7,351 research outputs found

    "'Who are you?' - Learning person specific classifiers from video"

    Get PDF
    We investigate the problem of automatically labelling faces of characters in TV or movie material with their names, using only weak supervision from automaticallyaligned subtitle and script text. Our previous work (Everingham et al. [8]) demonstrated promising results on the task, but the coverage of the method (proportion of video labelled) and generalization was limited by a restriction to frontal faces and nearest neighbour classification. In this paper we build on that method, extending the coverage greatly by the detection and recognition of characters in profile views. In addition, we make the following contributions: (i) seamless tracking, integration and recognition of profile and frontal detections, and (ii) a character specific multiple kernel classifier which is able to learn the features best able to discriminate between the characters. We report results on seven episodes of the TV series “Buffy the Vampire Slayer”, demonstrating significantly increased coverage and performance with respect to previous methods on this material

    Deep face tracking and parsing in the wild

    Get PDF
    Face analysis has been a long-standing research direction in the field of computer vision and pattern recognition. A complete face analysis system involves solving several tasks including face detection, face tracking, face parsing, and face recognition. Recently, the performance of methods in all tasks has significantly improved thanks to the employment of Deep Convolutional Neural Networks (DCNNs). However, existing face analysis algorithms mainly focus on solving facial images captured in the constrained laboratory environment, and their performance on real-world images has remained less explored. Compared with the lab environment, the in-the-wild settings involve greater diversity in face sizes, poses, facial expressions, background clutters, lighting conditions and imaging quality. This thesis investigates two fundamental tasks in face analysis under in-the-wild settings: face tracking and face parsing. Both tasks serve as important prerequisites for downstream face analysis applications. However, in-the-wild datasets remain scarce in both fields and models have not been rigorously evaluated in such settings. In this thesis, we aim to bridge that gap of lacking in-the-wild data, evaluate existing methods in these settings, and develop accurate, robust and efficient deep learning-based methods for the two tasks. For face tracking in the wild, we introduce the first in-the-wild face tracking dataset, MobiFace, that consists of 80 videos captured by mobile phones during mobile live-streaming. The environment of the live-streaming performance is fully unconstrained and the interactions between users and mobile phones are natural and spontaneous. Next, we evaluate existing tracking methods, including generic object trackers and dedicated face trackers. The results show that MobiFace represent unique challenges in face tracking in the wild and cannot be readily solved by existing methods. Finally, we present a DCNN-based framework, FT-RCNN, that significantly outperforms other methods in face tracking in the wild. For face parsing in the wild, we introduce the first large-scale in-the-wild face dataset, iBugMask, that contains 21, 866 training images and 1, 000 testing images. Unlike existing datasets, the images in iBugMask are captured in the fully unconstrained environment and are not cropped or preprocessed of any kind. Manually annotated per-pixel labels for eleven facial regions are provided for each target face. Next, we benchmark existing parsing methods and the results show that iBugMask is extremely challenging for all methods. By rigorous benchmarking, we observe that the pre-processing of facial images with bounding boxes in face parsing in the wild introduces bias. When cropping the face with a bounding box, a cropping margin has to be hand-picked. If face alignment is used, fiducial landmarks are required and a predefined alignment template has to be selected. These additional hyper-parameters have to be carefully considered and can have a significant impact on the face parsing performance. To solve this, we propose Region-of-Interest (RoI) Tanh-polar transform that warps the whole image to a fixed-sized representation. Moreover, the RoI Tanh-polar transform is differentiable and allows for rotation equivariance in 1 DCNNs. We show that when coupled with a simple Fully Convolutional Network, our RoI Tanh-polar transformer Network has achieved state-of-the-art results on face parsing in the wild. This thesis contributes towards in-the-wild face tracking and face parsing by providing novel datasets and proposing effective frameworks. Both tasks can benefit real-world downstream applications such as facial age estimation, facial expression recognition and lip-reading. The proposed RoI Tanh-polar transform also provides a new perspective in how to preprocess the face images and make the DCNNs truly end-to-end for real-world face analysis applications.Open Acces
    corecore