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Abstract: We propose a language-independent symbolic execution framework. The approach is
parameterised by a language definition, which consists of a signature for the language’s syntax and
execution infrastructure, a model interpreting the signature, and rewrite rules for the language’s
operational semantics. Then, symbolic execution amounts to computing symbolic paths using a
derivative operation. We prove that the symbolic execution thus defined has the properties natu-
rally expected from it, meaning that the feasible symbolic executions of a program and the concrete
executions of the same program mutually simulate each other. We also show how a coinduction-
based extension of symbolic execution can be used for the deductive verification of programs. We
show how the proposed symbolic-execution approach, and the coinductive verification technique
based on it, can be seamlessly implemented in language definition frameworks based on rewriting
such as the K framework. A prototype implementation of our approach has been developed in K.
We illustrate it on the symbolic analysis and deductive verification of nontrivial programs.
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Un cadre générique pour l’exécution symbolique : théorie et
applications

Résumé : Nous proposons un cadre général pour l’exécution symbolique de programmes, qui
est indépendant des langages dans lesquels les programmes en question sont écrits. L’approche
est paramétrisée par une définition de langage, qui consiste en une signature pour la syntaxe du
langage et pour son infrastructure, un modèle interprétant la signature, et un ensemble de règles
de réécriture définissant la sémantique opérationnelle du langage. L’exécution symbolique revient
alors à modifier calculer des chemins symboliques en utilisant une opŕation dite de dérivation.
Nous démontrons que l’exécution symbolique possède les propriétés attendues par rapport à
l’exécution concrète: les exécutions symboliques et concrètes d’un même programme se simulent
mutuellement. Nous montrons également qu’une extension coinductive de l’exécution symbolique
peut être utilisée pour la vérification déductive de programmes. Nous avons implémenté notre
approche dans un outil prototype dans la K framework. L’aspect générique de l’outil est mis
en évidence par son instanciation sur plusieurs langages. Nous montrons enfin comment l’outil
permet l’analyse symbolique, le model checking borné, et la vérification déductive de programmes.

Mots-clés : Exécution symbolique, Vérification de programmes, K framework.



A Generic Framework for Symbolic Execution 3

1 Introduction

Symbolic execution is a well-known program analysis technique introduced in 1976 by James C.
King [26]. Since then, it has proved its usefulness for testing, verifying, and debugging programs.
Symbolic execution consists in executing programs with symbolic inputs, instead of concrete
ones, and it involves the processing of expressions containing symbolic values [33]. The main
advantage of symbolic execution is that it allows reasoning about multiple concrete executions
of a program, and its main disadvantage is the state-space explosion determined by decision
statements and loops. Recently, the technique has found renewed interest in the formal-methods
community due to new algorithmic developments and progress in decision procedures.

A symbolic program execution typically memorises symbolic values of program variables and
a path condition, which accumulates constraints on the symbolic values on the path leading to the
current instruction. When the next instruction to be executed is a conditional statement, whose
condition depends on symbolic values, the execution is separated into distinct branches. The path
condition is then updated to distinguish between the different branches. Then main foundational
issues raised by symbolic execution include its relationships with the formal definition of the
language, for soundness, and with the program logics, for applications to program analysis and
verification.

Our contribution. The main contribution of the paper is a formal, language-independent the-
ory and tool for symbolic execution, based on a language’s operational semantics defined by term
rewriting1. On the theoretical side, we define symbolic execution as the application of rewrite
rules in the semantics by derivation, a logical description of symbolic successors of a given set of
states also symbolically represented as a logical formula in Matching Logic (ML) [15]. We prove
that the symbolic execution thus defined has properties ensuring that it is related to concrete
program execution in a natural way:

Coverage: to every concrete execution there corresponds a feasible symbolic one;
Precision: to every feasible symbolic execution there corresponds a concrete one;

where two executions are said to be corresponding if they take the same path, and a symbolic
execution is feasible if the path conditions along it are satisfiable. Or, stated in terms of sim-
ulations: the feasible symbolic executions and the concrete executions of any given program
mutually simulate each other.

We also show how a simple extension of our symbolic-execution approach results in a deductive
system for proving programs with respect to Reachability Logic (RL) [15] properties; RL is a
language-independent program logic also used for defining language semantics, which has been
shown to subsume existing language-dependent logics such as Hoare and Separation logics [38, 42].
The proposed deductive system is proved to be sound using a coinductive proof technique. It
is shown to be a strict generalization of an approach we presented in [28], in the sense that the
procedure for RL proposed there is a strategy of the proof system proposed here. Our 3-rule proof
system is also substantially simpler that the original 8-rule proof system given in [15]; the price to
pay is the theoretical relative completeness property, which the original proof system has, whereas
ours is not known to have. The proof system we propose is inspired from the circular coinduction
proof technique [40], applied in this paper to programming language definitions (whereas in [40]
it is applied to proving observational equalities between possibly infinite data structures, e.g.,
streams or trees). This was possible by defining an appropriate notion of derivative in the new
context and by exploiting the common framework of induction and coinduction based on ground

1Most existing operational semantics styles (small-step, big-step, reduction with evaluation contexts, . . . ) have
been shown to be representable in this way in [47].
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4 Lucanu & Rusu

rules [44]. This allows an uniform and rigorous approach for both finite and infinite symbolic
executions.

On the practical side, we present an implementation of the theory into a prototype imple-
mentation based on in K [41], a framework dedicated to defining formal operational semantics
of languages. Our current prototype is built on version 3.4 of K, which is based on rewriting,
hence, we formally prove that the derivation operation can be correctly implemented by applying
certain modified rewrite rules (obtained by automatically transforming the original ones) over
ML formulas. This additional intermediary step between abstract theory and implementation
is important for ensuring that the resulting prototype tool adequately implements the theory,
since the to extreme sides of our approach lie at quite distant levels of abstraction. We describe
our prototype and demonstrate it on examples, which illustrate the bounded model checking of
programs and their deductive verification with respect to RL formulas.

Related work. There is a substantial number of tools performing symbolic execution available
in the literature. However, most of them have been developed for specific programming languages
and are based on informal semantics.

An approach closely related to ours is implemented in the MatchC tool [39, 42], which has
beed used for verifying challenging C programs such as the Schorr-Waite garbage collector.
MatchC also uses the formalism of Reachability Logic for program specifications; the MatchC
tool implementation, is, however, dedicated to a subset of C. The main difference with our
approach is that we emphasise on bridging the gap between theory and implementation (from an
initial, abstract definition of symbolic execution to its extension for program verification, then
to its encoding by rewriting and finally to its implementation in code), whereas in the MatchC
tool it does not focus on intermediary steps between theory (a language-independent deductive
system) and code implementing it for a subset of C. The same comparison holds between our
approach and [15], in which a deductive system for a different version of RL is implemented for
verifying programs written in a specific language. Since our approach of symbolic execution is
founded on coinduction, it can also be seen as a bridge between the pure coinductive program
verification techniques [31] and verification techniques based on operational semantics [15, 39].

Java PathFinder [34] is a complex symbolic execution tool which uses a model checker to
explore different symbolic execution paths. The approach is applied to Java programs and it can
handle recursive data structures, arrays, preconditions, and multithreading. Java PathFinder
can access several Satisfiability Modulo Theories (SMT) solvers and the user can also choose
between multiple decision procedures. The tools is fully dedicated to the Java language.

Another approach consists in combining concrete and symbolic execution into concolic ex-
ecution. First, some concrete values given as input determine an execution path. When the
program encounters a decision point, the paths not taken by concrete execution are explored
symbolically. This has been implemented by several tools: DART [22], CUTE [46], EXE [10],
PEX [17]. We note that our approach allows mixed concrete/symbolic execution; it can be the
basis for language-independent implementations of concolic execution.

There are several tools that check program correctness using symbolic execution. Some
of them are more oriented towards finding bugs [9], while others are more oriented towards
verification [13, 25, 35]. Several techniques are implemented to improve the performance of
these tools, such as bounded verification [11] and pruning the execution tree by eliminating
redundant paths [16]. Other approaches offer support for verification of code contracts over
programs. Spec# [7] is a tool developed at Microsoft that extends C# with constructs for
non-null types, preconditions, postconditions, and object invariants. Spec# comes with a sound
programming methodology that permits specification and reasoning about object invariants even
in the presence of callbacks and multi-threading. A similar approach, which provides functionality

Inria



A Generic Framework for Symbolic Execution 5

for checking the correctness of a JAVA implementation with respect to a given UML/OCL
specification, is the KeY [3] tool. In particular, KeY allows to prove that after running a
method, its postcondition and the class invariant holds, using Dynamic Logic [23] and symbolic
execution. The VeriFast tool [24] supports verification of single and multi-threaded C and Java
programs annotated with preconditions and postconditions written in Separation Logic [36].
The Smallfoot tool [8, 48] uses symbolic execution together with separation logic to prove Hoare
triples. There are also approaches that attempt to automatically detect invariants in programs
[32, 45]. The major advantage of most of these tools is that they perform very well, being able
to verify substantial pieces of code, some of which are parts of actual safety-critical systems.
On the other hand, they deal only with specific programs (e.g. written using subsets of C) and
specific properties (e.g., allocated memory is eventually freed).

Regarding performances, our generic and formal tool is, quite understandably, not in the same
league as existing pragmatic tools, which are dedicated to specific languages and are focused on
specific applications of symbolic execution. We focus here on language-independence: given a
programming language defined in an algebraic/rewriting setting, we build its symbolic semantics
and use it for various analyses and verifications of programs in those languages.

Another body of related work is symbolic execution in term-rewriting systems. The technique
called narrowing, initially used for solving equation systems in abstract datatypes, was extended
for solving reachability problems in term-rewriting systems and was applied to the analysis of se-
curity protocols [30]. Such analyses rely on powerful unification-modulo-theories algorithms [19],
which work well for security protocols since there are unification algorithms modulo the theories
involved there (exclusive-or, . . . ). This is not always the case for programming languages, which
have arbitrarily complex datatypes.

A recent evolution of symbolic execution in term-rewriting systems is rewriting modulo
SMT [37], in which terms are constrained with unquantified first-order formulas over builtin
sorts, and the constraints accumulated during term-rewriting are handled by SMT solving. For
non-builtin sorts unification modulo theories reduces (under technical conditions) to matching
modulo theories. There are some similarities with our approach,e.g., they also obtain mutual
simulations between symbolic and concrete rewriting. However, the unquantified constrained
terms that [37] can rewrite over are a subset of ML, hence, our approach, which handles the full
ML logic, is more general.

Finally, there is the comparison with our own previous work on this topic. The conference
paper [5] presents our initial approach, and has since evolved into several directions. The present
paper extends [5] with the following features: more expressive language definitions (including
configurations satisfying associativity and/or commutativity and/or unity (ACU) axioms, an
essential feature in real languages definition in the K framework); a more expressive (and thus
more precise) symbolic model (ML formulas vs. terms constrained with Boolean formulas); a
more general presentation of symbolic execution (using the logical construction of derivatives,
for which the approach based on language transformation of [5] is only an implementation); and
the RL-formula verification application of symbolic execution. We also systematically employ
(co)induction in order to reason about possibly infinite program executions.

The paper [6] expands another idea present in [5], namely, language transformations for
symbolic execution, for a different symbolic model (equivalence classes of ML formulas having the
same semantics, which is in some sense the best possible model in terms of precision with respect
to concrete program configurations). Language transformations techniques to compute for such
a symbolic model are proposed in [6]. Moreover, the paper [43] deals with the implementation of
concrete and symbolic execution in programming languages using rewrite theories; precise and
approximated implementations are proposed. While ML formulas as a precise symbolic model,
and combination of ACU axioms, are considered in [6, 43], neither of those papers deal with
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6 Lucanu & Rusu

RL formula verification, nor do they employ (co)induction as a systematic, rigorous technique
for reasoning about possibly infinite program executions. RL formula verification is dealt with
in [28], but the procedure for RL verification proposed there is only a a particular case of the
proof system proposed here.

Paper organisation. After this introduction, Section 2 presents the CinK language, a kernel
of the C++ programming language. We shall use CinK programs for illustrating various aspects
of symbolic execution. In Section 3 we present some background theoretical material used in
the rest of the paper: coinduction, a general technique for defining and reasoning about possi-
bly infinite objects such as program executions; Reachability Logic, which is used for defining
operational semantics of languages and for stating program properties; and a generic language-
definition framework, in order to make our approach independent of the K language-definition
framework. Section 4 contains our formalisation of symbolic execution, including the coverage
and precision results stated earlier in this introduction. Section 5 presents how Reachability-
Logic (RL) formulas can be verified using a coinductive extension of symbolic execution. In
Section 6 we show how symbolic execution and its core derivative operation can be implemented
in language definitions based on standard rewriting, such as the K framework. Section 7 presents
a prototype tool based on the language transformations from the previous section, as well as ap-
plications of the tool for the symbolic execution, model checking, and deductive verification of
nontrivial programs. We conclude in Section 8.

2 Example: the K Definition of the CinK language

In this section we present CinK [29], a kernel of the C++ programming language. The K defi-
nition of CinK used here is available on the K Framework Github repository, http://github.
com/kframework/cink-semantics/releases/tag/v1.0. As any K definition, it consists of the
language’s syntax, given using a BNF-style grammar, and of its semantics, given by means of
rewrite rules.

