41 research outputs found

    Saying What You're Looking For: Linguistics Meets Video Search

    Full text link
    We present an approach to searching large video corpora for video clips which depict a natural-language query in the form of a sentence. This approach uses compositional semantics to encode subtle meaning that is lost in other systems, such as the difference between two sentences which have identical words but entirely different meaning: "The person rode the horse} vs. \emph{The horse rode the person". Given a video-sentence pair and a natural-language parser, along with a grammar that describes the space of sentential queries, we produce a score which indicates how well the video depicts the sentence. We produce such a score for each video clip in a corpus and return a ranked list of clips. Furthermore, this approach addresses two fundamental problems simultaneously: detecting and tracking objects, and recognizing whether those tracks depict the query. Because both tracking and object detection are unreliable, this uses knowledge about the intended sentential query to focus the tracker on the relevant participants and ensures that the resulting tracks are described by the sentential query. While earlier work was limited to single-word queries which correspond to either verbs or nouns, we show how one can search for complex queries which contain multiple phrases, such as prepositional phrases, and modifiers, such as adverbs. We demonstrate this approach by searching for 141 queries involving people and horses interacting with each other in 10 full-length Hollywood movies.Comment: 13 pages, 8 figure

    The Long-Short Story of Movie Description

    Full text link
    Generating descriptions for videos has many applications including assisting blind people and human-robot interaction. The recent advances in image captioning as well as the release of large-scale movie description datasets such as MPII Movie Description allow to study this task in more depth. Many of the proposed methods for image captioning rely on pre-trained object classifier CNNs and Long-Short Term Memory recurrent networks (LSTMs) for generating descriptions. While image description focuses on objects, we argue that it is important to distinguish verbs, objects, and places in the challenging setting of movie description. In this work we show how to learn robust visual classifiers from the weak annotations of the sentence descriptions. Based on these visual classifiers we learn how to generate a description using an LSTM. We explore different design choices to build and train the LSTM and achieve the best performance to date on the challenging MPII-MD dataset. We compare and analyze our approach and prior work along various dimensions to better understand the key challenges of the movie description task
    corecore