8,010 research outputs found

    Object Detection During Newborn Resuscitation Activities

    Full text link
    Birth asphyxia is a major newborn mortality problem in low-resource countries. International guideline provides treatment recommendations; however, the importance and effect of the different treatments are not fully explored. The available data is collected in Tanzania, during newborn resuscitation, for analysis of the resuscitation activities and the response of the newborn. An important step in the analysis is to create activity timelines of the episodes, where activities include ventilation, suction, stimulation etc. Methods: The available recordings are noisy real-world videos with large variations. We propose a two-step process in order to detect activities possibly overlapping in time. The first step is to detect and track the relevant objects, like bag-mask resuscitator, heart rate sensors etc., and the second step is to use this information to recognize the resuscitation activities. The topic of this paper is the first step, and the object detection and tracking are based on convolutional neural networks followed by post processing. Results: The performance of the object detection during activities were 96.97 % (ventilations), 100 % (attaching/removing heart rate sensor) and 75 % (suction) on a test set of 20 videos. The system also estimate the number of health care providers present with a performance of 71.16 %. Conclusion: The proposed object detection and tracking system provides promising results in noisy newborn resuscitation videos. Significance: This is the first step in a thorough analysis of newborn resuscitation episodes, which could provide important insight about the importance and effect of different newborn resuscitation activitiesComment: 8 page

    How Does Ultrasound Simulation during High Fidelity Simulation Contribute to the Development of Emergency Ultrasound Skills Amongst Emergency Medicine Trainees?

    Get PDF
    The growing worldwide use of clinician-performed ultrasound (CPU) marks a dramatic change in bedside medicine and patient care. With steadily improving portability, accessibility and technology, ultrasound use continues to grow amongst many medical specialties. Likewise, the application of CPU in emergency medicine is increasing. Emergency Medicine (EM) is a medical specialty “based on the knowledge and skills required for the prevention, diagnosis and management of acute and urgent aspects of illness and injury…” (International Federation for Emergency Medicine, 1991). Increasingly, emergency physicians are using emergency department ultrasound (ED U/S) to enhance their assessment of critically-ill patients (American College of Emergency Physicians, 2008). The purpose of this study was to evaluate and describe those aspects of ultrasound simulation (during HFS) that contribute to the development of critical care ED U/S skills. Secondly, it was of interest to assess how a novel ultrasound simulator (edus2) compared to video playback on a laptop in terms of the above-mentioned aspects. The population of interest included both EM trainees and faculty. This investigation was a randomized, prospective, crossover study with two intervention treatments for all participants. In Phase I, EM trainees and faculty from London, UK, were invited to participate in one of four day-long critical-care HFS sessions during which they participated in four critical-care scenarios. Faculty were involved in assisting with session debriefing and feedback. All participants completed two cases with each intervention. In Phase II, faculty in Saskatoon, SK, Canada, were invited to review video recordings of the sessions from Phase I and evaluate the educational merits of the two ED U/S simulation interventions. iii This study produced both quantitative and qualitative data. As this study looked at two interventions and how they could contribute to the development of ED U/S skills, pre- and postintervention changes were analysed for statistically significant differences between them. T-test analyses were used for comparisons. Effect sizes (Cohen’s d) were calculated where statistically significant findings were observed. Qualitative data was assessed through emergent thematic analysis and triangulation. The findings of the study support the integration of ED U/S simulation into HFS. Integration was found to be of value to both trainees and faculty by allowing trainees to demonstrate knowledge of indications as well as correct image interpretation and general integration of ED U/S into critical care (p<0.05). Trainees described an increased motivation to develop their ED U/S skills as well as greater desire to use ED U/S in everyday practice. Furthermore, the edus2 was identified as being the preferred training intervention. The edus2 met functional fidelity through its real time and hands-on applicability. Faculty preferred the edus2 as it allowed for better assessment of trainee skills that then influenced session debriefing and formative feedback. Faculty in Phase II found the edus2 intervention sufficient in offering basic insights into trainee ED U/S skills and mastery (p<0.05). Implications of the study include support for the use of ultrasound simulation during HFS for the development of critical care ED U/S skills amongst EM trainees. Further study on the effects of such hybrid simulation on clinical performance is warranted

    Emergency reflex action drill for traumatic cardiac arrest in a simulated pre-hospital setting; a one-group pre-post intervention study