In this paper we only exhibit a small part of the K definition of CinK, whose syntax is shown
in Figure 1. Some of the grammar productions are annotated with K-specific attributes, which
we now explain with some examples.

A major feature of C++ expressions is the “sequenced before” relation [2], which defines a
partial order over the evaluation of subexpressions. This can be easily expressed in K using
the strict attribute to specify an evaluation order for an operation’s operands. If the operator
is annotated with the strict attribute then its operands will be evaluated in a nondeterministic
order. For instance, all the binary operations are strict. Hence, they may induce non-determinism
in programs because of possible side-effects in their arguments.

Another feature is given by the classification of expressions into rvalues and lvalues. The
arguments of binary operations are evaluated as rvalues and their results are also rvalues, while,
e.g., both the argument of the prefix-increment operation and its result are lvalues. The strict
attribute for such operations has a sub-attribute context, which can be applied to a specified
argument or to all arguments, for wrapping any subexpression that must be evaluated as an
rvalue. Other attributes (funcall , divide, plus,minus, . . . ) are names associated to each syntactic
production, which can be used to refer to them.

The K framework uses configurations to store program states. A configuration is a nested
structure of cells, which typically include the program to be executed, input and output streams,
values for program variables, and other additional information. The configuration of CinK (Fig-
ure 2) includes the 〈〉k cell containing the code that remains to be executed, which is represented

Inria
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A Generic Framework for Symbolic Execution 7

Exp ::= Id | Int
| ++ Exp [strict , prefinc]
| -- Exp [strict , prefdec]
| Exp / Exp [strict(all(context(rvalue))), divide]
| Exp + Exp [strict(all(context(rvalue))), plus]
| Exp > Exp [strict(all(context(rvalue)))]

Stmt ::= Exps ; [strict ]
| {Stmts}
| while (Exp)Stmt
| return Exp ; [strict(all(context(rvalue)))]
| if (Exp)Stmt else Stmt [strict(1 (context(rvalue)))]

Figure 1: Fragment of CinK syntax

〈 〈·〉k 〈·〉env 〈·〉store 〈·〉stack 〈·〉return 〈·〉out 〉cfg

Figure 2: CinK configuration structure

as a list of computation tasks C1 y C2 y . . . to be executed in the given order. Computation
tasks are typically statements and expression evaluations. The memory is modelled using two
cells 〈〉env (which holds a map from variables to addresses) and 〈〉store (which holds a map from
addresses to values). The configuration also includes a cell for the function call stack 〈〉stack and
another one 〈〉return for the return values of functions. The 〈〉out cell holds the output of the
program and is here connected to the standard output stream.
When the configuration is initialised at runtime a CinK program is loaded in the 〈〉k cell and all
the other cells remain empty. A K rule is a topmost rewrite rule specifying transitions between
configurations. Since usually only a small part of the configuration is changed by a rule, a
configuration abstraction mechanism is used, allowing one to only specify the parts transformed
by the rule. For instance, the (abstract) rule for addition, shown in Figure 3, represents the
(concrete) rule

〈〈I1 + I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〈O〉out〉cfg
⇒⇒⇒
〈〈I1 +Int I2 y C〉k〈E〉env〈S〉store〈T 〉stack〈V 〉return〈O〉out〉cfg

(1)

where +Int is the mathematical operation for addition, I1, I2, V are integers, E and S are
maps, and T and O are lists.

The rule for division has a side condition which restricts its application. The conditional
statement if has two corresponding rules, one for each possible evaluation of the condition
expression. The rule for the while loop performs an unrolling into an if statement and therefore
it is not strict. Note that this unrolling does not generate infinite rewritings because the rule
can be applied only when the statement while is on top of the cell k. The increment and update
rules have side effects in the 〈〉store cell, modifying the value stored at a specific address. Finally,
the reading of a value from the memory is specified by the lookup rule, which matches a value in
the 〈〉store and places it in the 〈〉k cell. The auxiliary construct $lookup is used when a program
variable is evaluated as an rvalue.

In addition to these rules the K framework automatically generates so-called heating and
cooling rules, which are induced by strict attributes, and ensure that the arguments declared to
be strict are evaluated before the operation using those arguments. We show the case of division:

A1 / A2 ⇒⇒⇒ rvalue(A1) y � / A2

A1 / A2 ⇒⇒⇒ rvalue(A2) y A1 / �

rvalue(I1) y � / A2 ⇒⇒⇒ I1 / A2

rvalue(I2) y A1 / � ⇒⇒⇒ A1 / I2

RR n° 8189



8 Lucanu & Rusu

I1 + I2 ⇒⇒⇒ I1 +Int I2 [plus]
I1 / I2 ∧ I2 6=Int 0 ⇒⇒⇒ I1 /Int I2 [division]
if( true ) St else _ ⇒⇒⇒ St [if-true]
if( false ) _ else St ⇒⇒⇒ St [if-false]
while( B ) St ⇒⇒⇒ if( B ){ St while( B ) St else {}} [while]
V ; ⇒⇒⇒ · [instr-expr ]
〈++lval( L ) ⇒⇒⇒ lval( L ) ···〉k〈··· L 7→ (V ⇒⇒⇒ V +Int 1) ···〉store [inc]
〈--lval( L ) ⇒⇒⇒ lval( L ) ···〉k〈··· L 7→ (V ⇒⇒⇒ V −Int 1) ···〉store [dec]
〈〈lval( L )= V ⇒⇒⇒ V ···〉k〈··· L 7→ _ ⇒⇒⇒ V ···〉store ···〉cfg [update]
〈〈$lookup( L ) ⇒⇒⇒ V ···〉k〈··· L 7→ V ···〉store ···〉cfg [lookup]
{ Sts } ⇒⇒⇒ Sts [block ]

Figure 3: Subset of rules from the K semantics of CinK

where � is a special symbol, destined to receive the result of an evaluation.

Example 2.1 The CinK program gcd from Figure 4 computes the greatest common divisor of
two non-negative numbers using Euclid’s algorithm. We use it as an example to illustrate symbolic
execution and program verification.

x = a; y = b;
while (y > 0){

r = x % y;
x = y;
y = r;

}

Figure 4: Sample CinK Program: gcd

3 Background

In this section we present some theoretical material used in the rest of the paper: induction and
coinduction (Section 3.1), a general technique for reasoning about finite and possibly infinite
objects such as program executions; reachability logic (Section 3.2), which is used for defining
operational semantics of languages and for stating program properties; and language definitions
(Section 3.3), which captures the essence of language definition frameworks such as K. We note
that Sections 3.1 and 3.2 adapt material from the literature ([44] and [15], respectively) and
Section 3.3 also reuses some of our own [5, 28].

3.1 (Co)induction

In this section we present some material on coinduction, which we intensively use in the rest
of the paper. Most of the material is adapted from [44]. Coinduction is dual to induction, a
perhaps better-known reasoning technique, which we also use in a few instances hereafter; we
thus present them together.

A partially ordered set is a pair (L,≤), where L is a non-empty set and ≤ is a reflexive,
transitive and antisymmetric relation over L’s elements. Given X ⊆ L, an element x ∈ L is a
lower bound for X if x ≤ y, for all y ∈ X. Conversely, an element y ∈ L is an upper bound for X

Inria



A Generic Framework for Symbolic Execution 9

if x ≤ y, for all x ∈ X. The greatest lower bound of X, denoted glb(X), is a lower bound x such
that z ≤ x for all lower bounds z of X. Similarly, the least upper bound of X, denoted lub(X), is
an upper bound y such that y ≤ z for all upper bounds z of X. We often write lub(x, y) instead
of lub({x, y}) and glb(x, y) instead of glb({x, y}). Given a function F : L → L, an element x is
a fixed point of F if F (x) = x. If x is the least element (or greatest element) in the set of fixed
points of F then x is called the least fixed point (or greatest fixed point, respectively) of F .

A partially ordered set (L,≤) is a lattice if lub(x, y) and glb(x, y) exist for any x, y ∈ L. The
lattice (L,≤) is complete if lub(X) and glb(X) exist for any X ⊆ L.

In the paper we also use the following notations:

• x ∨ y for lub(x, y)

• x ∧ y for glb(x, y)

• > the greatest element of L

• ⊥ the least element of L

Example 3.1 Let S be a set. Then (P(S),⊆) is a complete lattice, where ⊥ = ∅, > = S,
X ∨ Y = X ∪ Y , X ∧ Y = X ∩ Y .

Theorem 3.1 (Knaster-Tarski) Let (L,≤) be a complete lattice. Any monotone function
F : L → L has a least fixed point µY. F (Y ) (on short µ F ) and a greatest fixed point ν Y. F (Y )
(on short ν F ).

Moreover, µ F =
∧
{X | F (X) ≤ X} and ν F =

∨
{X | X ≤ F (X)}.

A set X is backward closed w.r.t. F if X ≤ F (X), and it is forward closed w.r.t. F if
F (X) ≤ X. A function F : L → L is continuous if F (

∨
n≥0Xn) =

∨
n≥0 F (Xn) for any

increasing chain X0 ≤ X1 ≤ · · · , and F is cocontinuous if F (
∧
n≥0Xn) =

∧
n≥0 F (Xn) for any

decreasing chain X0 ≥ X1 ≥ · · · .

Theorem 3.2 (Kleene) If F : L→ L is continuous then µ F =
∨
n≥0 F

n(⊥). If F : L→ L is
cocontinuous then ν F =

∧
n≥0 F

n(>).

Definition 3.1 Let U be a set. A ground inference rule on U is a pair (S, x), where S ⊆ U ,
x ∈ U . A set R of ground rules yields a function R̂ : P(U)→ P(U) given by

R̂(X) = {x | (∃S′ ⊆ X)(S′, x) ∈ R}.

If S = {x1, x2, . . .}, then a rule (S, x) is written as

x1, x2, . . .

x

Proposition 3.1 Let R be a set of ground rules. If for (S, x) ∈ R, S is finite, then R̂ is
continuous. If for any x, the set (S, x) ∈ R is finite, then R̂ is cocontinuous.

It follows that each set of ground rules R satisfying the first hypothesis of the above proposi-
tion inductively defines a set µ R̂, and each set of ground rules R satisfying the second hypothesis
of the above proposition coinductively defines a set ν R̂.

RR n° 8189



10 Lucanu & Rusu

Example 3.2 The system LIST, given below, coinductively defines the possibly infinite lists over
integers:

[A]
nil

[B]
`

z `
z ∈ Z

The set of possibly infinite (i.e., finite and infinite) lists is the greatest fixed point, Z∞ = ν L̂IST.
The set of infinite lists over Z is the greatest fixed point of the system consisting only of rule [B],
i.e. Zω = ν [̂B]. The set of finite lists is the least fixed point µ L̂IST.

We now give the induction and coinduction principles, which can be used for reasoning about
inductively, resp. coinductively defied sets:

Definition 3.2 Induction proof principle:

F (X) ≤ X
µY. F (Y ) ≤ X

We shall be using this principle with F , R̂ for a set R of rules. The principle says that if, for
a given X, for all rules (S, x) ∈ R, S ⊆ X implies x ∈ X, then (the set inductively defined by
the rules) ⊆ X.

The coinduction proof principle is dual to the induction principle:

Definition 3.3 Coinduction proof principle:

X ≤ F (X)

X ≤ ν Y. F (Y )

We also use the coinduction proof principle with F , R̂ for a set R of rules. The principle now
says that if, for a given X, for all x ∈ X there is a rule (S, x) ∈ R with S ⊆ X, then X ⊆ (the
set coinductively defined by the rules).

For the specific case of coinductively defined sets we shall use the fact that membership in
such a set amounts to the existence of a certain proof tree:

Definition 3.4 (Proof Trees) Let R be a set of ground rules over U and x ∈ U . A (finite or
infinite) tree T is a proof tree of x under R if it satisfies the following properties:

• the root of T is labelled with x;

• if y is the label of a node of T and S is the set of labels of the children of this node, then
(S, y) ∈ R.

We often refer the nodes of a proof tree T by their labels. Note that a proof tree can be finite
or infinite.

Proposition 3.2 Let R be a set of a set of ground rules over U such that R is cocontinuous.
Then x ∈ ν R̂ iff there is a proof tree of x under R.

Inria
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3.2 Matching Logic and Reachability Logic

This section is dedicated to presenting the logics that we will be using in the paper: matching
logic and reachability logic. There are several versions of these recently introduced logics, we
chose those presented in [15].

We start with some notions on algebraic specifications and first-order logic.
A many-sorted signature Σ consists of a set S of sorts and of a set of S∗ × S-sorted set

of function symbols. Let TΣ denote the Σ-algebra of ground terms and TΣ,s denote the set
of ground terms of sort s. Given a sort-wise infinite set of variables Var , let TΣ(Var) denote
the free Σ-algebra of terms with variables, TΣ,s(Var) denote the set of terms of sort s with
variables, and var(t) denote the set of variables occurring in the term t. For terms t1, . . . , tn
we let var(t1, . . . , tn) , var(t1) ∪ · · · var(tn). For any substitution σ : Var → TΣ(Var) and
term t ∈ TΣ(Var) we denote by tσ the term obtained by applying the substitution σ to t.
We use the diagrammatical order for the composition of substitutions, i.e., for substitutions σ
and σ′, the composition σσ′ consists in first applying σ then σ′. Let T be a Σ-algebra. Any
valuation ρ : Var → T is extended to a (homonymous) Σ-algebra morphism ρ : TΣ(Var) → T .
The interpretation of a ground term t in T is denoted by Tt. For simplicity, we often write
true, false, 0, 1, . . . instead of Ttrue , Tfalse , T0, T1, . . . etc.

