9,334 research outputs found

    Automated Top View Registration of Broadcast Football Videos

    Full text link
    In this paper, we propose a novel method to register football broadcast video frames on the static top view model of the playing surface. The proposed method is fully automatic in contrast to the current state of the art which requires manual initialization of point correspondences between the image and the static model. Automatic registration using existing approaches has been difficult due to the lack of sufficient point correspondences. We investigate an alternate approach exploiting the edge information from the line markings on the field. We formulate the registration problem as a nearest neighbour search over a synthetically generated dictionary of edge map and homography pairs. The synthetic dictionary generation allows us to exhaustively cover a wide variety of camera angles and positions and reduce this problem to a minimal per-frame edge map matching procedure. We show that the per-frame results can be improved in videos using an optimization framework for temporal camera stabilization. We demonstrate the efficacy of our approach by presenting extensive results on a dataset collected from matches of football World Cup 2014

    Hybrid Video Stabilization for Mobile Vehicle Detection on SURF in Aerial Surveillance

    Get PDF
    Detection of moving vehicles in aerial video sequences is of great importance with many promising applications in surveillance, intelligence transportation, or public service applications such as emergency evacuation and policy security. However, vehicle detection is a challenging task due to global camera motion, low resolution of vehicles, and low contrast between vehicles and background. In this paper, we present a hybrid method to efficiently detect moving vehicle in aerial videos. Firstly, local feature extraction and matching were performed to estimate the global motion. It was demonstrated that the Speeded Up Robust Feature (SURF) key points were more suitable for the stabilization task. Then, a list of dynamic pixels was obtained and grouped for different moving vehicles by comparing the different optical flow normal. To enhance the precision of detection, some preprocessing methods were applied to the surveillance system, such as road extraction and other features. A quantitative evaluation on real video sequences indicated that the proposed method improved the detection performance significantly

    Egocentric Hand Detection Via Dynamic Region Growing

    Full text link
    Egocentric videos, which mainly record the activities carried out by the users of the wearable cameras, have drawn much research attentions in recent years. Due to its lengthy content, a large number of ego-related applications have been developed to abstract the captured videos. As the users are accustomed to interacting with the target objects using their own hands while their hands usually appear within their visual fields during the interaction, an egocentric hand detection step is involved in tasks like gesture recognition, action recognition and social interaction understanding. In this work, we propose a dynamic region growing approach for hand region detection in egocentric videos, by jointly considering hand-related motion and egocentric cues. We first determine seed regions that most likely belong to the hand, by analyzing the motion patterns across successive frames. The hand regions can then be located by extending from the seed regions, according to the scores computed for the adjacent superpixels. These scores are derived from four egocentric cues: contrast, location, position consistency and appearance continuity. We discuss how to apply the proposed method in real-life scenarios, where multiple hands irregularly appear and disappear from the videos. Experimental results on public datasets show that the proposed method achieves superior performance compared with the state-of-the-art methods, especially in complicated scenarios

    Electronic Image Stabilization for Mobile Robotic Vision Systems

    Get PDF
    When a camera is affixed on a dynamic mobile robot, image stabilization is the first step towards more complex analysis on the video feed. This thesis presents a novel electronic image stabilization (EIS) algorithm for small inexpensive highly dynamic mobile robotic platforms with onboard camera systems. The algorithm combines optical flow motion parameter estimation with angular rate data provided by a strapdown inertial measurement unit (IMU). A discrete Kalman filter in feedforward configuration is used for optimal fusion of the two data sources. Performance evaluations are conducted by a simulated video truth model (capturing the effects of image translation, rotation, blurring, and moving objects), and live test data. Live data was collected from a camera and IMU affixed to the DAGSI Whegsâ„¢ mobile robotic platform as it navigated through a hallway. Template matching, feature detection, optical flow, and inertial measurement techniques are compared and analyzed to determine the most suitable algorithm for this specific type of image stabilization. Pyramidal Lucas-Kanade optical flow using Shi-Tomasi good features in combination with inertial measurement is the EIS algorithm found to be superior. In the presence of moving objects, fusion of inertial measurement reduces optical flow root-mean-squared (RMS) error in motion parameter estimates by 40%. No previous image stabilization algorithm to date directly fuses optical flow estimation with inertial measurement by way of Kalman filtering

