39,068 research outputs found

    Deep Homography Estimation for Dynamic Scenes

    Full text link
    Homography estimation is an important step in many computer vision problems. Recently, deep neural network methods have shown to be favorable for this problem when compared to traditional methods. However, these new methods do not consider dynamic content in input images. They train neural networks with only image pairs that can be perfectly aligned using homographies. This paper investigates and discusses how to design and train a deep neural network that handles dynamic scenes. We first collect a large video dataset with dynamic content. We then develop a multi-scale neural network and show that when properly trained using our new dataset, this neural network can already handle dynamic scenes to some extent. To estimate a homography of a dynamic scene in a more principled way, we need to identify the dynamic content. Since dynamic content detection and homography estimation are two tightly coupled tasks, we follow the multi-task learning principles and augment our multi-scale network such that it jointly estimates the dynamics masks and homographies. Our experiments show that our method can robustly estimate homography for challenging scenarios with dynamic scenes, blur artifacts, or lack of textures.Comment: CVPR 2020, https://github.com/lcmhoang/hmg-dynamic

    Object-Oriented Dynamics Learning through Multi-Level Abstraction

    Full text link
    Object-based approaches for learning action-conditioned dynamics has demonstrated promise for generalization and interpretability. However, existing approaches suffer from structural limitations and optimization difficulties for common environments with multiple dynamic objects. In this paper, we present a novel self-supervised learning framework, called Multi-level Abstraction Object-oriented Predictor (MAOP), which employs a three-level learning architecture that enables efficient object-based dynamics learning from raw visual observations. We also design a spatial-temporal relational reasoning mechanism for MAOP to support instance-level dynamics learning and handle partial observability. Our results show that MAOP significantly outperforms previous methods in terms of sample efficiency and generalization over novel environments for learning environment models. We also demonstrate that learned dynamics models enable efficient planning in unseen environments, comparable to true environment models. In addition, MAOP learns semantically and visually interpretable disentangled representations.Comment: Accepted to the Thirthy-Fourth AAAI Conference On Artificial Intelligence (AAAI), 202
    • …
    corecore