625 research outputs found

    Algorithms for Fast Aggregated Convergecast in Sensor Networks

    Get PDF
    Fast and periodic collection of aggregated data is of considerable interest for mission-critical and continuous monitoring applications in sensor networks. In the many-to-one communication paradigm, referred to as convergecast, we focus on applications wherein data packets are aggregated at each hop en-route to the sink along a tree-based routing topology, and address the problem of minimizing the convergecast schedule length by utilizing multiple frequency channels. The primary hindrance in minimizing the schedule length is the presence of interfering links. We prove that it is NP-complete to determine whether all the interfering links in an arbitrary network can be removed using at most a constant number of frequencies. We give a sufficient condition on the number of frequencies for which all the interfering links can be removed, and propose a polynomial time algorithm that minimizes the schedule length in this case. We also prove that minimizing the schedule length for a given number of frequencies on an arbitrary network is NP-complete, and describe a greedy scheme that gives a constant factor approximation on unit disk graphs. When the routing tree is not given as an input to the problem, we prove that a constant factor approximation is still achievable for degree-bounded trees. Finally, we evaluate our algorithms through simulations and compare their performance under different network parameters

    Wireless Scheduling with Power Control

    Full text link
    We consider the scheduling of arbitrary wireless links in the physical model of interference to minimize the time for satisfying all requests. We study here the combined problem of scheduling and power control, where we seek both an assignment of power settings and a partition of the links so that each set satisfies the signal-to-interference-plus-noise (SINR) constraints. We give an algorithm that attains an approximation ratio of O(log⁥n⋅log⁥log⁡Δ)O(\log n \cdot \log\log \Delta), where nn is the number of links and Δ\Delta is the ratio between the longest and the shortest link length. Under the natural assumption that lengths are represented in binary, this gives the first approximation ratio that is polylogarithmic in the size of the input. The algorithm has the desirable property of using an oblivious power assignment, where the power assigned to a sender depends only on the length of the link. We give evidence that this dependence on Δ\Delta is unavoidable, showing that any reasonably-behaving oblivious power assignment results in a Ω(log⁥log⁡Δ)\Omega(\log\log \Delta)-approximation. These results hold also for the (weighted) capacity problem of finding a maximum (weighted) subset of links that can be scheduled in a single time slot. In addition, we obtain improved approximation for a bidirectional variant of the scheduling problem, give partial answers to questions about the utility of graphs for modeling physical interference, and generalize the setting from the standard 2-dimensional Euclidean plane to doubling metrics. Finally, we explore the utility of graph models in capturing wireless interference.Comment: Revised full versio

    Performance of distributed mechanisms for flow admission in wireless adhoc networks

    Full text link
    Given a wireless network where some pairs of communication links interfere with each other, we study sufficient conditions for determining whether a given set of minimum bandwidth quality-of-service (QoS) requirements can be satisfied. We are especially interested in algorithms which have low communication overhead and low processing complexity. The interference in the network is modeled using a conflict graph whose vertices correspond to the communication links in the network. Two links are adjacent in this graph if and only if they interfere with each other due to being in the same vicinity and hence cannot be simultaneously active. The problem of scheduling the transmission of the various links is then essentially a fractional, weighted vertex coloring problem, for which upper bounds on the fractional chromatic number are sought using only localized information. We recall some distributed algorithms for this problem, and then assess their worst-case performance. Our results on this fundamental problem imply that for some well known classes of networks and interference models, the performance of these distributed algorithms is within a bounded factor away from that of an optimal, centralized algorithm. The performance bounds are simple expressions in terms of graph invariants. It is seen that the induced star number of a network plays an important role in the design and performance of such networks.Comment: 21 pages, submitted. Journal version of arXiv:0906.378

    On Wireless Scheduling Using the Mean Power Assignment

    Full text link
    In this paper the problem of scheduling with power control in wireless networks is studied: given a set of communication requests, one needs to assign the powers of the network nodes, and schedule the transmissions so that they can be done in a minimum time, taking into account the signal interference of concurrently transmitting nodes. The signal interference is modeled by SINR constraints. Approximation algorithms are given for this problem, which use the mean power assignment. The problem of schduling with fixed mean power assignment is also considered, and approximation guarantees are proven

