1,126 research outputs found

    On-Site and External Energy Harvesting in Underground Wireless

    Get PDF
    Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground communication system to power underground nodes for prolonged field operation in decision agriculture

    Internet of Things in Agricultural Innovation and Security

    Get PDF
    The agricultural Internet of Things (Ag-IoT) paradigm has tremendous potential in transparent integration of underground soil sensing, farm machinery, and sensor-guided irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. The aim of the IoT in agricultural innovation and security chapter is to present agricultural IoT research and paradigm to promote sustainable production of safe, healthy, and profitable crop and animal agricultural products. This chapter covers the IoT platform to test optimized management strategies, engage farmer and industry groups, and investigate new and traditional technology drivers that will enhance resilience of the farmers to the socio-environmental changes. A review of state-of-the-art communication architectures and underlying sensing technologies and communication mechanisms is presented with coverage of recent advances in the theory and applications of wireless underground communications. Major challenges in Ag-IoT design and implementation are also discussed

    Energy harvesting and wireless transfer in sensor network applications: Concepts and experiences

    Get PDF
    Advances in micro-electronics and miniaturized mechanical systems are redefining the scope and extent of the energy constraints found in battery-operated wireless sensor networks (WSNs). On one hand, ambient energy harvesting may prolong the systems lifetime or possibly enable perpetual operation. On the other hand, wireless energy transfer allows systems to decouple the energy sources from the sensing locations, enabling deployments previously unfeasible. As a result of applying these technologies to WSNs, the assumption of a finite energy budget is replaced with that of potentially infinite, yet intermittent, energy supply, profoundly impacting the design, implementation, and operation of WSNs. This article discusses these aspects by surveying paradigmatic examples of existing solutions in both fields and by reporting on real-world experiences found in the literature. The discussion is instrumental in providing a foundation for selecting the most appropriate energy harvesting or wireless transfer technology based on the application at hand. We conclude by outlining research directions originating from the fundamental change of perspective that energy harvesting and wireless transfer bring about

    Zenneck Waves in Decision Agriculture: An Empirical Verification and Application in EM-Based Underground Wireless Power Transfer

    Get PDF
    In this article, the results of experiments for the observation of Zenneck surface waves in sub GHz frequency range using dipole antennas are presented. Experiments are conducted over three different soils for communications distances of up to 1 m. This empirical analysis confirms the existence of Zenneck waves over the soil surface. Through the power delay profile (PDP) analysis, it has been shown that other subsurface components exhibit rapid decay as compared to the Zenneck waves. A potential application of the Zenneck waves for energy transmission in the area of decision agriculture is explored. Accordingly, a novel wireless through-the-soil power transfer application using Zenneck surface waves in electromagnetic (EM) based wireless underground communications is developed

    A high-performance electromagnetic vibration energy harvester based on ring magnets with Halbach configuration: design, optimization, and applications

