9 research outputs found

    Contents

    Get PDF

    Disparity map generation based on trapezoidal camera architecture for multiview video

    Get PDF
    Visual content acquisition is a strategic functional block of any visual system. Despite its wide possibilities, the arrangement of cameras for the acquisition of good quality visual content for use in multi-view video remains a huge challenge. This paper presents the mathematical description of trapezoidal camera architecture and relationships which facilitate the determination of camera position for visual content acquisition in multi-view video, and depth map generation. The strong point of Trapezoidal Camera Architecture is that it allows for adaptive camera topology by which points within the scene, especially the occluded ones can be optically and geometrically viewed from several different viewpoints either on the edge of the trapezoid or inside it. The concept of maximum independent set, trapezoid characteristics, and the fact that the positions of cameras (with the exception of few) differ in their vertical coordinate description could very well be used to address the issue of occlusion which continues to be a major problem in computer vision with regards to the generation of depth map

    An Intersection Model for Multitolerance Graphs: Efficient Algorithms and Hierarchy

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This class of graphs has attracted many research efforts, mainly due to its interesting structure and its numerous applications, especially in DNA sequence analysis and resource allocation, among others. In one of the most natural generalizations of tolerance graphs, namely multitolerance graphs, two tolerances are allowed for each interval—one from the left and one from the right side of the interval. Then, in its interior part, every interval tolerates the intersection with others by an amount that is a convex combination of its two border-tolerances. In the comparison of DNA sequences between different organisms, the natural interpretation of this model lies on the fact that, in some applications, we may want to treat several parts of the genomic sequences differently. That is, we may want to be more tolerant at some parts of the sequences than at others. These two tolerances for every interval—together with their convex hull—define an infinite number of the so called tolerance-intervals, which make the multitolerance model inconvenient to cope with. In this article we introduce the first non-trivial intersection model for multitolerance graphs, given by objects in the 3-dimensional space called trapezoepipeds. Apart from being important on its own, this new intersection model proves to be a powerful tool for designing efficient algorithms. Given a multitolerance graph with n vertices and m edges along with a multitolerance representation, we present algorithms that compute a minimum coloring and a maximum clique in optimal O(nlogn) time, and a maximum weight independent set in O(m+nlogn) time. Moreover, our results imply an optimal O(nlogn) time algorithm for the maximum weight independent set problem on tolerance graphs, thus closing the complexity gap for this problem. Additionally, by exploiting more the new 3D-intersection model, we completely classify multitolerance graphs in the hierarchy of perfect graphs. The resulting hierarchy of classes of perfect graphs is complete, i.e. all inclusions are strict

    An Intersection Model for Multitolerance Graphs: Efficient Algorithms and Hierarchy

    Get PDF
    Tolerance graphs model interval relations in such a way that intervals can tolerate a certain degree of overlap without being in conflict. This class of graphs has attracted many research efforts, mainly due to its interesting structure and its numerous applications, especially in DNA sequence analysis and resource allocation, among others. In one of the most natural generalizations of tolerance graphs, namely multitolerance graphs, two tolerances are allowed for each interval—one from the left and one from the right side of the interval. Then, in its interior part, every interval tolerates the intersection with others by an amount that is a convex combination of its two border-tolerances. In the comparison of DNA sequences between different organisms, the natural interpretation of this model lies on the fact that, in some applications, we may want to treat several parts of the genomic sequences differently. That is, we may want to be more tolerant at some parts of the sequences than at others. These two tolerances for every interval—together with their convex hull—define an infinite number of the so called tolerance-intervals, which make the multitolerance model inconvenient to cope with. In this article we introduce the first non-trivial intersection model for multitolerance graphs, given by objects in the 3-dimensional space called trapezoepipeds. Apart from being important on its own, this new intersection model proves to be a powerful tool for designing efficient algorithms. Given a multitolerance graph with n vertices and m edges along with a multitolerance representation, we present algorithms that compute a minimum coloring and a maximum clique in optimal O(nlogn) time, and a maximum weight independent set in O(m+nlogn) time. Moreover, our results imply an optimal O(nlogn) time algorithm for the maximum weight independent set problem on tolerance graphs, thus closing the complexity gap for this problem. Additionally, by exploiting more the new 3D-intersection model, we completely classify multitolerance graphs in the hierarchy of perfect graphs. The resulting hierarchy of classes of perfect graphs is complete, i.e. all inclusions are strict

    Vertex Splitting and the Recognition of Trapezoid Graphs

    Get PDF
    Trapezoid graphs are the intersection family of trapezoids where every trapezoid has a pair of opposite sides lying on two parallel lines. These graphs have received considerable attention and lie strictly between permutation graphs (where the trapezoids are lines) and cocomparability graphs (the complement has a transitive orientation). The operation of “vertex splitting”, introduced in (Cheah and Corneil, 1996), first augments a given graph G and then transforms the augmented graph by replacing each of the original graph’s vertices by a pair of new vertices. This “splitted graph” is a permutation graph with special properties if and only if G is a trapezoid graph. Recently vertex splitting has been used to show that the recognition problems for both tolerance and bounded tolerance graphs is NP-complete (Mertzios et al., 2010). Unfortunately, the vertex splitting trapezoid graph recognition algorithm presented in (Cheah and Corneil, 1996) is not correct. In this paper, we present a new way of augmenting the given graph and using vertex splitting such that the resulting algorithm is simpler and faster than the one reported in (Cheah and Corneil, 1996) F. Cheah and D.G. Corneil, On the structure of trapezoid graphs. Discrete Applied Mathematics, 66 2 (1996), pp. 109–133
    corecore