1,508 research outputs found

    Deep attentive video summarization with distribution consistency learning

    Get PDF
    This article studies supervised video summarization by formulating it into a sequence-to-sequence learning framework, in which the input and output are sequences of original video frames and their predicted importance scores, respectively. Two critical issues are addressed in this article: short-term contextual attention insufficiency and distribution inconsistency. The former lies in the insufficiency of capturing the short-term contextual attention information within the video sequence itself since the existing approaches focus a lot on the long-term encoder-decoder attention. The latter refers to the distributions of predicted importance score sequence and the ground-truth sequence is inconsistent, which may lead to a suboptimal solution. To better mitigate the first issue, we incorporate a self-attention mechanism in the encoder to highlight the important keyframes in a short-term context. The proposed approach alongside the encoder-decoder attention constitutes our deep attentive models for video summarization. For the second one, we propose a distribution consistency learning method by employing a simple yet effective regularization loss term, which seeks a consistent distribution for the two sequences. Our final approach is dubbed as Attentive and Distribution consistent video Summarization (ADSum). Extensive experiments on benchmark data sets demonstrate the superiority of the proposed ADSum approach against state-of-the-art approaches

    Video Storytelling: Textual Summaries for Events

    Full text link
    Bridging vision and natural language is a longstanding goal in computer vision and multimedia research. While earlier works focus on generating a single-sentence description for visual content, recent works have studied paragraph generation. In this work, we introduce the problem of video storytelling, which aims at generating coherent and succinct stories for long videos. Video storytelling introduces new challenges, mainly due to the diversity of the story and the length and complexity of the video. We propose novel methods to address the challenges. First, we propose a context-aware framework for multimodal embedding learning, where we design a Residual Bidirectional Recurrent Neural Network to leverage contextual information from past and future. Second, we propose a Narrator model to discover the underlying storyline. The Narrator is formulated as a reinforcement learning agent which is trained by directly optimizing the textual metric of the generated story. We evaluate our method on the Video Story dataset, a new dataset that we have collected to enable the study. We compare our method with multiple state-of-the-art baselines, and show that our method achieves better performance, in terms of quantitative measures and user study.Comment: Published in IEEE Transactions on Multimedi

    Video Highlight Prediction Using Audience Chat Reactions

    Full text link
    Sports channel video portals offer an exciting domain for research on multimodal, multilingual analysis. We present methods addressing the problem of automatic video highlight prediction based on joint visual features and textual analysis of the real-world audience discourse with complex slang, in both English and traditional Chinese. We present a novel dataset based on League of Legends championships recorded from North American and Taiwanese Twitch.tv channels (will be released for further research), and demonstrate strong results on these using multimodal, character-level CNN-RNN model architectures.Comment: EMNLP 201

    Summarizing Videos with Attention

    Full text link
    In this work we propose a novel method for supervised, keyshots based video summarization by applying a conceptually simple and computationally efficient soft, self-attention mechanism. Current state of the art methods leverage bi-directional recurrent networks such as BiLSTM combined with attention. These networks are complex to implement and computationally demanding compared to fully connected networks. To that end we propose a simple, self-attention based network for video summarization which performs the entire sequence to sequence transformation in a single feed forward pass and single backward pass during training. Our method sets a new state of the art results on two benchmarks TvSum and SumMe, commonly used in this domain.Comment: Presented at ACCV2018 AIU2018 worksho
    corecore