    Video Processing with Additional Information

    Get PDF
    Cameras are frequently deployed along with many additional sensors in aerial and ground-based platforms. Many video datasets have metadata containing measurements from inertial sensors, GPS units, etc. Hence the development of better video processing algorithms using additional information attains special significance. We first describe an intensity-based algorithm for stabilizing low resolution and low quality aerial videos. The primary contribution is the idea of minimizing the discrepancy in the intensity of selected pixels between two images. This is an application of inverse compositional alignment for registering images of low resolution and low quality, for which minimizing the intensity difference over salient pixels with high gradients results in faster and better convergence than when using all the pixels. Secondly, we describe a feature-based method for stabilization of aerial videos and segmentation of small moving objects. We use the coherency of background motion to jointly track features through the sequence. This enables accurate tracking of large numbers of features in the presence of repetitive texture, lack of well conditioned feature windows etc. We incorporate the segmentation problem within the joint feature tracking framework and propose the first combined joint-tracking and segmentation algorithm. The proposed approach enables highly accurate tracking, and segmentation of feature tracks that is used in a MAP-MRF framework for obtaining dense pixelwise labeling of the scene. We demonstrate competitive moving object detection in challenging video sequences of the VIVID dataset containing moving vehicles and humans that are small enough to cause background subtraction approaches to fail. Structure from Motion (SfM) has matured to a stage, where the emphasis is on developing fast, scalable and robust algorithms for large reconstruction problems. The availability of additional sensors such as inertial units and GPS along with video cameras motivate the development of SfM algorithms that leverage these additional measurements. In the third part, we study the benefits of the availability of a specific form of additional information - the vertical direction (gravity) and the height of the camera both of which can be conveniently measured using inertial sensors, and a monocular video sequence for 3D urban modeling. We show that in the presence of this information, the SfM equations can be rewritten in a bilinear form. This allows us to derive a fast, robust, and scalable SfM algorithm for large scale applications. The proposed SfM algorithm is experimentally demonstrated to have favorable properties compared to the sparse bundle adjustment algorithm. We provide experimental evidence indicating that the proposed algorithm converges in many cases to solutions with lower error than state-of-art implementations of bundle adjustment. We also demonstrate that for the case of large reconstruction problems, the proposed algorithm takes lesser time to reach its solution compared to bundle adjustment. We also present SfM results using our algorithm on the Google StreetView research dataset, and several other datasets

    Learning how to be robust: Deep polynomial regression

    Get PDF
    Polynomial regression is a recurrent problem with a large number of applications. In computer vision it often appears in motion analysis. Whatever the application, standard methods for regression of polynomial models tend to deliver biased results when the input data is heavily contaminated by outliers. Moreover, the problem is even harder when outliers have strong structure. Departing from problem-tailored heuristics for robust estimation of parametric models, we explore deep convolutional neural networks. Our work aims to find a generic approach for training deep regression models without the explicit need of supervised annotation. We bypass the need for a tailored loss function on the regression parameters by attaching to our model a differentiable hard-wired decoder corresponding to the polynomial operation at hand. We demonstrate the value of our findings by comparing with standard robust regression methods. Furthermore, we demonstrate how to use such models for a real computer vision problem, i.e., video stabilization. The qualitative and quantitative experiments show that neural networks are able to learn robustness for general polynomial regression, with results that well overpass scores of traditional robust estimation methods.Comment: 18 pages, conferenc

    Unsupervised Learning of Visual Representations using Videos

    Full text link
    Is strong supervision necessary for learning a good visual representation? Do we really need millions of semantically-labeled images to train a Convolutional Neural Network (CNN)? In this paper, we present a simple yet surprisingly powerful approach for unsupervised learning of CNN. Specifically, we use hundreds of thousands of unlabeled videos from the web to learn visual representations. Our key idea is that visual tracking provides the supervision. That is, two patches connected by a track should have similar visual representation in deep feature space since they probably belong to the same object or object part. We design a Siamese-triplet network with a ranking loss function to train this CNN representation. Without using a single image from ImageNet, just using 100K unlabeled videos and the VOC 2012 dataset, we train an ensemble of unsupervised networks that achieves 52% mAP (no bounding box regression). This performance comes tantalizingly close to its ImageNet-supervised counterpart, an ensemble which achieves a mAP of 54.4%. We also show that our unsupervised network can perform competitively in other tasks such as surface-normal estimation

    Object Detection and Tracking for ASV

    Get PDF
    In this thesis automatic Object Detection system is presented. Object Detection is performed by different algorithms. As reading many literature we have observed that detecting objects in particular video sequence or by any surveillance cameras is a really challenging task in computer vision application because in sea the atmosphere affects a lot in the detection. Therefore we felt that there can be a wide range of possibilities are open in relation to detection. In order to improve the object detection, we developed image stabilization software on top of the image acquisition. First image stabilization has been performed over the raw data of ROAZ II. After achieving stabled video or images, object detection algorithm is performed using color based segmentation. Field tests have been performed with a data set from the ROAZ-II and during it shows the effectiveness of the approach. And system is able to achieve object detection in video or images with high accuracy
    • …
    corecore