4 research outputs found

    Video Based Emotion Recognition Using CNN and BRNN

    Get PDF
    Video-based Emotion recognition is rather challenging than vision task. It needs to model spatial information of each image frame as well as the temporal contextual correlations among sequential frames. For this purpose, we propose hierarchical deep network architecture to extract high-level spatial temporal features. Two classic neural networks, Convolutional neural network (CNN) and Bi-directional recurrent neural network (BRNN) are employed to capture facial textural characteristics in spatial domain and dynamic emotion changes in temporal domain. We endeavor to coordinate the two networks by optimizing each of them to boost the performance of the emotion recognition as well as to achieve greater accuracy as compared with baselines

    Enhanced Emotion Recognition in Videos: A Convolutional Neural Network Strategy for Human Facial Expression Detection and Classification

    Get PDF
    The human face is essential in conveying emotions, as facial expressions serve as effective, natural, and universal indicators of emotional states. Automated emotion recognition has garnered increasing interest due to its potential applications in various fields, such as human-computer interaction, machine learning, robotic control, and driver emotional state monitoring. With artificial intelligence and computational power advancements, visual emotion recognition has become a prominent research area. Despite extensive research employing machine learning algorithms like convolutional neural networks (CNN), challenges remain concerning input data processing, emotion classification scope, data size, optimal CNN configurations, and performance evaluation. To address these issues, we propose a comprehensive CNN-based model for real-time detection and classification of five primary emotions: anger, happiness, neutrality, sadness, and surprise. We employ the Amsterdam Dynamic Facial Expression Set – Bath Intensity Variations (ADFES-BIV) video dataset, extracting image frames from the video samples. Image processing techniques such as histogram equalization, color conversion, cropping, and resizing are applied to the frames before labeling. The Viola-Jones algorithm is then used for face detection on the processed grayscale images. We develop and train a CNN on the processed image data, implementing dropout, batch normalization, and L2 regularization to reduce overfitting. The ideal hyperparameters are determined through trial and error, and the model's performance is evaluated. The proposed model achieves a recognition accuracy of 99.38%, with the confusion matrix, recall, precision, F1 score, and processing time further quantifying its performance characteristics. The model's generalization performance is assessed using images from the Warsaw Set of Emotional Facial Expression Pictures (WSEFEP) and Extended Cohn-Kanade Database (CK+) datasets. The results demonstrate the efficiency and usability of our proposed approach, contributing valuable insights into real-time visual emotion recognition

    Bidirectional long short-term memory network for proto-object representation

    Full text link
    Researchers have developed many visual saliency models in order to advance the technology in computer vision. Neural networks, Convolution Neural Networks (CNNs) in particular, have successfully differentiate objects in images through feature extraction. Meanwhile, Cummings et al. has proposed a proto-object image saliency (POIS) model that shows perceptual objects or shapes can be modelled through the bottom-up saliency algorithm. Inspired from their work, this research is aimed to explore the imbedding features in the proto-object representations and utilizing artificial neural networks (ANN) to capture and predict the saliency output of POIS. A combination of CNN and a bi-directional long short-term memory (BLSTM) neural network is proposed for this saliency model as a machine learning alternative to the border ownership and grouping mechanism in POIS. As ANNs become more efficient in performing visual saliency tasks, the result of this work would extend their application in computer vision through successful implementation for proto-object based saliency
    corecore