11 research outputs found

    Do the Frankenstein, or how to achieve better out-of-distribution performance with manifold mixing model soup

    Full text link
    The standard recipe applied in transfer learning is to finetune a pretrained model on the task-specific dataset with different hyperparameter settings and pick the model with the highest accuracy on the validation dataset. Unfortunately, this leads to models which do not perform well under distribution shifts, e.g. when the model is given graphical sketches of the object as input instead of photos. In order to address this, we propose the manifold mixing model soup, an algorithm which mixes together the latent space manifolds of multiple finetuned models in an optimal way in order to generate a fused model. We show that the fused model gives significantly better out-of-distribution performance (+3.5 % compared to best individual model) when finetuning a CLIP model for image classification. In addition, it provides also better accuracy on the original dataset where the finetuning has been done.Comment: Accepted for IMVIP 2023 conferenc

    Role of Bootstrap Averaging in Generalized Approximate Message Passing

    Full text link
    Generalized approximate message passing (GAMP) is a computationally efficient algorithm for estimating an unknown signal w0RNw_0\in\mathbb{R}^N from a random linear measurement y=Xw0+ϵRMy= Xw_0 + \epsilon\in\mathbb{R}^M, where XRM×NX\in\mathbb{R}^{M\times N} is a known measurement matrix and ϵ\epsilon is the noise vector. The salient feature of GAMP is that it can provide an unbiased estimator r^GN(w0,s^2IN)\hat{r}^{\rm G}\sim\mathcal{N}(w_0, \hat{s}^2I_N), which can be used for various hypothesis-testing methods. In this study, we consider the bootstrap average of an unbiased estimator of GAMP for the elastic net. By numerically analyzing the state evolution of \emph{approximate message passing with resampling}, which has been proposed for computing bootstrap statistics of the elastic net estimator, we investigate when the bootstrap averaging reduces the variance of the unbiased estimator and the effect of optimizing the size of each bootstrap sample and hyperparameter of the elastic net regularization in the asymptotic setting M,N,M/Nα(0,)M, N\to\infty, M/N\to\alpha\in(0,\infty). The results indicate that bootstrap averaging effectively reduces the variance of the unbiased estimator when the actual data generation process is inconsistent with the sparsity assumption of the regularization and the sample size is small. Furthermore, we find that when w0w_0 is less sparse, and the data size is small, the system undergoes a phase transition. The phase transition indicates the existence of the region where the ensemble average of unbiased estimators of GAMP for the elastic net norm minimization problem yields the unbiased estimator with the minimum variance.Comment: 6 pages, 5 figure

    LoraHub: Efficient Cross-Task Generalization via Dynamic LoRA Composition

    Full text link
    Low-rank adaptations (LoRA) are often employed to fine-tune large language models (LLMs) for new tasks. This paper investigates LoRA composability for cross-task generalization and introduces LoraHub, a strategic framework devised for the purposive assembly of LoRA modules trained on diverse given tasks, with the objective of achieving adaptable performance on unseen tasks. With just a few examples from a novel task, LoraHub enables the fluid combination of multiple LoRA modules, eradicating the need for human expertise. Notably, the composition requires neither additional model parameters nor gradients. Our empirical results, derived from the Big-Bench Hard (BBH) benchmark, suggest that LoraHub can effectively mimic the performance of in-context learning in few-shot scenarios, excluding the necessity of in-context examples alongside each inference input. A significant contribution of our research is the fostering of a community for LoRA, where users can share their trained LoRA modules, thereby facilitating their application to new tasks. We anticipate this resource will widen access to and spur advancements in general intelligence as well as LLMs in production. Code will be available at https://github.com/sail-sg/lorahub.Comment: Work in progress. The first three authors contributed equally to this wor

    LM-Cocktail: Resilient Tuning of Language Models via Model Merging

    Full text link
    The pre-trained language models are continually fine-tuned to better support downstream applications. However, this operation may result in significant performance degeneration on general tasks beyond the targeted domain. To overcome this problem, we propose LM-Cocktail which enables the fine-tuned model to stay resilient in general perspectives. Our method is conducted in the form of model merging, where the fine-tuned language model is merged with the pre-trained base model or the peer models from other domains through weighted average. Despite simplicity, LM-Cocktail is surprisingly effective: the resulted model is able to achieve a strong empirical performance in the whole scope of general tasks while preserving a superior capacity in its targeted domain. We conduct comprehensive experiments with LLama and BGE model on popular benchmarks, including FLAN, MMLU, MTEB, whose results validate the efficacy of our proposed method. The code and checkpoints are available at https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail.Comment: Work is in progres

