207 research outputs found

    Vertices of Gelfand-Tsetlin Polytopes

    Full text link
    This paper is a study of the polyhedral geometry of Gelfand-Tsetlin patterns arising in the representation theory \mathfrak{gl}_n \C and algebraic combinatorics. We present a combinatorial characterization of the vertices and a method to calculate the dimension of the lowest-dimensional face containing a given Gelfand-Tsetlin pattern. As an application, we disprove a conjecture of Berenstein and Kirillov about the integrality of all vertices of the Gelfand-Tsetlin polytopes. We can construct for each n≥5n\geq5 a counterexample, with arbitrarily increasing denominators as nn grows, of a non-integral vertex. This is the first infinite family of non-integral polyhedra for which the Ehrhart counting function is still a polynomial. We also derive a bound on the denominators for the non-integral vertices when nn is fixed.Comment: 14 pages, 3 figures, fixed attribution

    Minuscule Schubert varieties: poset polytopes, PBW-degenerated demazure modules, and Kogan faces

    Get PDF
    We study a family of posets and the associated chain and order polytopes. We identify the order polytope as a maximal Kogan face in a Gelfand-Tsetlin polytope of a multiple of a fundamental weight. We show that the character of such a Kogan face equals to the character of a Demazure module which occurs in the irreducible representation of sln+1 having highest weight multiple of fundamental weight and for any such Demazure module there exists a corresponding poset and associated maximal Kogan face. We prove that the chain polytope parametrizes a monomial basis of the associated PBW-graded Demazure module and further, that the Demazure module is a favourable module, e.g. interesting geometric properties are governed by combinatorics of convex polytopes. Thus, we obtain for any minuscule Schubert variety a flat degeneration into a toric projective variety which is projectively normal and arithmetically Cohen-Macaulay. We provide a necessary and sufficient condition on the Weyl group element such that the toric variety associated to the chain polytope and the toric variety associated to the order polytope are isomorphic

    A vector partition function for the multiplicities of sl_k(C)

    Get PDF
    We use Gelfand-Tsetlin diagrams to write down the weight multiplicity function for the Lie algebra sl_k(C) (type A_{k-1}) as a single partition function. This allows us to apply known results about partition functions to derive interesting properties of the weight diagrams. We relate this description to that of the Duistermaat-Heckman measure from symplectic geometry, which gives a large-scale limit way to look at multiplicity diagrams. We also provide an explanation for why the weight polynomials in the boundary regions of the weight diagrams exhibit a number of linear factors. Using symplectic geometry, we prove that the partition of the permutahedron into domains of polynomiality of the Duistermaat-Heckman function is the same as that for the weight multiplicity function, and give an elementary proof of this for sl_4(C) (A_3).Comment: 34 pages, 11 figures and diagrams; submitted to Journal of Algebr

    Marked chain-order polytopes

    Get PDF
    We introduce in this paper the marked chain-order polytopes associated to a marked poset, generalizing the marked chain polytopes and marked order polytopes by putting them as extremal cases in an Ehrhart equivalent family. Some combinatorial properties of these polytopes are studied. This work is motivated by the framework of PBW degenerations in representation theory of Lie algebras.Comment: 18 pages, title changed, the relation to string polytopes is remove
    • …
    corecore