4 research outputs found

    Energy-Efficient PRBS Impedance Spectroscopy on a Digital Versatile Platform

    Get PDF
    partially_open6siThis research has been partially funded by the Italian Ministry of University and Research (MUR) through the program “Dipartimenti di Eccellenza” (2018-2022). The research has also received partial support from the Italian Ministry of University and Research (MUR) and the Eranet FLAG ERA initiative within CONVERGENCE project (CUP B84I16000030005) through the IUNET Consortium.This paper presents the digital design of a versatile and low-power broadband impedance spectroscopy (IS) system based on pseudo-random binary sequence (PRBS) excitation. The PRBS technique allows fast, and low-power estimation of the impedance spectrum over a wide bandwidth with adequate accuracy, proving to be a good candidate for portable medical devices, especially. This paper covers the low-power design of the firmware algorithms and implements them on a versatile and reconfigurable digital platform that can be easily adjusted to the specific application. It will analyze the digital platform with the aim of reducing power consumption while maintaining adequate accuracy of the estimated spectrum. The paper studies two main algorithms (time-domain and frequency-domain) used for PRBS-based IS and implements both of them on the ultra-low-power GAP-8 digital platform. They are compared in terms of accuracy, measurement time, and power budget, while general design trade-offs are drawn out. The time-domain algorithm demonstrated the best accuracy while the frequency-domain one contributes more to save power and energy. However, analysis of the energy-per-error FOM revealed that the time-domain algorithm outperforms the frequency-domain algorithm offering better accuracy for the same energy consumption. Numerical methods and microprocessor resources are exploited to optimize the implementation of both algorithms achieving 27 ms in processing time, power consumption as low as 1.4 mW and a minimum energy consumption per measurement of 0.5 mJ, for a dense impedance spectrum estimation of 214 points.embargoed_20210525Luciani G.; Crescentini M.; Romani A.; Chiani M.; Benini L.; Tartagni M.Luciani G.; Crescentini M.; Romani A.; Chiani M.; Benini L.; Tartagni M

    Very Low Resource Digital Implementation of Bioimpedance Analysis

    No full text
    Bioimpedance spectroscopy consists of measuring the complex impedance of biological tissues over a large frequency domain. This method is particularly convenient for physiological studies or health monitoring systems. For a wide range of applications, devices need to be portable, wearable or even implantable. Next generation of bioimpedance sensing systems thus require to be implemented with power and resource savings in mind. Impedance measurement methods are divided into two main categories. Some are based on “single-tone” signals while the others use “multi-tone” signals. The firsts benefit from a very simple analysis that may consist of synchronous demodulation. However, due to necessary frequency sweep, the total measurement may take a long time. On the other hand, generating a multi-frequency signal allows the seconds to cover the whole frequency range simultaneously. This is at the cost of a more complex analysis algorithm. This makes both approaches hardly suitable for embedded applications. In this paper, we propose an intermediate approach that combines the speed of multi-tone systems with a low-resource analysis algorithm. This results in a minimal implementation using only adders and synchronous adc. For optimal performances, this small footprint digital processing can be synthesized and embedded on a mixed-mode integrated circuit together with the analog front-end. Moreover, the proposed implementation is easily scalable to fit an arbitrary frequency range. We also show that the resulting impact on noise sensitivity can be mitigated

    Very Low Resource Digital Implementation of Bioimpedance Analysis

    No full text
    International audienceBioimpedance spectroscopy consists of measuring the complex impedance of biological tissues over a large frequency domain. This method is particularly convenient for physiological studies or health monitoring systems. For a wide range of applications, devices need to be portable, wearable or even implantable. Next generation of bioimpedance sensing systems thus require to be implemented with power and resource savings in mind. Impedance measurement methods are divided into two main categories. Some are based on "single-tone" signals while the others use "multi-tone" signals. The firsts benefit from a very simple analysis that may consist of synchronous demodulation. However, due to necessary frequency sweep, the total measurement may take a long time. On the other hand, generating a multi-frequency signal allows the seconds to cover the whole frequency range simultaneously. This is at the cost of a more complex analysis algorithm. This makes both approaches hardly suitable for embedded applications. In this paper, we propose an intermediate approach that combines the speed of multi-tone systems with a low-resource analysis algorithm. This results in a minimal implementation using only adders and synchronous ADC. For optimal performances, this small footprint digital processing can be synthesized and embedded on a mixed-mode integrated circuit together with the analog front-end. Moreover, the proposed implementation is easily scalable to fit an arbitrary frequency range. We also show that the resulting impact on noise sensitivity can be mitigated
    corecore