    Get PDF
    Background: Emergency Reflex Action Drills (ERADs) are meant to decrease stress-associated cognitive demand in high urgency situations. The aim of this study was to develop and test an ERAD for witnessed traumatic cardiac arrest (TCA), an event in which potentially reversible causes need to be systematically addressed and treated in a short period of time. We hypothesize that this ERAD (the TCA-Drill) helps ground Emergency Medical Services (EMS) nurses in overcoming performance decline during this specific high-pressure situation. Methods: This was a prospective, experimental one-group pre-post intervention study. Ground EMS nurses participated in a session of four simulated scenarios, with an in-between educational session to teach the TCA-Drill. Scenarios were video recorded, after which adherence and time differences were analyzed. Self-confidence on clinical practice was measured before and after the scenarios. Results: Twelve ground EMS nurses participated in this study. Overall median time to address reversible causes of TCA decreased significantly using the TCA-Drill (132 vs. 110 s; p = 0.030) compared with the conventional ALS strategy. More specifically, participants adhering to the TCA-Drill showed a significantly lower time needed for hemorrhage control (58 vs. 37 s; p = 0.012). Eight of 12 (67 %) ground EMS nurses performed the ERAD without protocol deviations. Reported self-confidence significantly increased on 11 of the 13 surveyed items. Conclusions: The use of an ERAD for TCA (the TCA-Drill) significantly reduces the time to address reversible causes for TCA without delaying chest compressions in a simulated environment and can be easily taught to ground EMS nurses and increases self-confidence. Implications for clinical practice: The use of an ERAD for TCA (the TCA-Drill can significantly reduce the time to address reversible causes for TCA without delaying chest compression. This drill can be easily taught to ground EMS nurses and increases their self-confidence in addressing TCA-patients.</p

    Emergency reflex action drill for traumatic cardiac arrest in a simulated pre-hospital setting; a one-group pre-post intervention study

    Get PDF
    Background: Emergency Reflex Action Drills (ERADs) are meant to decrease stress-associated cognitive demand in high urgency situations. The aim of this study was to develop and test an ERAD for witnessed traumatic cardiac arrest (TCA), an event in which potentially reversible causes need to be systematically addressed and treated in a short period of time. We hypothesize that this ERAD (the TCA-Drill) helps ground Emergency Medical Services (EMS) nurses in overcoming performance decline during this specific high-pressure situation. Methods: This was a prospective, experimental one-group pre-post intervention study. Ground EMS nurses participated in a session of four simulated scenarios, with an in-between educational session to teach the TCA-Drill. Scenarios were video recorded, after which adherence and time differences were analyzed. Self-confidence on clinical practice was measured before and after the scenarios. Results: Twelve ground EMS nurses participated in this study. Overall median time to address reversible causes of TCA decreased significantly using the TCA-Drill (132 vs. 110 s; p = 0.030) compared with the conventional ALS strategy. More specifically, participants adhering to the TCA-Drill showed a significantly lower time needed for hemorrhage control (58 vs. 37 s; p = 0.012). Eight of 12 (67 %) ground EMS nurses performed the ERAD without protocol deviations. Reported self-confidence significantly increased on 11 of the 13 surveyed items. Conclusions: The use of an ERAD for TCA (the TCA-Drill) significantly reduces the time to address reversible causes for TCA without delaying chest compressions in a simulated environment and can be easily taught to ground EMS nurses and increases self-confidence. Implications for clinical practice: The use of an ERAD for TCA (the TCA-Drill can significantly reduce the time to address reversible causes for TCA without delaying chest compression. This drill can be easily taught to ground EMS nurses and increases their self-confidence in addressing TCA-patients.</p

    Reviewing childhood deaths : advanced training for rapid response teams

    Get PDF

    A framework for cardio-pulmonary resuscitation (CPR) scene retrieval from medical simulation videos based on object and activity detection.

    Get PDF
    In this thesis, we propose a framework to detect and retrieve CPR activity scenes from medical simulation videos. Medical simulation is a modern training method for medical students, where an emergency patient condition is simulated on human-like mannequins and the students act upon. These simulation sessions are recorded by the physician, for later debriefing. With the increasing number of simulation videos, automatic detection and retrieval of specific scenes became necessary. The proposed framework for CPR scene retrieval, would eliminate the conventional approach of using shot detection and frame segmentation techniques. Firstly, our work explores the application of Histogram of Oriented Gradients in three dimensions (HOG3D) to retrieve the scenes containing CPR activity. Secondly, we investigate the use of Local Binary Patterns in Three Orthogonal Planes (LBPTOP), which is the three dimensional extension of the popular Local Binary Patterns. This technique is a robust feature that can detect specific activities from scenes containing multiple actors and activities. Thirdly, we propose an improvement to the above mentioned methods by a combination of HOG3D and LBP-TOP. We use decision level fusion techniques to combine the features. We prove experimentally that the proposed techniques and their combination out-perform the existing system for CPR scene retrieval. Finally, we devise a method to detect and retrieve the scenes containing the breathing bag activity, from the medical simulation videos. The proposed framework is tested and validated using eight medical simulation videos and the results are presented
    corecore