6 research outputs found

    On the Parity Problem in One-Dimensional Cellular Automata

    Full text link
    We consider the parity problem in one-dimensional, binary, circular cellular automata: if the initial configuration contains an odd number of 1s, the lattice should converge to all 1s; otherwise, it should converge to all 0s. It is easy to see that the problem is ill-defined for even-sized lattices (which, by definition, would never be able to converge to 1). We then consider only odd lattices. We are interested in determining the minimal neighbourhood that allows the problem to be solvable for any initial configuration. On the one hand, we show that radius 2 is not sufficient, proving that there exists no radius 2 rule that can possibly solve the parity problem from arbitrary initial configurations. On the other hand, we design a radius 4 rule that converges correctly for any initial configuration and we formally prove its correctness. Whether or not there exists a radius 3 rule that solves the parity problem remains an open problem.Comment: In Proceedings AUTOMATA&JAC 2012, arXiv:1208.249

    The Role Of The Interaction Network In The Emergence Of Diversity Of Behavior

    Get PDF
    Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)How can systems in which individuals' inner workings are very similar to each other, as neural networks or ant colonies, produce so many qualitatively different behaviors, giving rise to roles and specialization? In this work, we bring new perspectives to this question by focusing on the underlying network that defines how individuals in these systems interact. We applied a genetic algorithm to optimize rules and connections of cellular automata in order to solve the density classification task, a classical problem used to study emergent behaviors in decentralized computational systems. The networks used were all generated by the introduction of shortcuts in an originally regular topology, following the Small-world model. Even though all cells follow the exact same rules, we observed the existence of different classes of cells' behaviors in the best cellular automata found D most cells were responsible for memory and others for integration of information. Through the analysis of structural measures and patterns of connections (motifs) in successful cellular automata, we observed that the distribution of shortcuts between distant regions and the speed in which a cell can gather information from different parts of the system seem to be the main factors for the specialization we observed, demonstrating how heterogeneity in a network can create heterogeneity of behavior.122Conselho Nacional de Desenvolvimento Cientifico e Tecnologico [142118/2010-9]Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq
    corecore