2,165 research outputs found

    Coresets Meet EDCS: Algorithms for Matching and Vertex Cover on Massive Graphs

    Full text link
    As massive graphs become more prevalent, there is a rapidly growing need for scalable algorithms that solve classical graph problems, such as maximum matching and minimum vertex cover, on large datasets. For massive inputs, several different computational models have been introduced, including the streaming model, the distributed communication model, and the massively parallel computation (MPC) model that is a common abstraction of MapReduce-style computation. In each model, algorithms are analyzed in terms of resources such as space used or rounds of communication needed, in addition to the more traditional approximation ratio. In this paper, we give a single unified approach that yields better approximation algorithms for matching and vertex cover in all these models. The highlights include: * The first one pass, significantly-better-than-2-approximation for matching in random arrival streams that uses subquadratic space, namely a (1.5+ϵ)(1.5+\epsilon)-approximation streaming algorithm that uses O(n1.5)O(n^{1.5}) space for constant ϵ>0\epsilon > 0. * The first 2-round, better-than-2-approximation for matching in the MPC model that uses subquadratic space per machine, namely a (1.5+ϵ)(1.5+\epsilon)-approximation algorithm with O(mn+n)O(\sqrt{mn} + n) memory per machine for constant ϵ>0\epsilon > 0. By building on our unified approach, we further develop parallel algorithms in the MPC model that give a (1+ϵ)(1 + \epsilon)-approximation to matching and an O(1)O(1)-approximation to vertex cover in only O(loglogn)O(\log\log{n}) MPC rounds and O(n/polylog(n))O(n/poly\log{(n)}) memory per machine. These results settle multiple open questions posed in the recent paper of Czumaj~et.al. [STOC 2018]

    Network based scoring models to improve credit risk management in peer to peer lending platforms

    Get PDF
    Financial intermediation has changed extensively over the course of the last two decades. One of the most significant change has been the emergence of FinTech. In the context of credit services, fintech peer to peer lenders have introduced many opportunities, among which improved speed, better customer experience, and reduced costs. However, peer-to-peer lending platforms lead to higher risks, among which higher credit risk: not owned by the lenders, and systemic risks: due to the high interconnectedness among borrowers generated by the platform. This calls for new and more accurate credit risk models to protect consumers and preserve financial stability. In this paper we propose to enhance credit risk accuracy of peer-to-peer platforms by leveraging topological information embedded into similarity networks, derived from borrowers' financial information. Topological coefficients describing borrowers' importance and community structures are employed as additional explanatory variables, leading to an improved predictive performance of credit scoring models
    corecore