6 research outputs found

    Verifying Systems Rules Using Rule-Directed Symbolic Execution

    No full text
    Systems code must obey many rules, such as “opened files must be closed. ” One approach to verifying rules is static analysis, but this technique cannot infer precise runtime effects of code, often emitting many false positives. An alternative is symbolic execution, a technique that verifies program paths over all inputs up to a bounded size. However, when applied to verify rules, existing symbolic execution systems often blindly explore many redundant program paths while missing relevant ones that may contain bugs. Our key insight is that only a small portion of paths are relevant to rules, and the rest (majority) of paths are irrelevant and do not need to be verified. Based on this insight, we create WOOD-PECKER, a new symbolic execution system for effectively checking rules on systems programs. It provides a set of builtin checkers for common rules, and an interface for users to easily check new rules. It directs symbolic execution toward the program paths relevant to a checked rule, and soundly prunes redundant paths, exponentially speeding up symbolic execution. It is designed to be heuristic-agnostic, enabling users to leverage existing powerful search heuristics. Evaluation on 136 systems programs totaling 545K lines of code, including some of the most widely used programs, shows that, with a time limit of typically just one hour for each verification run, WOODPECKER effectively verifies 28.7 % of the program and rule combinations over bounded input, whereas an existing symbolic execution system KLEE verifies only 8.5%. For the remaining combinations, WOODPECKER verifies 4.6 times as many relevant paths as KLEE. With a longer time limit, WOODPECKER verifies much more paths than KLEE, e.g., 17 times as many with a fourhour limit. WOODPECKER detects 113 rule violations, including 10 serious data loss errors with 2 most serious ones already confirmed by the corresponding developers

    Un cadre générique pour l'exécution symbolique : théorie et applications

    Get PDF
    We propose a language-independent symbolic execution framework. The approach is parameterised by a language definition, which consists of a signature for the language's syntax and execution infrastructure, a model interpreting the signature, and rewrite rules for the language's operational semantics. Then, symbolic execution amounts to performing a so-called symbolic rewriting, which consists in changing both the model and the manner in which the operational semantics rules are applied. We prove that the symbolic execution thus defined has the properties naturally expected from it. A prototype implementation of our approach was developed in the K Framework. We demonstrate the genericity of our tool by instantiating it on several languages, and show how it can be used for the symbolic execution, bounded model checking, and deductive verification of several programs.Nous proposons un cadre général pour l’exécution symbolique de programmes, qui est indépendant des langages dans lesquels les programmes en question sont écrits. L’approche est paramétrisée par une définition de langage, qui consiste en une signature pour la syntaxe du langage et pour son infrastructure, un modèle interprétant la signature, et un ensemble de règles de réécriture définissant la sémantique opérationnelle du langage. L’exécution symbolique revientalors à modifier calculer des chemins symboliques en utilisant une opration dite de dérivation. Nous démontrons que l’exécution symbolique possède les propriétés attendues par rapport à l’exécution concrète: les exécutions symboliques et concrètes d’un même programme se simulent mutuellement. Nous montrons également qu’une extension coinductive de l’exécution symbolique peut être utilisée pour la vérification déductive de programmes. Nous avons implémenté notreapproche dans un outil prototype dans la K framework. L’aspect générique de l’outil est mis en évidence par son instanciation sur plusieurs langages. Nous montrons enfin comment l’outil permet l’analyse symbolique, le model checking borné, et la vérification déductive de programmes
    corecore