Definition 3.5 (Many-Sorted First-Order Logic (FOL)) Given a set S of sorts, a first-
order signature (Σ,Π) consists of a S∗×S-sorted set Σ of function symbols (i.e., a many-sorted
signature), and a S∗-sorted set Π of predicate symbols. A (Σ,Π)-model consists of a Σ-algebra
T and a subset Tp ⊆ Ts1 × · · · × Tsn for each p ∈ Πs1...sn . Let Var denote a S-sorted set of
variables. The set of (Σ,Π)-formulas is defined by

φ ::= > | p(t1, . . . , tn) | ¬φ | φ ∧ φ | (∃X)φ

where p ranges over predicate symbols Π, ti range over Σ(Var)-terms, and X over finite subsets
of Var . Given a (Σ,Π)-formula φ, a (Σ,Π)-model model T , and ρ : Var → T , the satisfaction
relation ρ |= φ is defined as follows:

1. ρ |= >;

2. ρ |= p(t1, . . . , tn) iff (t1ρ, . . . , tnρ) ∈ Tp;

3. ρ |= ¬φ iff ρ 6|= φ;

4. ρ |= φ1 ∧ φ2 iff ρ |= φ1 and ρ |= φ2; and

5. ρ |= (∃X)φ iff there is ρ′ with xρ′ = xρ, for all x 6∈ X, such that ρ′ |= φ

A formula φ is valid (in T ), denoted by |= φ, if it is satisfied by all valuations.

The other first-order formulas (including disjunction, implication, equivalence, universal quanti-
fiers,. . . ) are defined as syntactical sugar in the usual way.

Matching Logic

We next recall the syntax and semantics of Matching Logic (ML) and Reachability Logic (RL) [15].
ML is a static logic of configurations, whereas RL is a dynamic logic of configurations, express-
ing their evolution over time. RL can be used both for specifying the operational semantics of
programs (e.g., the rules in Fig. 3 denote RL formulas) and as a program-specification formalism.
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12 Lucanu & Rusu

Definition 3.6 (ML signature) An ML signature is first-order signature Φ = (Σ,Π,Cfg),
where (Σ,Π) is a many-sorted algebraic signature and Cfg is a distinguished sort in Σ for con-
figurations. The set of ML formulas over Φ is defined by

ϕ ::= π | > | p(t1, . . . , tn) | ¬ϕ | ϕ ∧ ϕ | (∃V )ϕ

where π ranges over TΣ,Cfg(Var), p ranges over predicate symbols Π, each ti ranges over
TΣ(Var) of appropriate sorts, and V over finite subsets of Var .

Definition 3.7 (Basic, Elementary, Quantified Elementary Patterns) A basic pattern is
a term π ∈ TΣ,Cfg(Var). An elementary pattern is an ML formula of the form π ∧φ, where π
is a basic pattern and φ is a Φ-formula, called the condition of the elementary pattern. A quan-
tified elementary pattern is an ML formula of the form (∃X)π ∧φ with X ⊂ Var and π ∧φ an
elementary pattern. We identify basic patterns π with corresponding elementary patterns π ∧ true
and with quantified elementary patterns (∃∅)π ∧φ.

A basic pattern π thus defines a set of (concrete) configurations, and the condition φ gives
additional constraints these configurations must satisfy. If present, existentially quantified vari-
ables are used to abstract away some details from the pattern. Examples of CinK patterns are
the basic pattern

〈〈I1 + I2 y C〉k〈E 〉env〈S 〉store〈T 〉stack〈R〉return〈O〉out〉cfg
and the elementary pattern

〈〈I1 / I2 y C〉k〈E 〉env〈S 〉store〈T 〉stack〈Rt〉return〈O〉out〉cfg ∧ I2 6=Int 0

An example of a CinK quantified elementary pattern is given below; it will occur in the sequel
and its meaning will be explained at the appropriate place.

(∃l, g)〈〈·〉k〈(x 7→ l)E〉env〈(l 7→ g)S〉store〉cfg ∧ g=gcd(a,b)

Definition 3.8 (ML Model) A model for ML signature Φ = (Σ,Π,Cfg) is a (Σ,Π) first-
order model T . Concrete configurations (or simply configurations) are elements of TCfg , i.e.,
T -interpretations of ground terms of sort Cfg.

Hereafter we fix an ML signature Φ = (Σ,Π,Cfg) and a model T for it.

Definition 3.9 (ML Satisfaction) The satisfaction relation |= relates pairs (γ, ρ), where γ ∈
TCfg and ρ : Var → T , with Φ-formulas ϕ. For basic patterns π, (γ, ρ) |= π is defined by γ = πρ.
For the remaining ML constructions satisfaction is defined as expected, e.g., (γ, ρ) |= ∃Xϕ iff
(γ, ρ′) |= ϕ for some ρ′ : Var → T such that xρ = xρ′ for all x ∈ Var \X. If ϕ is an ML formula
then JϕK denotes the set of concrete configurations {γ | (γ, ρ) |= ϕ for some ρ}.

The following encoding of ML into FOL will be used in the rest of the paper.

Definition 3.10 (FOL encoding of ML [15]) If ϕ is an ML formula then ϕ=? is the FOL
formula (∃z)ϕ′, where ϕ′ is obtained from ϕ by replacing each basic pattern occurrence π with
z = π, and z is a variable that does not occur in ϕ.

Example 3.3 Here are a few examples of ML formulas and their FOL encodings:

ϕ ϕ=?

(π1 ∧ φ1) ∨ (π2 ∧ φ2) (∃z)((z = π1 ∧ φ1) ∨ (z = π2 ∧ φ2))

¬π (∃z)¬(z = π)

π1 ∧ ¬π2 (∃z)((z = π1) ∧ ¬(z = π2))

π ∨ ¬π (∃z)(z = π ∨ ¬(z = π)) Inria
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The relationship between ML formulas and their FOL encodings is now given.

Proposition 3.3 ([15]) Let ϕ be an ML formula and ρ : Var → T . Then ρ |= ϕ=? iff there is
γ such that (γ, ρ) |= ϕ.

Reachability Logic

Definition 3.11 An RL formula is a pair of ML formulas ϕ1 ⇒⇒⇒ ϕ2.

The following example illustrates RL as a program-specification formalism.

Example 3.4 Consider the program gcd from Figure 4. The following RL formula

〈〈gcd〉k〈a 7→l1 b7→l2〉env〈l1 7→ a l2 7→ b〉store ···〉cfg ∧ a≥0 ∧ b≥0⇒⇒⇒
(∃l, g)〈〈·〉k〈(x 7→ l) . . .〉env〈(l 7→ g) . . .〉store ···〉cfg ∧ g=gcd(a,b) (2)

specifies that finite complete executions of the program gcd from configurations where the
program variables a, b are bound to non-negative values a, b reach configurations where x is
bound to a location l where an integer value g such that g = gcd(a, b) is stored. Here, gcd() is a
mathematical definition of the greatest-common-divisor operation (with gcd(0, 0) = 0 by conven-
tion). Also by convention the indices from data-domain predicates such as ≥Int are dropped to
simplify the presentation, and variables occurring in both left and right-hand sides of a formula,
but are irrelevant to the formula’s meaning, are replaced by ellipses (e.g., the rest of the store
and environment cells).

RL formulas are interpreted over transition systems generated by language definitions. Next,
we introduce that concept and give the semantics of RL.

3.3 Language Definitions
Our symbolic-execution approach is independent of the formal framework used for defining lan-
guages as well as from the languages being defined. We thus propose a general notion of language
definition based on algebraic specification and rewriting, the basics of which are assumed to be
known to readers.

A language definition is a triple L = (Φ, T ,S), where

• Φ is an ML signature (Σ,Π,Cfg) giving syntax to the language’s execution infrastructure
(called configuration). Cfg is the sort for configurations.

• A Φ-Model T . Recall that Ts denote the elements of the model T that have the sort s, in
particular, the elements of TCfg are called configurations.

• A set S of RL formulas, defining the operational semantics of the language.

In the rest of the paper we shall also be using a fragment of the CinK language (shown in
Section 2), called while, whose definition is simpler and therefore is easier to use for small yet
illustrative examples. The syntax of while consists only of expressions, assignments, sequences
and blocks of statements, and while loops. For simplicity, the configuration for while consists of
only two cells 〈〉k and 〈〉env which contain the program to be executed, and respectively, a map
from program variables to their values: 〈〈Pgm〉k〈Map〉env〉cfg. The semantics of expressions in
while is given using the same rules as in CinK. However, we choose a slightly different semantics
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14 Lucanu & Rusu

for some statements, namely for assignment and lookup (due to the new configuration structure),
and for the while loop:

〈X ···〉k〈··· X 7→ I ···〉env ⇒⇒⇒ 〈I ···〉k〈··· X 7→ I ···〉env [while_lookup]
〈X = I ; ···〉k〈··· X 7→ _ ···〉env ⇒⇒⇒ 〈 ···〉k〈··· X 7→ I ···〉env [while_assign]
〈while( E ) S ···〉k〈σ〉env ∧ σ[E] =Bool false ⇒⇒⇒ 〈 ···〉k〈σ〉env [while_true]
〈while( E ) S ···〉k〈σ〉env ∧ σ[E] =Bool true ⇒

〈S while( E ) S ···〉k〈σ〉env [while_false]

The while loop statement has two corresponding rules in the semantics, one for each possible
evaluation of the condition E: if the evaluation of the condition E in state σ, denoted σ[E], is
true, then execute once the body of the loop and the loop again; otherwise, continue executing
the rest of the program.

We now show how while fits into our notion of language definition. The ML signature
(Σ,Π,Cfg) corresponding to while contains all the sorts and operations defined in its syntax.
Nonterminals in the syntax are sorts and syntax productions are operations. For instance, Σ
includes a sort for expressions Exp and its corresponding operations, e.g., _+_: Exp×Exp → Exp,
_/_: Exp×Exp → Exp, etc. The ML signature also contains a sort Cfg for configurations, which
has a unique constructor Stmt ×Map → Cfg denoted by 〈 〈_〉k 〈_〉env 〉cfg (the occurrences
of the symbol _ show the places of the arguments). The model T interprets all the constants
and operations from the signature. By T1 and Ttrue we denote the interpretation of the constant
symbols 1 and true. The set S of RL formulas contains the rules shown above (for assignment,
lookup, and while), the rules corresponding to expressions from Figure 3, and rules generated
by K from strictness annotations.

Language definitions generate execution paths obtained by applying rules in S to configura-
tions in TCfg . We give the relevant definitions using coinduction.

Notation We write γ1 ⇒ρ
S γ2 iff (∃ϕ1 ⇒ ϕ2 ∈ S)(γi, ρ) |= ϕi, i = 1, 2, and γ ⇒S γ′ iff

there is ρ such that γ1 ⇒ρ
S γ2.

Definition 3.12 (Execution Paths) Let (Φ, T ,S) be a language definition. The set of execu-
tion paths (τ, ρ) is coinductively defined by the following set of rules:

(γ, ρ)

(τ, ρ)

(γ0 ⇒S τ, ρ)
γ0 ⇒ρ

S hd(τ)

where γ ∈ TCfg and ρ : Var → T , and hd is coinductively defined by

hd(γ) = γ hd(γ0 ⇒S τ) = γ0

We say that (τ, ρ) starts from ϕ if (hd(τ), ρ) |= ϕ.

Note that this set of rules is akin to the one for lists (shown in Example 3.2); an execution
path can be seen as a list of concrete configurations, where every two consecutive elements γ
and γ′ satisfy γ ⇒ρ

S γ
′. The largest set satisfied by these rules is the set of all finite and infinite

execution paths.

Example 3.5 Let γ , 〈〈x = 2;〉k〈x 7→ 3〉env〉cfg and γ′ , 〈〈·〉k〈x 7→ 2〉env〉cfg be two concrete con-
figurations, and ρ : Var → T a valuation, such that Xρ = x and Iρ = 2, where X and
I are variables from the assignment rule for while. Then (γ ⇒S γ′, ρ) is a (finite) execu-
tion path obtained using the rules from Definition 3.12. Execution paths can be infinite too,
e.g., τ , 〈〈while(true) x=1;〉k〈x 7→ 1〉env〉cfg ⇒S 〈〈x=1;while(true) x=1;〉k〈x 7→ 1〉env〉cfg ⇒S
〈〈while(true) x=1;〉k〈x 7→ 1〉env〉cfg ⇒S · · · , which is obtained by applying the rules for while

and assignment repeatedly.

Inria
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We shall also be needing the following two notions. A configuration is irreducible if there is
no transition outgoing from it:

Definition 3.13 (Irreducible Configurations) Let (Φ, T ,S) be a language definition. We
say that γ ∈ TCfg is irreducible iff there is no γ′ such that γ ⇒S γ′.