    Pseudo-scheduling: A New Approach to the Broadcast Scheduling Problem

    Full text link
    The broadcast scheduling problem asks how a multihop network of broadcast transceivers operating on a shared medium may share the medium in such a way that communication over the entire network is possible. This can be naturally modeled as a graph coloring problem via distance-2 coloring (L(1,1)-labeling, strict scheduling). This coloring is difficult to compute and may require a number of colors quadratic in the graph degree. This paper introduces pseudo-scheduling, a relaxation of distance-2 coloring. Centralized and decentralized algorithms that compute pseudo-schedules with colors linear in the graph degree are given and proved.Comment: 8th International Symposium on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities (ALGOSENSORS 2012), 13-14 September 2012, Ljubljana, Slovenia. 12 page

    Local Multicoloring Algorithms: Computing a Nearly-Optimal TDMA Schedule in Constant Time

    Get PDF
    The described multicoloring problem has direct applications in the context of wireless ad hoc and sensor networks. In order to coordinate the access to the shared wireless medium, the nodes of such a network need to employ some medium access control (MAC) protocol. Typical MAC protocols control the access to the shared channel by time (TDMA), frequency (FDMA), or code division multiple access (CDMA) schemes. Many channel access schemes assign a fixed set of time slots, frequencies, or (orthogonal) codes to the nodes of a network such that nodes that interfere with each other receive disjoint sets of time slots, frequencies, or code sets. Finding a valid assignment of time slots, frequencies, or codes hence directly corresponds to computing a multicoloring of a graph GG. The scarcity of bandwidth, energy, and computing resources in ad hoc and sensor networks, as well as the often highly dynamic nature of these networks require that the multicoloring can be computed based on as little and as local information as possible

    Interference-Aware Scheduling for Connectivity in MIMO Ad Hoc Multicast Networks

    Full text link
    We consider a multicast scenario involving an ad hoc network of co-channel MIMO nodes in which a source node attempts to share a streaming message with all nodes in the network via some pre-defined multi-hop routing tree. The message is assumed to be broken down into packets, and the transmission is conducted over multiple frames. Each frame is divided into time slots, and each link in the routing tree is assigned one time slot in which to transmit its current packet. We present an algorithm for determining the number of time slots and the scheduling of the links in these time slots in order to optimize the connectivity of the network, which we define to be the probability that all links can achieve the required throughput. In addition to time multiplexing, the MIMO nodes also employ beamforming to manage interference when links are simultaneously active, and the beamformers are designed with the maximum connectivity metric in mind. The effects of outdated channel state information (CSI) are taken into account in both the scheduling and the beamforming designs. We also derive bounds on the network connectivity and sum transmit power in order to illustrate the impact of interference on network performance. Our simulation results demonstrate that the choice of the number of time slots is critical in optimizing network performance, and illustrate the significant advantage provided by multiple antennas in improving network connectivity.Comment: 34 pages, 12 figures, accepted by IEEE Transactions on Vehicular Technology, Dec. 201

    Energy efficient tdma sleep scheduling in wireless sensor networks

    Get PDF
    Abstract—Sleep scheduling is a widely used mechanism in wireless sensor networks (WSNs) to reduce the energy consumption since it can save the energy wastage caused by the idle listening state. In a traditional sleep scheduling, however, sensors have to start up numerous times in a period, and thus consume extra energy due to the state transitions. The objective of this paper is to design an energy efficient sleep scheduling for low data-rate WSNs, where sensors not only consume different amounts of energy in different states (transmit, receive, idle and sleep), but also consume energy for state transitions. We use TDMA as the MAC layer protocol, because it has the advantages of avoiding collisions, idle listening and overhearing. We first propose a novel interference-free TDMA sleep scheduling problem called contiguous link scheduling, which assigns sensors with consecutive time slots to reduce the frequency of state transitions. To tackle this problem, we then present efficient centralized and distributed algorithms that use time slots at most a constant factor of the optimum. The simulation studies corroborate the theoretical results, and show the efficiency of our proposed algorithms
    • 

    corecore