on screens with small sizes and varying aspect ratios. This process is called retargeting. Most distortions during this process are caused by a change of the aspect ratio. Thus, retargeting mainly focuses on adapting the aspect ratio of a video while the rest can be scaled uniformly. The main objective of this dissertation is to contribute to the modern image and video retargeting, especially regarding the potential of the seam carving operator. There are still unsolved problems in this research field that should be addressed in order to improve the quality of the results or speed up the performance of the retargeting process. This dissertation presents novel algorithms that are able to retarget images, videos and stereoscopic videos while dealing with problems like the preservation of straight lines or the reduction of the required memory space and computation time. Additionally, a GPU implementation is used to achieve the retargeting of videos in real-time. Furthermore, an enhancement of face detection is presented which is able to distinguish between faces that are important for the retargeting and faces that are not. Results show that the developed techniques are suitable for the desired scenarios

    Learning Thin-Plate Spline Motion and Seamless Composition for Parallax-Tolerant Unsupervised Deep Image Stitching

    Full text link
    Traditional image stitching approaches tend to leverage increasingly complex geometric features (point, line, edge, etc.) for better performance. However, these hand-crafted features are only suitable for specific natural scenes with adequate geometric structures. In contrast, deep stitching schemes overcome the adverse conditions by adaptively learning robust semantic features, but they cannot handle large-parallax cases due to homography-based registration. To solve these issues, we propose UDIS++, a parallax-tolerant unsupervised deep image stitching technique. First, we propose a robust and flexible warp to model the image registration from global homography to local thin-plate spline motion. It provides accurate alignment for overlapping regions and shape preservation for non-overlapping regions by joint optimization concerning alignment and distortion. Subsequently, to improve the generalization capability, we design a simple but effective iterative strategy to enhance the warp adaption in cross-dataset and cross-resolution applications. Finally, to further eliminate the parallax artifacts, we propose to composite the stitched image seamlessly by unsupervised learning for seam-driven composition masks. Compared with existing methods, our solution is parallax-tolerant and free from laborious designs of complicated geometric features for specific scenes. Extensive experiments show our superiority over the SoTA methods, both quantitatively and qualitatively. The code will be available at https://github.com/nie-lang/UDIS2

    Object removal in panoramic media

    Get PDF
    Due in large part to new consumer virtual reality systems, panoramic media is an increasingly popular image and video format. While the capture of panoramic media is well understood, editing still poses many challenges. In this paper we explore object removal in 360 images. First, a method is proposed in which field-of-view expansion using retargeting techniques is combined with Graphcut Textures to remove objects near the equator of the viewing sphere. Several extensions and refinements are proposed to improve this technique, including how it can be extended to removing objects anywhere on the viewing sphere. Secondly, inpainting in 360 images is examined, with an exploration of how the choice of projection affects the inpainting result. Finally, the latter technique is shown to work for video in certain situations

    Content-preserving image stitching with piecewise rectangular boundary constraints

    Get PDF
    This paper proposes an approach to content-preserving image stitching with regular boundary constraints, which aims to stitch multiple images to generate a panoramic image with a piecewise rectangular boundary. Existing methods treat image stitching and rectangling as two separate steps, which may result in suboptimal results as the stitching process is not aware of the further warping needs for rectangling. We address these limitations by formulating image stitching with regular boundaries in a unified optimization. Starting from the initial stitching results produced by the traditional warping-based optimization, we obtain the irregular boundary from the warped meshes by polygon Boolean operations which robustly handle arbitrary mesh compositions. By analyzing the irregular boundary, we construct a piecewise rectangular boundary. Based on this, we further incorporate line and regular boundary preservation constraints into the image stitching framework, and conduct iterative optimization to obtain an optimal piecewise rectangular boundary. Thus we can make the boundary of the stitching results as close as possible to a rectangle, while reducing unwanted distortions. We further extend our method to video stitching, by integrating the temporal coherence into the optimization. Experiments show that our method efficiently produces visually pleasing panoramas with regular boundaries and unnoticeable distortions
    • …
    corecore