An execution path is complete if either it is finite and ends up in an irreducible configuration,
or it is infinite.

Definition 3.14 (Complete Execution Paths) Let (Φ, T ,S) be a language definition. The
set of complete execution paths is coinductively defined by the following set of rules:

(γ, ρ)
γ irreducible

(τ, ρ)

(γ0 ⇒S τ, ρ)
γ0 ⇒ρ

S hd(τ)

Example 3.6 Recall γ′ , 〈〈·〉k〈x 7→ 2〉env〉cfg from the previous example. Then, γ′ is irreducibile
because there is no rule in the semantics of while that can be applied to it. Another example
of irreducible configuration is γ′′ , 〈〈10/0〉k〈x 7→ 2 y 7→ 1〉env〉cfg. Since the side condition of
division rule does not hold in this case, the rule cannot be applied and thus, there are no successors
for γ′′.

From γ′ irreducibile we obtain that any path γ ⇒S γ′ is complete. Note that infinite execution
paths are complete as well; for instance, the infinite path τ from Example 3.5 is complete.

Next, we define the notion of derivative of ML and RL formulas needed to define semantics
of RL and symbolic execution (in Section 4). We shall see in Section 4 that this rather technical
definition encodes the set of all concrete successors of configurations that satisfy a given ML
formula. In Section 6 we shall also see that it amounts (under reasonable conditions) to standard
rewriting with a modified set of rules.

Definition 3.15 (Derivatives for ML and RL Formulas) If ϕ is an ML formula then ∆S(ϕ) ,
{(∃var(ϕl, ϕr))(ϕl ∧ ϕ)=? ∧ ϕr | ϕl ⇒⇒⇒ ϕr ∈ S}. If ϕ ⇒⇒⇒ ϕ′ is an RL formula then ∆S(ϕ ⇒⇒⇒
ϕ′) , {ϕ1 ⇒⇒⇒ ϕ′ | ϕ1 ∈ ∆S(ϕ)}.

Example 3.7 Let ϕ , 〈〈X ′=I ′; y C ′〉k〈X ′ 7→ V ′ M ′〉env〉cfg be an ML formula and ϕl ⇒⇒⇒ ϕr
be the RL formula corresponding to assignment in while:

〈〈X=I; y C〉k〈X 7→ V M〉env〉cfg ⇒⇒⇒ 〈〈C〉k〈X 7→ I M〉env〉cfg

The derivative ϕ′ , ∆{ϕl⇒⇒⇒ϕr}(ϕ) specifies the configurations obtained from those satisfying the
initial formula ϕ after executing the assigment rule:

ϕ′ , (∃var(ϕl, ϕr))
(
ϕl ∧ ϕ

)=? ∧ ϕr

= (∃X, I, C, V,M)
(
〈〈X = I;y C〉k〈X 7→ V M〉env〉cfg∧

〈〈X ′ = I ′;y C′〉k〈X ′ 7→ V ′ M ′〉env〉cfg
)=? ∧ 〈〈C〉k〈X 7→ I M〉env〉cfg

= (∃X, I, C, V,M)(∃z)
(
z = 〈〈X = I;y C〉k〈X 7→ V M〉env〉cfg∧

z = 〈〈X ′ = I ′;y C′〉k〈X ′ 7→ V ′ M ′〉env〉cfg
)
∧ 〈〈C〉k〈X 7→ I M〉env〉cfg

= (∃X, I, C, V,M)
(
〈〈X = I;y C〉k〈X 7→ V M〉env〉cfg∧

〈〈X ′ = I ′;y C′〉k〈X ′ 7→ V ′ M ′〉env〉cfg
)
∧ 〈〈C〉k〈X 7→ I M〉env〉cfg

which simpli-

fies to ϕ′ = 〈〈C ′〉k〈X ′ 7→ I ′ M ′〉env〉cfg using the fact that the equality (in the pattern’s condi-
tion) 〈〈X = I;y C〉k〈X 7→ V M〉env〉cfg = 〈〈X ′ = I ′;y C ′〉k〈X ′ 7→ V ′ M ′〉env〉cfg implies X = X ′,
I = I ′, C = C ′, M = M ′, and V = V ′. That is, after performing the assignment of X ′ = I ′, X ′
is bound to I ′ in the environment.
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16 Lucanu & Rusu

In the paper we use the notions of S-derivability of an ML formula ϕ (also extended to RL
formulas ϕ ⇒⇒⇒ ϕ′), and totality of a set S of RL formulas:

Definition 3.16 (S-derivability) An ML formula ϕ is S-derivable if ∆S(ϕ) is satisfiable. An
RL formula ϕ ⇒⇒⇒ ϕ′ is S-derivable if ϕ is S-derivable.

Example 3.8 Recall γ and γ′ from Example 3.5, and ϕ and ϕl ⇒⇒⇒ ϕr from Example 3.7. The
ML formula ϕ is S-derivable because ϕ′ , ∆{ϕl⇒⇒⇒ϕr}(ϕ)(∈ ∆S(ϕ)) is satisfiable since γ′ ∈ Jϕ′K.

On the other hand, the ML formula ϕ̂ = 〈〈I ′1/I ′2; y C ′〉k〈E′〉env〉cfg ∧ I ′2 =Int 0 is not S-
derivabile. In fact, for any rule ϕl ⇒⇒⇒ ϕr ∈ S the derivative ∆{ϕl⇒⇒⇒ϕr}(ϕ̂) is not satisfiable. For
example, let ϕl ⇒⇒⇒ ϕr be the division rule:

〈〈I1/I2 y C〉k〈E〉env〉cfg ∧ I2 6=Int 0 ⇒⇒⇒ 〈〈I1/IntI2 y C〉k〈E〉env〉cfg
The derivative ∆{ϕl⇒⇒⇒ϕr}(ϕ̂) is:
(∃I1, I2, C,E)

(
〈〈I1/I2 y C〉k〈E〉env〉cfg = 〈〈I ′1/I ′2; y C ′〉k〈E′〉env〉cfg∧ I2 6=Int 0∧ I ′2 =Int 0

)
∧

〈〈I1/IntI2 y C〉k〈E〉env〉cfg
∆{ϕl⇒⇒⇒ϕr}(ϕ̂) is not satisfiable because there is no I2 which simultaneously satisfies I2 = I ′2

(implied by 〈〈I1/I2 y C〉k〈E〉env〉cfg = 〈〈I ′1/I ′2; y C ′〉k〈E′〉env〉cfg), I2 6=Int 0, and I ′2 =Int 0.

Definition 3.17 (Totality) A set S of RL formulas is total iff for each S-derivable ϕ and each
(γ, ρ) such that (γ, ρ) |= ϕ, there is γ1 such that γ ⇒S γ1.

Note the difference between S-derivability and totality: S-derivability requires to have at
least one transition starting from ϕ and the totality requires to have at least one transition
starting from γ for any model (γ, ρ) of ϕ.

Remark 3.1 The semantics of CinK is not total because of the rules for division and modulo.
The rule for division: 〈〈I1 / I2 ···〉k ···〉cfg ∧∧∧ I2 6= 0 ⇒⇒⇒ 〈〈I1/IntI2 ···〉k ···〉cfg does not meet the
condition of Definition 3.17 because of the condition I2 6= 0 which restricts the application of
the rule. The semantics can be made total by adding a rule 〈〈I1 / I2 ···〉k ···〉cfg ∧∧∧ I2 = 0 ⇒⇒⇒
〈〈error ···〉k ···〉cfg that leads divisions by zero into “error” configurations. In this way, for any γ
which is an instance of 〈〈I1 / I2 ···〉k ···〉cfg there is at least one rule in the semantics which can
be applied. We assume hereafter that the CinK semantics (and implicitly that of while) has been
transformed as above.

We can now define the semantics of RL, in a different, yet equivalent manner to the original
definition given in [15]. Again, we are using coinduction:

Definition 3.18 (Semantics of RL) Let (τ, ρ) be an execution path and ϕ ⇒⇒⇒ ϕ′ an RL for-
mula. We say that (τ, ρ) satisfies ϕ ⇒⇒⇒ ϕ′ and we writte (τ, ρ) |= ϕ ⇒⇒⇒ ϕ′ if 〈(τ, ρ), ϕ ⇒⇒⇒ ϕ′〉 ∈
ν (̂3, 4), where (3, 4) is the system of ground rules:

〈(τ, ρ), ϕ ⇒⇒⇒ ϕ′〉
(hd(τ), ρ) |= ϕ ∧ ϕ′ (3)

〈(τ, ρ),∆{ϕl⇒⇒⇒ϕr}(ϕ ⇒⇒⇒ ϕ′)〉
〈(γ0 ⇒S τ, ρ), ϕ ⇒⇒⇒ ϕ′〉

(γ0, ρ) |= (ϕl ∧ ϕ), ϕl ⇒⇒⇒ ϕr ∈ S (4)

S |= ϕ ⇒⇒⇒ ϕ′ iff (τ, ρ) |= ϕ ⇒⇒⇒ ϕ′ for each complete (τ, ρ) starting from ϕ. If F is a set of RL
formulas then S |= F iff S |= ϕ ⇒⇒⇒ ϕ′ for all ϕ ⇒⇒⇒ ϕ′ ∈ F . We let Jϕ ⇒⇒⇒ ϕ′K , {τ | (∃ρ)(τ, ρ) |=
ϕ ⇒⇒⇒ ϕ′} and JF K =

⋃
ϕ⇒⇒⇒ϕ′∈F Jϕ ⇒⇒⇒ ϕ′K.

Inria



A Generic Framework for Symbolic Execution 17

Example 3.9 Recall the ML pattern ϕ and its derivative ϕ′ from Example 3.7, and γ and γ′
from Example 3.5. Let ρ : Var → T be a valuation such that Xρ = X ′ρ = x, Iρ = I ′ρ = 2,
Cρ = C ′ρ = ·, and V ρ = V ′ρ = 3. Note that (γ′, ρ) |= ϕ′ which implies, by the first rule in
Definition 3.18, that (γ′, ρ) |= ϕ′ ⇒⇒⇒ ϕ′ (here, γ′ is an execution path). Now, by the second rule in
Definition 3.18, and the facts that (γ, ρ) |= ϕl, (γ, ρ) |= ϕ, ϕl ⇒⇒⇒ ϕr ∈ S, and ϕ′ = ∆{ϕ1⇒⇒⇒ϕ2}(ϕ)
we obtain (γ ⇒{ϕl⇒⇒⇒ϕr} γ

′, ρ) |= ϕ ⇒⇒⇒ ϕ′.

4 Symbolic Execution
In this section we present a symbolic execution approach for languages defined using the language-
definition framework presented in the previous section. We prove that the transition system
generated by symbolic execution forward-simulates the one generated by concrete execution,
and that the transition system generated by concrete execution backward-simulates the one
generated by symbolic execution (restricted to satisfiable patterns). These properties are the
naturally expected ones from a symbolic execution framework. They allow to perform analyses
on symbolic programs, and to transfer the results of those analyses to concrete instances of the
symbolic programs in question.

We consider given a language definition L = (Φ, T ,S), with Φ = (Σ,Π) and Cfg the sort for
configurations. Since our goal is to relate concrete and symbolic executions we need to define
first what symbolic execution paths are.

Definition 4.1 (Symbolic Execution Path) The set of symbolic execution paths is coinduc-
tively defined by the following set of rules:

ϕ
ϕ satisfiable (5)

τ s

ϕ0 ⇒s
S τ

s
ϕ0 S-derivable, hd(τ s) ∈ ∆S(ϕ0) (6)

where hd is coinductively defined by

hd(ϕ) = ϕ hd(ϕ0 ⇒s
S τ

s) = ϕ0

Remark 4.1 An alternative, equivalent definition for symbolic paths sconsists in requiring that
hd(τ s) is satisfiable in the rule (6) above. As a consequence, the symbolic paths thus defined are
all feasible.

A symbolic execution path essentially consists in a possibly infinite list of ML formulas, where
every two consecutive formulas ϕ and ϕ′ satisfy ϕ′ ∈ ∆S(ϕ).
Notation We write γ1 ⇒{ϕl⇒⇒⇒ϕr} γ2 if there exists ρ : Var → T such that (γ1, ρ) |= ϕl and
(γ2, ρ) |= ϕr, and ϕ1 ⇒s

{ϕl ⇒⇒⇒ϕr} ϕ2 if ϕ2 = ∆{ϕl⇒⇒⇒ϕr}(ϕ1).
A symbolic execution path covers a concrete one if the latter is an instance of the former.

Formally, this notion is defined below:

Definition 4.2 Consider the following rules:

〈ϕ, (γ, ρ)〉
(γ, ρ) |= ϕ (7)

〈τ s, (τ, ρ)〉
〈ϕ0 ⇒s

{ϕl ⇒⇒⇒ϕr} τ
s, (γ0 ⇒{ϕl⇒⇒⇒ϕr} τ, ρ)〉

(γ0, ρ) |= ϕ0 (8)
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We write τ s w (τ, ρ) if 〈τ s, (τ, ρ)〉 ∈ ν (̂7, 8), where (7, 8) is the system of the ground rules defined
by (7) and (8).