    OPTION: OPTImization Algorithm Benchmarking ONtology

    Full text link
    Many optimization algorithm benchmarking platforms allow users to share their experimental data to promote reproducible and reusable research. However, different platforms use different data models and formats, which drastically complicates the identification of relevant datasets, their interpretation, and their interoperability. Therefore, a semantically rich, ontology-based, machine-readable data model that can be used by different platforms is highly desirable. In this paper, we report on the development of such an ontology, which we call OPTION (OPTImization algorithm benchmarking ONtology). Our ontology provides the vocabulary needed for semantic annotation of the core entities involved in the benchmarking process, such as algorithms, problems, and evaluation measures. It also provides means for automatic data integration, improved interoperability, and powerful querying capabilities, thereby increasing the value of the benchmarking data. We demonstrate the utility of OPTION, by annotating and querying a corpus of benchmark performance data from the BBOB collection of the COCO framework and from the Yet Another Black-Box Optimization Benchmark (YABBOB) family of the Nevergrad environment. In addition, we integrate features of the BBOB functional performance landscape into the OPTION knowledge base using publicly available datasets with exploratory landscape analysis. Finally, we integrate the OPTION knowledge base into the IOHprofiler environment and provide users with the ability to perform meta-analysis of performance data

    Generating 2D and 3D Master Faces for Dictionary Attacks with a Network-Assisted Latent Space Evolution

    Full text link
    A master face is a face image that passes face-based identity authentication for a high percentage of the population. These faces can be used to impersonate, with a high probability of success, any user, without having access to any user information. We optimize these faces for 2D and 3D face verification models, by using an evolutionary algorithm in the latent embedding space of the StyleGAN face generator. For 2D face verification, multiple evolutionary strategies are compared, and we propose a novel approach that employs a neural network to direct the search toward promising samples, without adding fitness evaluations. The results we present demonstrate that it is possible to obtain a considerable coverage of the identities in the LFW or RFW datasets with less than 10 master faces, for six leading deep face recognition systems. In 3D, we generate faces using the 2D StyleGAN2 generator and predict a 3D structure using a deep 3D face reconstruction network. When employing two different 3D face recognition systems, we are able to obtain a coverage of 40%-50%. Additionally, we present the generation of paired 2D RGB and 3D master faces, which simultaneously match 2D and 3D models with high impersonation rates.Comment: accepted for publication in IEEE Transactions on Biometrics, Behavior, and Identity Science (TBIOM). This paper extends arXiv:2108.01077 that was accepted to IEEE FG 202

    Parameter-Efficient Fine-Tuning Methods for Pretrained Language Models: A Critical Review and Assessment

    Full text link
    With the continuous growth in the number of parameters of transformer-based pretrained language models (PLMs), particularly the emergence of large language models (LLMs) with billions of parameters, many natural language processing (NLP) tasks have demonstrated remarkable success. However, the enormous size and computational demands of these models pose significant challenges for adapting them to specific downstream tasks, especially in environments with limited computational resources. Parameter Efficient Fine-Tuning (PEFT) offers an effective solution by reducing the number of fine-tuning parameters and memory usage while achieving comparable performance to full fine-tuning. The demands for fine-tuning PLMs, especially LLMs, have led to a surge in the development of PEFT methods, as depicted in Fig. 1. In this paper, we present a comprehensive and systematic review of PEFT methods for PLMs. We summarize these PEFT methods, discuss their applications, and outline future directions. Furthermore, we conduct experiments using several representative PEFT methods to better understand their effectiveness in parameter efficiency and memory efficiency. By offering insights into the latest advancements and practical applications, this survey serves as an invaluable resource for researchers and practitioners seeking to navigate the challenges and opportunities presented by PEFT in the context of PLMs.Comment: 20 pages, 4 figure

    State-dependent activity dynamics of hypothalamic stress effector neurons

    Get PDF
    The stress response necessitates an immediate boost in vital physiological functions from their homeostatic operation to an elevated emergency response. However, the neural mechanisms underlying this state-dependent change remain largely unknown. Using a combination of in vivo and ex vivo electrophysiology with computational modeling, we report that corticotropin releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVN), the effector neurons of hormonal stress response, rapidly transition between distinct activity states through recurrent inhibition. Specifically, in vivo optrode recording shows that under non-stress conditions, CRHPVN neurons often fire with rhythmic brief bursts (RB), which, somewhat counterintuitively, constrains firing rate due to long (~2 s) interburst intervals. Stressful stimuli rapidly switch RB to continuous single spiking (SS), permitting a large increase in firing rate. A spiking network model shows that recurrent inhibition can control this activity-state switch, and more broadly the gain of spiking responses to excitatory inputs. In biological CRHPVN neurons ex vivo, the injection of whole-cell currents derived from our computational model recreates the in vivo-like switch between RB and SS, providing direct evidence that physiologically relevant network inputs enable state-dependent computation in single neurons. Together, we present a novel mechanism for state-dependent activity dynamics in CRHPVN neurons
    corecore