    Get PDF
    Electromagnetic vibration energy harvesting is a relatively modern technology that has received relevant attention in the last decade from the research community and industry as a potential complement or alternative to the inconvenient employment of batteries for powering ultra-low-power devices, microelectromechanical systems, and wireless sensor networks. However, there are still many flaws in this technology that require to be addressed to develop truly practical, reliable, and cost-effective electromagnetic generators, without which industries can still not avoid relying primarily on batteries for powering wireless devices. This dissertation is mainly concerned with developing a high-power, compact, and yet simplified electromagnetic vibration energy harvester capable of reaching high power density levels without the necessity of a complex design, which is generally accompanied by an increment in fabrication costs. For this purpose, a ring-shaped magnet structure consisting of three ring magnets in a linear Halbach configuration is proposed in the present thesis. This particular structure is also compared, in terms of their output performance, with several ring magnet arrangements that include single magnets, double magnet arrays, and an alternative Halbach configuration to determine the actual benefits of the employed Halbach array within the proposed architecture. Also, the coil-magnet parameters of the selected transducer have been further optimized, mainly as a function of the inner radius, the height, and the wire diameter of the coil, to maximize its power generation. Besides, a harvester prototype based on the proposed configuration has been fabricated to validate the modeling strategy used and to certify the reliability of the proposed design regarding its power generation capabilities. The results of the power density normalized to the square of the excitation amplitude obtained for the optimized device and the fabricated prototype are found to be significantly higher than the ones associated with devices described in the literature for similar applications. Furthermore, the proposed electromagnetic generator has been tested and simulated in the framework of two industrial applications to determine its feasibility and output performance: a railway tunnel and a water distribution system. In both cases, the most relevant characteristics of the site under evaluation and the field test setup employed for data acquisition are thoroughly described. The field test measurements and overall results are presented and discussed together with the performance simulations obtained for various scenarios, including different significant natural frequencies of the harvester and several locations of particular interest. Results demonstrate that the applicability of the proposed electromagnetic harvester in the context of underground railway systems is feasible, even for non-usual locations subjected to low vibration amplitudes. Also, for the case of water distribution systems, in which the vibration levels are extremely low, the output performance results of the proposed generator are found promising.La recolección de energía de vibración mediante transductores electromagnéticos es una tecnología relativamente moderna que ha recibido especial atención en la última década por parte de la comunidad científica e industrial como una potencial alternativa al uso de baterías para alimentar dispositivos de ultra baja potencia, sistemas microelectromecánicos y redes de sensores inalámbricos. Sin embargo, existen aún muchas problemáticas en esta tecnología que requieren ser atendidas para poder desarrollar generadores electromagnéticos realmente prácticos, confiables y económicos, necesarios para proveer a la industria de una solución confiable que permita no depender primordialmente de las baterías para alimentar dispositivos inalámbricos. Esta tesis doctoral se enfoca fundamentalmente en el desarrollo de un recolector de energía de vibración mediante transducción electromagnética, de alta potencia, compacto y simplificado, capaz de alcanzar altos niveles de densidad de potencia generada sin la necesidad de un diseño complejo, el cual, generalmente, viene acompañado de un incremento de los costes de fabricación. Para este propósito, esta tesis propone una estructura magnética formada por tres imanes anulares en configuración Halbach lineal. Para determinar los beneficios reales de la configuración Halbach empleada dentro de la arquitectura propuesta, esta estructura en particular se compara, en términos de rendimiento de salida, con varias configuraciones de imanes anulares: un único imán, dos imanes y una configuración Halbach alternativa. Además, los parámetros del sistema bobina-imán del transductor seleccionado han sido optimizados, principalmente en función del radio interno, la altura y el diámetro del cable de la bobina, para maximizar su generación de potencia. Adicionalmente, se ha fabricado un prototipo de recolector de energía basado en la configuración propuesta para validar la estrategia de modelado utilizada y certificar la fiabilidad del diseño propuesto con respecto a su capacidad de generación de energía. Los resultados en términos de densidad de potencia normalizada por cuadrado de la amplitud de excitación, obtenidos para el dispositivo optimizado y el prototipo fabricado, son significativamente más altos que los asociados con dispositivos descritos en la literatura para aplicaciones similares. Finalmente, el generador electromagnético propuesto ha sido probado y simulado en el marco de dos aplicaciones industriales para determinar su aplicabilidad y eficiencia en situaciones reales. Concretamente, la aplicaciones escogidas han sido un túnel ferroviario y un sistema de distribución de agua. En ambos casos, las características más relevantes del emplazamiento de estudio y la configuración de los ensayos de campo desarrollados para la adquisición de datos son descritas minuciosamente. Las medidas de campo y los resultados generales se presentan y discuten junto con las simulaciones de rendimiento de salida obtenidas para distintos escenarios, incluyendo diferentes frecuencias naturales significativas del dispositivo y varias locaciones de particular interés. Los resultados demuestran que la aplicabilidad del recolector de energía de vibración mediante transducción elec-tromagnética propuesto en el contexto de los sistemas ferroviarios subterráneos es factible, incluso para lugares no habituales sujetos a bajas amplitudes de vibración. Para el caso de los sistemas de distribución de agua, aunque los niveles de vibración obtenidos experimetales son extremadamente bajos, los resultados de rendimiento de salida del generador propuesto son prometedores.Postprint (published version
    corecore