Note that if τ s w (τ, ρ) then the symbolic path and the concrete one either are finite and
have the same length or both are infinite.

We now show that the symbolic execution thus defined is related with concrete execution via
the coverage and precision properties stated in the introduction. The coverage property states
that the symbolic paths symbolically simulate concrete ones.

Lemma 4.1 (Symbolic Step Forward-Simulates Concrete Step)
If γ1 ⇒{ϕl⇒⇒⇒ϕr} γ2 and (γ1, ρ) |= ϕ1 then there is ϕ2 such that (γ2, ρ) |= ϕ2 and ϕ1 ⇒s

{ϕl ⇒⇒⇒ϕr} ϕ2.

The next theorem follows from the previous lemma. It can be used to draw conclusions about
the absence of concrete program executions on a given path from the absence of feasible symbolic
executions on the same path.

Theorem 4.1 (Coverage) For every concrete path τ , (γ ⇒S τ, ρ) and ML formula ϕ such
that (γ, ρ) |= ϕ there exists a symbolic path τ s , (ϕ⇒s

S τ
′s) such that τ s w (τ, ρ).

The precision property states that finite symbolic execution paths are backwards-simulated
by concrete ones. Forward simulation does not hold in this case, because the formulas resulting
from a symbolic step may be unsatisfiable.

Lemma 4.2 (Concrete Step Backward-Simulates Symbolic Step)
If ϕ1 ⇒s

{ϕl ⇒⇒⇒ϕr} ϕ2 and (γ2, ρ) |= ϕ2 then there is γ1 such that γ1 ⇒{ϕl⇒⇒⇒ϕr} γ2 and (γ1, ρ) |= ϕ1.

The precision result, given below, is based on above the backwards-simulation lemma. Path
executed "backwards" are finite because they end up in an initial state, thus, the precision result
holds for finite paths only.

Theorem 4.2 (Precision) For all finite symbolic executions τ s, there exists (τ, ρ) such that
τ s w (τ, ρ).

The theorems in this section say that symbolic execution can be used as a sound program-analysis
technique. That is, to check whether a given (finite) control-flow path is concretely executable in
a program, one can attempt to symbolically execute the rules corresponding to the instructions
in the control-flow path; thanks to the coverage and precision results, the attempt suceeds if and
only if the path is concretely executable.

5 Application: Reachability-Logic Verification
Symbolic execution is, in general, not enough for performing program verification, because one
can (obviously) only generate bounded-length symbolic executions, whereas program verifica-
tion, especially in the presence of loops and recursive function calls, would require in general
executions of an unbounded length. For example, verifying the RL formula (2) on the program
in Fig. 4 require such an unbounded-length symbolic executions because of the unboundedly
many iterations of the loop. This issue is dealt with in the present section by means of circular
coinduction built on top of symbolic execution.

We first define the notion of symbolic semantics of RL formulas, then rephrase RL formula
verification by symbolic execution as a proof system. Finally, circular coinduction amounts to
adding a circularity rule to that proof system. We prove that the resulting 3-rule proof system
is sound, i.e., that if it manages to prove a given (set of) RL formula(s) then the formulas hold
semantically.
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Definition 5.1 (Symbolic Semantics of RL) Let τ s be a symbolic execution path and ϕ ⇒⇒⇒
ϕ′ and RL formula. We say that τ s satisfies ϕ ⇒⇒⇒ ϕ′ and we write τ s |= ϕ ⇒⇒⇒ ϕ′ for 〈τ s, ϕ ⇒⇒⇒
ϕ′〉 ∈ ν (̂9, 10), where (9,10) is the system of the ground rules:

〈ϕ0, ϕ ⇒⇒⇒ ϕ′〉
T |= ϕ0 → ϕ ∧ ϕ′ (9)

〈τ s,∆{ϕ1⇒⇒⇒ϕ2}(ϕ ⇒⇒⇒ ϕ′)〉
〈ϕ0 ⇒s

ϕ1 ⇒⇒⇒ϕ2
τ s, ϕ ⇒⇒⇒ ϕ′〉

T |= ϕ0 → ϕ, ϕ1 ⇒⇒⇒ ϕ2 ∈ S (10)

The following proof system can be used to prove RL formulas by symbolic execution. The
first rule says that RL formulas hold if their left hand-side implies (in the sense of ML) their
right-hand side. The second rule says that (derivable) formulas hold whenever their derivatives
hold.

Definition 5.2 (SYSTEP)

[impl]
ϕ ⇒⇒⇒ ϕ′

T |= ϕ→ ϕ′ [der]
∆S(ϕ ⇒⇒⇒ ϕ′)

ϕ ⇒⇒⇒ ϕ′
ϕ is S-derivable

The following theorem states the soundness of this simple proof system:

Theorem 5.1 If S is total then S |= ν ̂SYSTEP.

Specifically, if one can construct a finite proof tree under SYSTEP for a given RL formula
then the formula belongs to ν ̂SYSTEP. Theorem 5.1 then says that the formula holds in the
semantics S. An RL formula also holds if a infinite proof tree under SYSTEP can be built. We
give below an example of an infinite proof tree, which we reuse in order to show how circular
coinduction can "fold" infinite proof trees into finite ones in a stronger proof system.

Suppose that S is the set of RL formulas corresponding while language. A proof tree for

〈〈while (x!=0) {s=s+x; x=x-1;} y P 〉k〈x 7→ a s 7→ 0〉env〉cfg ⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2

is represented in Figure 5. T1 corresponds to the case when the while condition is false. One
can see that T2 is infinite and corresponds to the infinitely many unfoldings of the while loop.

5.1 Circular Coinduction

In this section we show how to reduce infinite proof trees to finite ones in a stronger proof system,
which adds to SYSTEP a circularity rule. The rule is thus called because it allows one to use
conclusions, i.e., formulas to be proved (from a set G of goals) as hypotheses during proofs of
formulas from the set G.

Definition 5.3 (Symbolic Circular Coinduction) Let G be a finite set of S-derivable RL
formulas. Then the set of rules SCC(G) is SYSTEP together with

[circ]
∆ϕc⇒⇒⇒ϕ′

c
(ϕ ⇒⇒⇒ ϕ′)

ϕ ⇒⇒⇒ ϕ′
T |= ϕ→ (∃var(ϕc))ϕc, ϕc ⇒⇒⇒ ϕ′c ∈ G
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T2

. . .[der] 〈
〈while (x != 0) {s=s+x; x=x-1;} P 〉k
〈x 7→ a−Int 1 s 7→ a〉env

〉
cfg

∧ a 6=Int 0

⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2[der] 〈
〈x=x-1;while (x != 0) {s=s+x; x=x-1;} P 〉k
〈x 7→ a s 7→ a〉env

〉
cfg

∧ a 6=Int 0

⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2[der] 〈
〈s=s+x; x=x-1;while (x != 0) {s=s+x; x=x-1;} P 〉k
〈x 7→ a s 7→ 0〉env

〉
cfg

∧ a 6=Int 0

⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2

T1

[impl]
〈〈P 〉k〈x 7→ a s 7→ 0〉env〉cfg ∧ a =Int 0⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2

T1 T2

〈〈while (x!=0) {s=s+x; x=x-1;} y P 〉k〈x 7→ a s 7→ 0〉env〉cfg ⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2

Figure 5: An infinite proof tree under SYSTEP

The following theorem, which we call circularity principle, states when the addition the
circularity rule (and the circular reasoning that it allows) to SYSTEP does not compromise
soundness. The main reason is to start not with G, but with ∆S(G), i.e., with the S-derivatives
of the formulas in G.

We shall be using the notation S |= G for S |= ϕ ⇒⇒⇒ ϕ′ for all ϕ ⇒⇒⇒ ϕ′ ∈ G.

Theorem 5.2 (Circularity Principle) Assume S total and that for each ϕc ⇒⇒⇒ ϕ′c ∈ G,
var(ϕ′c) ⊆ var(ϕc). If ∆S(G) ⊆ ν ̂SCC(G) then S |= G.

Note that S 6|= ν ̂SCC(G) in general. For instance, for any arbitrary set of RL formulas G, each
ϕ ⇒⇒⇒ ϕ′ ∈ G is in ν ̂SCC(G) by applying the rule [circ]. Theorem 5.2 identifies a subset of proof
trees under SCC(G) that are sound w.r.t. S |= _ (a proof tree for ϕ ⇒⇒⇒ ϕ′ under SCC(G) is
sound w.r.t. S |= _ if S |= ϕ ⇒⇒⇒ ϕ′): those for which the root is derived using the rule [der].

The advantage of using SCC(G) is that it generates finite proof trees for a substantially larger
set of RL formulas then SYSTEP. Its efficiency depends on the sets G given to it as input. This
is quite similar to what happens when proving programs in Hoare logics, where the program
specification needs additional information (under the form of loop invariants) in order to be
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[impl]
(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int

(a−Int 1)a

2
+Int (s0 +Int a)

⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2
+Int s0

[circ] 〈
〈while (x!=0) {s=s+x; x=x-1;} P 〉k
〈x 7→ a−Int 1 s 7→ s0 +Int a〉env

〉
cfg

∧ a 6=Int 0

⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2
+Int s0

. . .
[der] 〈

〈s=s+x; x=x-1;while (x!=0) {s=s+x; x=x-1;} P 〉k
〈x 7→ a s 7→ s0〉env

〉
cfg

∧ a 6=Int 0

⇒

(∃b)〈〈P 〉k〈x 7→ 0 s 7→ b〉env〉cfg ∧ b =Int
a(a+Int 1)

2
+Int s0

Figure 6: The finite proof tree under SCC corresponding to the infinite proof tree T2 in Fig. 5

successful.
Such a procedure can be used in an interactive way: first, it can be run it for proof trees of

bounded height, and if it does not successfully terminates, one can analyse the proof trees built
in order to guess some additional RL formulas, which, if added to G, increases the chance to find
finite proof trees.

The finite proof tree under SCC that corresponds to the infinite proof tree T2 under SYSTEP
is represented in Fig. 6.

As final comments in this section, we note that, on the one hand, our 3-rule proof system SCC
is substantially simpler that the original 8-rule proof system for RL given in [15]: a rule in SCC
corresponds to many small reasoning steps in the original proof system. The downside is that
we lose the theoretical relative completeness result of [15], which says that all valid RL formulas
can (in principle) be proved. We prefer to focus on practical examples (shown in Section 7.1)
to illustrate the usefulness of SCC . On the other hand, SCC is a strict generalisation of a RL
verification procedure presented in [28]: that procedure can be seen a a strategy in SCC, in which
implication is always applied before circularity, which is itself always applied before derivation.

6 Symbolic Execution via Language Transformation

As seen in the previous section, the derivative operation is essential both for symbolic execution
and RL formula verification. In this section we show how the operation, currently defined as a
matching, resp. reachability-logic formula transformer - i.e., ∆S(ϕ) , {(∃var(ϕl, ϕr))(ϕl∧ϕ)=?∧
ϕr | ϕl ⇒⇒⇒ ϕr ∈ S} for ML formulas ϕ, and, respectively ∆S(ϕ ⇒⇒⇒ ϕ′) , {ϕ1 ⇒⇒⇒ ϕ′ | ϕ1 ∈
∆S(ϕ)} for RL formulas ϕ ⇒⇒⇒ ϕ′ - can, under reasonable restrictions, be expressed by means of
matching and rewriting. This is essential when implementing the proposed symbolic execution
and verification techniques in a rewriting-based framework such as K. This implementation is
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discussed in the next section.

Computing Derivatives by Matching

Consider a language definition L = (Φ, T ,S) over an ML signature Φ = (Σ,Π,Cfg). We assume
a subsignature (ΣData ,ΠData) of (Σ,Π) consisting of all data sorts and their corresponding
operations and predicates, e.g., integers, maps, trees,. . . depending on the language L. We assume
that the sort Cfg and the syntax of L are not data, i.e., they are defined by operations in Σ\ΣData.

We also assume that T interprets the data sorts (those included in the subsignature ΣData)
according to some ΣData -algebra D (in which, for technical reasons, constants in ΣData are
interpreted syntactically). Given the data model D we construct a signature Σ(D) by adding
to Σ the elements of D as constants of the corresponding sorts. Moreover, we assume that the
model T consists of equivalence classes of ground terms over Σ(D), modulo a congruence ∼=A

induced by a set of axioms A, e.g., associativity, commutativity and unity, for which there exists
a finitary and complete unification algorithm, which moreover reduces to matching terms modulo
the axioms in question.

In the sequel we shall mostly be concerned with pairs t, t′ of terms, where

• t is a term in TΣ(D),Cfg(VarData), i.e., a basic pattern over Σ with variables in a set
VarData ⊂ Var of data variables, corresponding to basic patterns of configurations that
are states in symbolic execution paths;

• t′ is a term in T lΣ(D)\ΣData ,Cfg(Var), i.e., a linear basic pattern corresponding to the left-
hand side of a rule in the semantics S of the language of interest.

We will see later in this section that the constraints on t and t′ can be achieved by simple
transformation on the rules S defining the semantics of the language.

Definition 6.1 (A-unifier) With the above notations, we say that two terms t ∈ TΣ(D),Cfg(VarData)
and t′ ∈ T lΣ(D)\ΣData ,Cfg(Var) are A-unifiable if there is ρ : Var → T satisfying tρ ∼=A t′ρ. The
valuation ρ is an A-unifier of t, t′.

Remark 6.1 The congruence tρ ∼=A t
′ρ in Definition 6.1 is just equality in the model T , hence,

it can also be written tρ = t′ρ.

Let us also define the A-matching between two terms of the above form.

Definition 6.2 (A-matcher) With the above notations, given two terms t ∈ TΣ(D),Cfg(VarData)

and t′ ∈ T lΣ(D)\ΣData ,Cfg(Var), we say that a substitution σ : var(t′) → TΣ(D)(VarData) is an
A-matcher of t′ onto t if t ∼=A t

′σ.

The next assumption requires that A-unification can be achieved by A-matching.

Assumption 6.1 We assume that for all terms t ∈ TΣ(D),Cfg(VarData) and t′ ∈ T lΣ(D)\ΣData ,Cfg(Var),
if t and t′ are A-unifiable, then there is a finite set µ(t′, t) of A-matchers of t′ onto t, such that
for each A-unifier ρ of t and t′, there are σ0 ∈ µ(t′, t) and a valuation ρ′ : Var → T such that
ρ = σ0ρ

′2.

That is, each A-unifier is an instance of an A-matcher for the terms in question. The assumption
holds under reasonable requirements3 (i.e., the axioms are linear, regular, and non-collapsing).

2ρ1 = ρ2 if for all x ∈ Var , xρ1 = xρ2, where "=" denotes equality in the model T.
3A proof of the assumption can be found in [43] (Th. 3: Unification by Matching).
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Combinations of the usual associativity, commutativity, and unity (ACU) axioms satisfy these
requirements, and K language definitions intensively use these axioms (e.g., the k cell’s content
is an AU list, and, typically, cells in configurations belong to ACU bags).

The second assumption restricts the class of RL formulas that can be used as program prop-
erties or as semantical rules to those that are actually useful in practice: left-hand sides are
elementary patterns with linear basic patters over the signature ΣD, whereas right-hand sides
are quantified elementary patterns, such that there are no additional free variables in right-hand
sides of formulas.

Assumption 6.2 We consider RL formulas ϕ1 ⇒⇒⇒ ϕ2 satisfying var(ϕ2) ⊆ var(ϕ1), ϕ1 ,
π1 ∧φ1 with π1 ∈ T lΣ(D)\ΣData ,Cfg(Var), and ϕ2 , (∃Y )π2 ∧φ2.

Lemma 6.1 (ML Derivatives by Matching) Under the given assumptions, consider an RL
formula ϕ1 ⇒⇒⇒ ϕ2 with ϕ1 , π1 ∧φ1, ϕ2 , (∃Y )π2 ∧φ2, and ϕ , (∃X)π ∧φ such that
(X ∪ var(ϕ)) ∩ (Y ∪ var(ϕ1, ϕ2)) = ∅. Then,

J∆{ϕ1⇒⇒⇒ϕ2}(ϕ)K =
⋃

σ∈µ(π1,π)

J(∃X,Y )π2σ ∧φ1σ ∧ φ2σ ∧ φK

In a nutshell the lemma shows that semantically speaking, derivatives ∆{ϕ1⇒⇒⇒ϕ2}(ϕ) are certain
ML formulas in which matchers (in the set µ(π1, π)) are present.

Computing Derivatives by Rewriting: Language Transformation

Lemma 6.1 shows how derivatives can equivalently be computed using matching. In this section
we build on that result to show that derivatives can be computed by rewriting in a transformed
language definition.

Consider a language definition L = (Φ, T ,S) over an ML signature Φ = (Σ,Π,Cfg). The
transformation consists in creating a so-called symbolic language Ls = (Φs, T s,Ss) over a sym-
bolic ML signature Φs = (Σs,Πs,Cfgs).

Symbolic Signature. The algebraic signature Σs adds new sorts Bool and Fol to Σ and, for
each predicate p ∈ Πs1,...,sn , a new operation op : s1× · · · × sn → Bool . Σs includes constructors
for representing FOL formulas as terms of sort Fol . It also adds to Σ new sorts Id for identifiers
and IdList for lists of identifiers, with a (standard) equationally defined concatenation operation
_,_ : IdList× IdList → IdList . Finally, Σs includes a sort Cfgs for symbolic configurations with
its constructor (∃_)_ ∧s _ : IdList × Cfg × Fol → Cfgs. The set Πs consists of one single new
predicate symbol: sat : Fol → Bool .

Symbolic Model. The symbolic model T s interprets syntactically all operations in Σs except
for the list concatenation operation, which is interpreted according to its (standard) equational
definition. T s interprets the single predicate symbol sat : Fol → Bool as the satisfiability of FOL
formulas: the interpretation of sat (conveniently, also denoted by sat) returns true iff the FOL
formula interpreting the input of sat is satisfiable.

Symbolic Rules. Creating the set Ss consists of the two following substeps:

• linearisation and ΣData -operation elimination: this transformation deals with the left-hand
sides π1 ∧φ1 of RL formulas in S, for which Assumption 6.2 requires π1 ∈ T lΣ(D)\ΣData ,Cfg(Var),
that is, π1 is linear and does not contain any operations in ΣData (specifically, not even
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constants in ΣData). This is achieved by replacing in π1 duplicated variables and subterms
containing operations in ΣData with fresh variables, and by adding constraints to φ1 that
equate the newly introduced variables with the subterms they replaced.

• definition of the symbolic rules: for each rule π1 ∧φ1 ⇒⇒⇒ (∃Y )π2 ∧φ2 ∈ S, a rule

(∃L)(π1 ∧s ψ) ∧ sat(φ1 ∧ ψ) ⇒⇒⇒ (∃L, Y )π2 ∧s (φ2 ∧ φ1 ∧ ψ) (11)

is created in Ss, where ψ is a variable of the sort Fol , L is a variable of sort IdList , and
_,_ is the concatenation operation over IdList .

The symbolic language Ls is now defined. Then we have a main result of this section, which
says that derivatives can be computing by rewriting in Ls.

Theorem 6.1 (Derivatives by Rewriting in Ls) Let S be a set of RL formulas satisfying
the assumptions of this section and ϕ , (∃X)π ∧φ be a quantified elementary pattern, such
that X ∪ var(ϕ) is disjoint from the set of all variables (free or bound) occuring in S. Then,
J∆S(ϕ)K =

⋃
ϕ⇒Ssϕ′Jϕ′K.

The theorem says that, semantically speaking, the derivation operation for configurations of a
language L amounts to computing successors according to the transition relation in the symbolic
language definition Ls, which is computed by rewriting just as in any language definition in our
framework.

The results in this section extend our own previous approach from [5] with new features such
as existentially quantified patterns and rewriting modulo axioms. The extensions are theoretically
nontrivial and are also important from a practical point of view. Specifically, RL formulas for
program specifications (ranging from simple ones such as (2) to complex ones shown in the next
section) do require quantifiers for expressiveness issues, and axioms are intensively used in K
language definitions as discussed earlier in the paper.

7 Implementation in the K Framework
In this section we present a prototype tool implementing our symbolic execution approach. We
first briefly describe the tool and its integration within the K framework. Then we illustrate
the tool (as well as its extension that performs deductive verification of RL formulas) on some
nontrivial programs.

7.1 Symbolic Execution within the K Framework

We have integrated our symbolic execution framework in version 3.4 of the K framework [41].
In K, the definition of a language, say, L, is compiled into a Maude [12] rewrite theory. Then,
the K runner executes programs in L by applying the resulting rewrite rules to configurations
containing programs. Our implementation follows the same process. The main difference is
that our K compiler includes some additional transformations steps: rule linearisation, replacing
the data subterms in left-hand-sides of rules with fresh variables and adding constraints to the
rule’s condition equating the fresh variables to the terms they replaced, adding a cell for path
condition, and modifying semantical rules into symbolic rules of the form (11) as shown in the
previous section. The effect is that the compiled rewrite theory we obtain defines a symbolic
semantics of L instead of its concrete semantics. We note that the symbolic semantics can
execute programs with concrete inputs as well. For user convenience we have also improved the
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void init(int a[], int n, int x, int j) {
int i = 0;
int *p = & a[0];
a[j] = x;
while (*p != x && i < n) {

*(p++) = 2 * i;
i = i + 1;

}
if (i > j) {
cout << "error";

}
}

void main() {
int n, j, x, i;
cin >> n >> j >> x;
int a[n];
i = 0;
while(i < n) {

cin >> a[i];
i = i + 1;

}

init(a, n, x, j);
}

Figure 7: CinK program: init-arrays

K runtime environment with some specific options which are useful for providing programs with
symbolic input and setting up an initial path condition. A conservative approximation of the
predicate sat is implemented using the K’s interface to the Z3 SMT solver [18].

Given a K language definition, our tool automatically generates its symbolic semantics. Thus,
users that already have a K language definition can symbolically execute their programs without
having to change anything in them. Actually, symbolic execution using the transformed definition
amounts to applying the set of rules SYSTEP.

7.2 Bounded model checking
We illustrate symbolic execution with CinK and show how the K runner can directly be used for
performing bounded model checking. In the program in Figure 7, the function init assigns the
value x to the array a at an index j, then fills the array with ascending even numbers until it
encounters x in the array; it prints error if the index i went beyond j in that process. The i-th
array element is accessed using the pointer p. The function init is called in the function main
with arguments read from the standard input. In [4] it has been shown, using model checking
and abstractions on arrays, that this program never prints error. It is worth noting that the
CinK program used here is trickier than the one in [4] since it uses conversions between arrays
and pointers. We obtain the same result as [4] by running the program with symbolic inputs and
using the K runner as a bounded model checker:

$ krun init-arrays.cink -cPC="n >Int 0" -search -cIN="n j x a1 a2 a3"
-pattern="<T> <out> error </out> B:Bag </T>"

Search results:
No search results

The initial path condition is n >Int 0. The symbolic inputs for n,j,x are entered as n j x, and
the array elements a1 a2 a3 are also symbolic. The –pattern option specifies a pattern to be
searched in the final configuration: the text error should be in the configuration’s output buffer.
The above command thus performs a bounded model-checking with symbolic inputs; the bound
is implicitly set by the number of array elements given as inputs, but it can be specified by the
initial path condition as well, e.g., n <Int 4. It does not return any solution, meaning that that
the program will never print error.
The result was obtained using symbolic execution without any additional tools or techniques.
We note that array size is symbolic as well, a feature that, to our best knowledge, is not present
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in other symbolic execution frameworks.

7.3 Reachability-Logic Verification

In this section we illustrate the usage of our verification prototype on the Knuth-Morris-Pratt [27]
string matching algorithm. The current implementation is an extension of both our K symbolic
compiler and the K runner. In order to verify whether a set of reachability formulas (goals) G
holds, given language semantics S, the tool completes two stages during its execution: it builds
a new definition and then performs verification. Given a language definition L and a set of RL
formulas G, the tool produces a new definition consisting of the symbolic semantics Ls of L
enriched with the rules from G. This new definition is used to perform symbolic execution of
the patterns in left-hand sides of formulas in ∆S(G). Actually, symbolic execution using the
enriched definition amounts to applying the set of rules SCC(G). The tool gives priority to rules
in G in order to accelerate the process of finding a proof.

7.3.1 Verifying the Knuth-Morris-Pratt string matching algorithm: KMP

The Knuth-Morris-Pratt algorithm [27] searches for occurrences of a word P , usually called
pattern, within a given text T by making use of the fact that when a mismatch occurs, the
pattern contains sufficient information to determine where the next search should begin. A
detailed description of the algorithm, whose CinK code is shown in Figure 8, can be found
in [14].

The KMP algorithm optimises the naive search of a pattern into a given string by using some
additional information collected from the pattern. For instance, let us consider T = ABADABCDA

and P = ABAC. It can be easily observed that ABAC does not match ABADABCDA starting with the
first position because there is a mismatch on the fourth position, namely C 6= D.

The KMP algorithm uses a failure function π, which, for each position j in P , returns the
length of the longest proper prefix of the subpattern up to position j which is also a suffix of
it. For our example, π[3] = 1 and π[j] = 0 for j = 1, 2, 4. In the case of a mismatch between
the position i in T and the position j in P , the algorithm proceeds with the comparison of the
positions i and π[j]. For the above mismatch, the next comparison is between the B in ABAC and
the first instance of D ABADABCDA, which saves a comparison of the characters preceeding them,
since the algorithm "already knows" that they are equal (here, they are both A).

An implementation of KMP is shown in Figure 8. The comments include the specifications
for preconditions, postconditions, and invariants, which will be explained later in this section
(briefly, they are syntactic sugar for RL formulas, which are automatically generated from them).
The program can be run either using the K semantics of CinK or the g++ GNU compiler. The
compute_prefix function computes the failure function π for each component of the pattern and
stores it in a table, called pi. The kmp_matcher searches for all occurrences of the pattern in the
string comparing characters one by one; when a mismatch is found on positions i in the string
and q in the pattern, the algorithm shifts the search to the right as many positions as indicated by
pi[q], and initiates a new search. The algorithm stops when the string is completely traversed.

For the proof of KMP we use the original algorithm as presented in [14]. Another formal proof
of the algorithm is given in [20] by using Why3 [21]. There, the authors collapsed the nested
loops into a single one in order to reduce the number of invariants they have to provide. They
also modified the algorithm to stop when the first occurrence of the pattern in the string was
found. By contrast, we do not modify the algorithm from [14]. We also prove that KMP finds all
the occurrences of the pattern in the string, not only the first one. We let P [1..i] denote the
prefix of P of size i, and P [i] denote its i-th element.
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/*@pre: m>=1 */
void compute_prefix(char p[],

int m, int pi[])
{

int k, q;
k = 0;
pi[1] = 0;
q = 2;
while(q <= m) {
/*@inv: 0<=k /\ k<q /\ q<=m+1 /\

(forall u:1..k)(p[u]=p[q-k+u]) /\
(forall u:1..q-1)(pi[u]=Pi(u)) /\
Pi(q)<=k+1 */
while (k > 0 && p[k+1] != p[q]) {
/*@inv: 0<=k /\ k<q /\ q<=m /\

(forall u:1..k)(p[u]=p[q-k+u]) /\
(forall u:1..q-1)(pi[u]=Pi(u)) /\
(forall u:1..m)(0<=Pi(u)<u) /\
Pi(q)<=k+1 */
k = pi[k];

}
if (p[k + 1] == p[q]) {

k = k + 1;
}
pi[q] = k;
q++;

}
}
/*@post: (forall u:1..m)(pi[u]=Pi(u)) */

/*@pre: m>=1 /\ n>=1 */
void kmp_matcher(char p[], char t[], int m, int n)
{

int q = 0, i = 1, pi[m];
compute_prefix(p, m, pi);
while (i <= n) {
/*@inv: 1<=m /\ 0<=q<=m /\ 1<=i<=n+1 /\

(forall u:1..q-1)(pi[u]=Pi(u)) /\
(exists v)(forall u:v+1..i-1)(Theta(u)<m /\

allOcc(Out,p,t,v))/\
(forall u:1..q)(p[u]=t[i-1-q+u]) /\
Theta(i)<=q+1 */
while (q > 0 && p[q + 1] != t[i]) {
/*@inv: 1<=m /\ 0<=q /\ q<m /\
(forall u:1..q-1)(pi[u]=Pi(u)) /\
(exists v)(forall u:v+1..i-1)(Theta(u)<m /\

allOcc(Out,p,t,v))/\
(forall u:1..q)(p[u]=t[i-1-q+u]) /\
(forall u:1..i-1)(Theta(u)<m) /\
Theta(i)<=q+1 */

q = pi[q];
}
if (p[q + 1] == t[i]) { q = q + 1; }
if (q == m) {

cout << "shift: " << (i - m) << endl;
q = pi[q];

}
i++;

}}
/*@post: allOcc(Out, p, t, n) */

Figure 8: The KMP algorithm annotated with pre-/post-conditions and invariants (syntactical
sugar for RL formulas): failure function (left) and the main function (right). In the annotations,
Pi, Theta, and allOcc denote functions π and θ, and predicate allOcc, respectively, which are
defined axiomatically in an extension of CinK.
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Definition 7.1 Let P be a pattern of size m ≥ 1 and T a string of characters of size n ≥ 1. We
define the following functions and predicate:

• π(i) is the length of the longest proper prefix of P [1..i] which is also a suffix for P [1..i], for
all 1 ≤ i ≤ m;

• θ(i) is the length of the longest prefix of P that matches T on the final position i, for all
1 ≤ i ≤ n;

• allOcc(Out, P, T, i) holds iff the list Out contains all the occurrences of P in T [1..i].

The specification of the kmp_matcher function is the following RL formula:〈
〈kmp_matcher(p, t,m,n);〉k〈·〉out
〈p7→l1 t7→l2〉env〈l1 7→ P l2 7→ T 〉store

. . .

〉
cfg

∧∧∧ n≥1 ∧m≥1

⇒⇒⇒
〈〈·〉k〈Out〉out〈. . .〉env〈. . .〉store . . . 〉cfg ∧∧∧ allOcc(Out, P, T, n)

This formula says that from a configuration where the program variables p and t are bound
to the values P , T , respectively, the output cell is empty, and the kmp_matcher function has to
be executed, one reaches a configuration where the function has been executed and the output
cell contains all the occurrences of P in T . Note that we passed the symbolic values m and n as
actual parameters to the function which are the sizes of P , and T , respectively. An advantage
of RL with respect to Hoare Logic is, in addition to language independence, the fact that RL
formulas may refer to all the language’s configuration, whereas Hoare Logic formulas may only
refer to program variables. A Hoare Logic formula for the kmp_matcher function would require
the addition of assignments to a new variable playing the role of our output cell.

There are some additional issues concerning the way users write the RL formulas. These may
be quite large depending on the size of the K configuration of the language. To handle that, we
have created an interactive tool for generating such formulas. Users can annotate their programs
with preconditions and postconditions and then use our tool to generate RL formulas from those
annotations. The above specification for KMP is generated from the annotations:

//@pre: m >= 1 /\ n >= 1
kmp_matcher(p, t, m, n);
//@post: allOcc(Out, p, t, n)

Loops can be annotated with invariants as shown below:

while (COND) {
//@inv: INV
k = pi[k];

}

For each annotated loop, the tool generates two RL formulas: one for proving the loop body
and another one for proving the entire loop statement. The former states that, starting from a
configuration where the body of the loop remains to be executed (e.g. k = pi[k] in the above
loop) and the FOL formula INV ∧ COND holds, one reaches a configuration where the body was
executed and INV holds. The latter states that by starting with a configuration where the entire
loop remains to be executed and INV holds, one reaches a configuration where the loop was
completely executed and INV ∧ ¬COND holds.
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From the annotations shown in Figure 8 the tool generates all the RL formulas that we need
to prove KMP. Since KMP has four loops and two pairs of pre/post-conditions, the tool generates
and proves a total number of ten RL formulas. In the annotations we use the program variables
(e.g. pi, p, m) and a special variable Out which is meant to refer the content of the 〈〉out cell.
This variable gives us access to the output cell, which is essential in proving that the algorithm
computes all the occurrences of the pattern.

Finally, every particular verification problem requires problem-specific constructions and
properties about them. For verifying KMP we have enriched the symbolic definition of CinK
with functional symbols for π, θ, and allOcc, and the following facts about the ` entailment,
expressing some of their properties (which we prove independently in Coq [1]):

1. 0 ≤ k ≤ m ` 0 ≤ π(k) < k.

2. 0 ≤ q ≤ n ` 0 ≤ θ(q) ≤ m.

3. (∀u : 1..k)(P [u] = P [q − k + u]) ∧ π(q) ≤ k + 1 ∧ P [k + 1] 6= P [q] `
π(q) ≤ π(k) + 1.

4. (∀u : 1..k)(P [u] = P [q − k + u]) ∧ π(q) ≤ k + 1 ∧ P [k + 1] = P [q] `
π(i) = k + 1.

5. (∀u : 1..q)(P [u] = T [i− 1− q + u]) ∧ θ(i) ≤ q + 1 ∧ P [q + 1] 6= T [i] `
θ(i) ≤ π(q) + 1.

6. (∀u : 1..q)(P [u] = T [i− 1− q + u]) ∧ θ(i) ≤ q + 1 ∧ P [q + 1] = T [i] `
θ(i) = q + 1.

7. (∃v)(∀u : v+1..i−1)(allOcc(Out, P, T, v) ∧ θ(u) < m) ∧ θ(i) = m ∧ i < n `
(∃v)(∀u : v+1..i)(allOcc(Out, P, T, v) ∧ θ(u) < m).

8. (∃v)(∀u : v+1..i)(allOcc(Out, P, T, v) ∧ θ(u) < m) ∧ i = n `
allOcc(Out, P, T, v).

In the case of KMP, we had to figure out first the needed functions and predicates specific to
the problem domain to write the RL specifications and the invariants for loops. For this, we
followed the insightful and very intuitive comments about the algorithm from [14]. Second, we
identified the properties listed above using a trial and error process, which also required manual
labour. Essentially, this can be described in a few steps: use the tool to prove the formulas
directly; in case of failure, get the translation of the formula for the solver and ask the solver
to simplify the formula; then use the simplified formula and eventually some counterexamples
returned by the solver to guess the needed property; check if this property holds; if it does, then
append it to the set of axioms and reiterate the process until the tool finishes successfully.

8 Conclusion and Future Work
We have presented a formal and generic framework for the symbolic execution of programs in
languages definable in an algebraic and term-rewriting setting. Symbolic execution is performed
by applying a certain operation called derivative, which, under reasonable assumptions, can be
computed by rewriting in a modified language definition. We prove that the symbolic execution
thus defined has the naturally expected properties with respect to concrete execution: coverage,
meaning that to each concrete execution there is a (feasible) symbolic one on the same path
of instructions, and precision, meaning that each (feasible) symbolic execution has a concrete
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execution on the same path. These properties are expressed in terms of coinduction and mutual
simulations. The incorporation of symbolic execution into a deductive system for program ver-
ification with respect to Reachability-Logic specifications is also presented. Finally, we present
the implementation of a prototype tool based on the above theory, which is now a part of the
K framework, and its applications to the bounded model checking and deductive verification of
nontrivial programs written in a subset of C++ also formally defined in K.
Future Work We are planning to expand our tool, to make it able to seamlessly perform a wide
range of program analyses, from testing and debugging to formal verifications, following ideas
presented in related work, but with the added value of being language independent and grounded
in formal methods. For this, we shall develop a rich domain of symbolic values, able to handle
various kinds of data types. Formalising the interaction of symbolic-domain computations with
symbolic execution is also a matter for future work.

Another future research direction is specifically targeted at our RL-formulas verifier, and aims
at certifying its executions. The idea is to generate proof scripts for the Coq proof assistant [1], in
order to obtain certificates that, despite any (inevitable) bugs in our tool, the proofs it generates
are indeed correct. This amounts to, firstly, encoding our RL proof system in Coq, and proving its
soundness with respect to the original proof system of RL (which have already been proved sound
in Coq [39]). Secondly, our verifier must be enhanced to return, for any successful execution,
the rules of our system it has applied and the substitutions it has used. From this information
a Coq script is built that, if successfully run by Coq, generates a proof term that constitutes a
correctness certificate for the verifier’s original execution. A longer-term objective is to turn our
verifier into an external proof tactic for Coq, resulting in a powerful mixed interactive/automatic
program verification tool.
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A Supplementary Background Material about Coinduction
The following definition is also inspired from [44]. We adapt it for our purpose, which is here to
define functions on coinductively defined sets.
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Definition A.1 (Game) Let R be a set of a set of ground rules. A game in R consists of two
players, V (the verifier) and R (the refuter), and an element x0. V attempts to show that there
is a proof tree for x under R and R attempts to show that there is no such a proof tree.

During a play a data structure playingNodes, storing the set of playing nodes, is maintained.
A play consists of a sequence of alternative moves of the two players according to the following
rules:

• the play starts with a move of V that chooses a rule (S0, x0) ∈ R (deriving x0) and the set
playingNodes is initialised with S0;

• if it is the turn of R to move, then it chooses an element xi from playingNodes;

• if it is the turn of V to move and the last element chosen by R is xi, then xi is removed
from playingNodes, V chooses a rule (Si, xi) ∈ R (if any), and the nodes Si are added to
playingNodes;

• if playingNodes is empty then the play is over and V wins;

• if there is no a rule deriving the last element xi chosen by R, then the play is over and R
wins;

• if the play does not terminate, V wins.

A play is described by a (finite or infinite) sequence

x0, S0, . . . , xn, Sn, . . .

Since the two players are always the same, a game is denoted by the pair (R, x0).
A strategy is a systematic way of moving for each player.

Definition A.2 (Strategy) A strategy for V is a function that associates to each sequence

x0, S0, . . . , xn

a rule (Sn, xn) ∈ R, whenever such a rule exists. A strategy for R is a function that associates
to each sequence

x0, S0, . . . , xn, Sn,

an element from playingNodes = S0 ∪ · · · ∪ Sn \ {x0, . . . , xn}, whenever this set is not empty.
A strategy is winning for a player if it produces a win for that player in every play.

In other words, a strategy for V says which rule is chosen when it is his turn to play, and
a strategy for R says which playing node is chosen when it is he turn to play. We now use the
above notions in order to define functions between coinductively defined sets, which we will use
later in the paper. We note that the following definition does not appear in [44].

Definition A.3 (Functions over Coinductive Sets) Let A and B two sets coinductively de-
fined by RA and RB, respectively. A coinductive function f : A → B is a function that maps
each x ∈ A and a given winning strategy for V in the game (RA, x) into a winning strategy for
V in the game (RB , f(x)).

Example A.1 Each list defined by the system LIST from the previous example has a unique
winning strategy. A function f : Z∞ → Z∞ that duplicate each element of a list, is specified by
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• f(nil) = nil . The unique wining strategy αnil for V in (LIST,nil) is that in which V
chooses the rule A. The specification says that the strategy αnil is mapped in itself.

• f(z `) = z ∗z f(`). Let α be the wining strategy for V in (LIST, z `). This strategy chooses
first the instance of the rule B corresponding to z and then it behaves like the wining
strategy α′ for V in (LIST, `). The specification says that α is mapped into a strategy β
that chooses first the instance of the rule B corresponding to z ∗ z and then behaves like the
strategy associated to α′.

B Proofs of Results from Section 4
Proof of Lemma 4.1, Page 18.
Let ϕ2 , ∆{ϕl⇒⇒⇒ϕr}(ϕ1) , (∃var(ϕl, ϕr))(ϕl ∧ ϕ1)=? ∧ ϕr. Obviously ϕ1 ⇒s

{ϕl ⇒⇒⇒ϕr} ϕ2. We
now prove (♦) (γ2, ρ) |= (∃var(ϕl, ϕr))(ϕl ∧ ϕ1)=? ∧ ϕr. From γ1 ⇒{ϕl⇒⇒⇒ϕr} γ2 we obtain a
valuation η such that (γ1, η) |= ϕl and (γ2, η) |= ϕr. Since variables of rules can always be
renamed we can assume var(ϕ1) ∩ var(ϕl, ϕr) = ∅, thus, we can construct a valuation ρ′ such
that ρ′|var(ϕ1) = ρ and ρ′|var(ϕl,ϕr) = η, and then (γ2, ρ

′) |= ϕr and (γ1, ρ
′) |= ϕl ∧ ϕ1. Using

Proposition 3.3 we obtain that ρ′ |= (ϕl ∧ ϕ1)=?. Finally, using the definition of the |= relation
we obtain (γ2, ρ

′) |= (ϕl ∧ϕ1)=? ∧ϕr and (γ2, ρ) |= (∃var(ϕl, ϕ2))(ϕl ∧ϕ1)=? ∧ϕr, which proves
the lemma.

Proof of Theorem 4.1, Page 18. In this proof we use the following set of rules R:

〈(γ, ρ), ϕ〉
(γ, ρ) |= ϕ (12)

〈(τ, ρ), ϕ〉
〈(γ0 ⇒S τ, ρ), ϕ0〉

(γ0, ρ) |= ϕ0, ϕ0 ⇒s
S ϕ (13)

First, we show that ν R̂ defines the set of all pairs of the form 〈(τ, ρ), ϕ〉 such that (τ, ρ) starts
from ϕ and there is a symbolic path that starts with ϕ and covers (τ, ρ). For this we define
coinductively a function sp over ν R̂:

• sp(〈(γ, ρ), ϕ〉) = ϕ

• sp(〈(γ0 ⇒S τ, ρ), ϕ0〉) = ϕ0 ⇒s
S sp(〈(τ, ρ), ϕ〉).

It is easy to see that sp(〈(τ, ρ), ϕ〉) is a symbolic path. Next, we coinductively prove that
sp(〈(τ, ρ), ϕ〉) w (τ, ρ) by showing that Y , {〈sp(〈(τ, ρ), ϕ〉), (τ, ρ)〉 | 〈(τ, ρ), ϕ〉 ∈ ν R̂} is back-
ward closed w.r.t. (̂7, 8), that is, Y ⊆ (̂7, 8)(Y ) (♣), where (̂7, 8)(Y ) = {〈ϕ, (γ, ρ)〉 | (γ, ρ) |=
ϕ} ∪ {〈ϕ0 ⇒s

S τ
s, (γ0 ⇒S τ, ρ)〉 | (γ0, ρ) |= ϕ0, 〈τ s, (τ, ρ)〉 ∈ Y }

We choose an arbitrary 〈sp(〈(τ ′, ρ′), ϕ′〉), (τ ′, ρ′)〉 ∈ Y . Note that 〈(τ ′, ρ′), ϕ′〉 ∈ ν R̂. On the
one hand, if 〈(τ ′, ρ′), ϕ′〉 was obtained using (12), then τ ′ is an execution path consisting of a
single concrete configuration, say τ ′ , γ′, such that (γ′, ρ′) |= ϕ′. Moreover, ϕ′ = sp(〈(γ′, ρ′), ϕ′〉)
and thus, (γ′, ρ′) |= sp(〈(τ ′, ρ′), ϕ′〉) which implies 〈sp(〈(τ ′, ρ′), ϕ′〉), (τ ′, ρ′)〉 ∈ (̂7, 8)(Y ).
On the other hand, if 〈(τ ′, ρ′), ϕ′〉 was generated using (13) then there are γ′, τ ′′, and ϕ′′ such
that τ ′ , γ′ ⇒S τ ′′, (γ′, ρ′) |= ϕ′, ϕ′ ⇒s

S ϕ
′′, and 〈(τ ′′, ρ′), ϕ′′〉 ∈ νR̂. From 〈(τ ′′, ρ), ϕ′′〉 ∈ νR̂

we have 〈sp(〈(τ ′′, ρ′), ϕ′′〉), (τ ′, ρ′)〉 ∈ Y , which, combined with (γ′, ρ′) |= ϕ′ and the fact that
sp(〈(τ ′, ρ′), ϕ′〉) = ϕ′ ⇒s

S sp(〈(τ ′′, ρ′), ϕ′′〉), implies 〈sp(〈(τ ′, ρ′), ϕ′〉), (τ ′, ρ′)〉 ∈ (̂7, 8)(Y ).
Since 〈sp(〈(τ ′, ρ′), ϕ′〉), (τ ′, ρ′)〉 ∈ Y was arbitrarily chosen we obtain (♣).
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Second, we show that X = {((τ, ρ), ϕ)|(hd(τ), ρ) |= ϕ} (i.e, the set of all pairs ((τ, ρ), ϕ)

such that (τ, ρ) starts from ϕ) is backward closed w.r.t R̂, that is, X ⊆ R̂(X), where R̂(X) is:
{((γ, ρ), ϕ) | (γ, ρ) |= ϕ} ∪ {((γ0 ⇒S τ, ρ), ϕ0) | (γ0, ρ) |= ϕ,ϕ0 ⇒s

S ϕ, (hd(τ), ρ) |= ϕ}.
Consider ((τ, ρ), ϕ) ∈ X. We distinguish the following cases:

• τ = γ, γ - irreducible. Since ((τ, ρ), ϕ) ∈ X we have (hd(τ), ρ) |= ϕ which becomes
(γ, ρ) |= ϕ. Using (12) we obtain ((τ, ρ), ϕ) ∈ R̂(X).

• τ = γ0 ⇒S τ ′. From ((τ, ρ), ϕ) ∈ X we obtain (hd(τ), ρ) |= ϕ, that is, (γ0, ρ) |= ϕ. On
the other hand, γ0 ⇒S hd(τ ′). By Lemma 4.1, there is ϕ′ such that (hd(τ ′), ρ) |= ϕ′

and ϕ ⇒s
S ϕ

′. Since (hd(τ ′), ρ) |= ϕ′ then ((τ ′, ρ), ϕ′) ∈ X. Thus, using (13) we obtain
((τ, ρ), ϕ) ∈ R̂(X).

Using the coinduction principle we obtain X ⊂ νR̂. Thus, we started with an arbitrary pair
((τ, ρ), ϕ) such that (τ, ρ) starts from ϕ and proved that the pair also has the property that there
is a symbolic path that starts with ϕ and covers (τ, ρ), which proves the lemma.

Proof of Lemma 4.2, Page 18.
From ϕ1 ⇒s

{ϕl ⇒⇒⇒ϕr} ϕ2 we have ϕ2 = ∆{ϕl⇒⇒⇒ϕr}(ϕ1) , (∃var(ϕl, ϕr))(ϕl ∧ ϕ1)=? ∧ ϕr. From
(γ2, ρ) |= (∃var(ϕl, ϕr))(ϕl∧ϕ1)=?∧ϕr we obtain that there is ρ′′ : Var → T such that (γ2, ρ

′′) |=
(ϕl ∧ ϕ1)=? ∧ ϕr and ρ′′|Var\var(ϕl,ϕr) = ρ|Var\var(ϕl,ϕr). From (γ2, ρ

′′) |= (ϕl ∧ ϕ1)=? ∧ ϕr we
obtain in particular ρ′′ |= (ϕl ∧ ϕ1)=?, hence, by Proposition 3.3 there exists γ1 such that
(γ1, ρ

′′) |= ϕl ∧ϕ1. Since we can assume w.r.g. var(ϕ1)∩ var(ϕl, ϕr) = ∅ we obtain in particular
ρ′′|var(ϕ1) = ρ|var(ϕ1), hence, (γ1, ρ) |= ϕ1. We choose this γ1 to be the configuration whose
existence is stated in the conclusion of our lemma.

To prove the lemma there remains to show (♠) γ1 ⇒{ϕl⇒⇒⇒ϕr} γ2. From (γ1, ρ
′′) |= ϕl ∧ϕ1 we

obtain in particular (γ1, ρ
′′) |= ϕl, and from (γ2, ρ

′′) |= (ϕl ∧ ϕ1)=? ∧ ϕr we obtain in particular
(γ2, ρ

′′) |= ϕr, which proves (♠) and the lemma.

Proof of Theorem 4.2, Page 18. We denote by T the set of all finite symbolic executions,
which is the least fixpoint µR of the set of rules R from Definition 4.1.

Consider also the set of rules R′

ϕ
(∃γ, ρ)(γ, ρ) |= ϕ, (14)

τ s

ϕ⇒s
S τ

s
hd(τ s)satisfiable, (∀γ′, ρ)(γ′, ρ) |= hd(τ s)→ (∃γ)(γ, ρ) |= ϕ ∧ γ ⇒S γ′ (15)

We first prove (♦) : µR ⊆ µR′. We prove that T ′ = µR′ is closed w.r.t. R̂, i.e., R̂(T ′) ⊆ T ′ and
apply the Induction principle. Elements of R̂(T ′) generated by the 1st rule of R consist of one
(satisfiable) ML formula, hence, they are also obviously in T ′. Elements of R̂(T ′) generated by
the 2nd rule of R are of the form τ ′s = ϕ ⇒s

S τ
s where ϕ is S-derivable and hd(τ s) ∈ ∆S(ϕ)

is satisfiable, cf. Remark 4.1. The constraint (∀γ′)(γ′, ρ) |= hd(τ s) → (∃γ)(γ, ρ) |= ϕ ∧ γ ⇒S γ′
holds due to Lemma 4.2. Hence, the arbitrarily chosen τ ′s ∈ T generated by the 2nd rule of R
satisfies the 2nd rule of R′, which implies τ ′s ∈ R̂(T ′), and we can conclude R̂(T ′) ⊆ T ′. The
proof of (♦) is now complete.

Next we prove (♠) that the set Y = {τ s ∈ µR|(∃τ, ρ)τ s w (τ, ρ)} is closed w.r.t. R̂′, i.e.,
R̂′(Y ) ⊆ Y . Elements of R̂′(Y ) generated by the 1st rule of R′ consist of one (satisfiable) ML
formula ϕ, which covers the pair (γ, ρ) satisfying ϕ, hence, such ϕ are also obviously in Y .
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Elements of R̂′(Y ) generated by the 2nd rule of R′ have the form τ ′s = ϕ ⇒s
S τ

s where τ s ∈ Y
(hence, τ s covers some (τ, ρ)), hd(τ s) is satisfiable, and (∀γ′)(γ′, ρ) |= hd(τ s) → (∃γ)(γ, ρ) |=
ϕ ∧ γ ⇒S γ′ holds (from the condition of the 2nd rule of R′). We have (hd(τ), ρ) |= hd(τ s)
from τ s w (τ, ρ) thus, there exists γ such that (γ, ρ) |= ϕ and γ ⇒S hd(τ), which proves
τ ′s = ϕ⇒s

S τ
s w (γ ⇒S τ, ρ) and thus the arbitrarily chosen τ ′s ∈ Y generated by the 2nd rule

of R′ is in Y .
We conclude R̂′(Y ) ⊆ Y , and thus µR′ ⊆ Y . From (♦) we obtain µR ⊆ Y , i.e., any symbolic

path τ s satisfies (∃τ, ρ)τ s w (τ, ρ), which proves the theorem.

C Proofs of Results from Section 5

We first introduce a definition and prove a lemma.

Definition C.1 Consider the following rule:

〈ϕ, (τ, ρ)〉
(hd(τ), ρ) |= ϕ (16)

We write τ s & (τ, ρ) for 〈τ s, (τ, ρ)〉 ∈ ν (̂16, 8), where (16, 8) is the system of the ground rules
defined by (16) and (8).

If τ s & (τ, ρ) then the concrete execution path can be longer than the symbolic one. We obviously
have τ s w (τ, ρ) (i.e., implies τ s & (τ, ρ). We call & the partially covers relation, by contrast to
the covers relation w.

Lemma C.1 For all (τ, ρ) and ϕ ⇒⇒⇒ ϕ′, if there exists τ s such that τ s |= ϕ ⇒⇒⇒ ϕ′ and τ s & (τ, ρ)
then (τ, ρ) |= ϕ ⇒⇒⇒ ϕ′.

Proof We proceed by coinduction by showing that the set X = {〈(τ, ρ), ϕ ⇒⇒⇒ ϕ′〉 | (∃τ s)τ s &
(τ, ρ), τ s |= ϕ ⇒⇒⇒ ϕ′} is backwards closed w.r.t. (̂3, 4). The set X includes all the pairs
〈(τ, ρ), ϕ ⇒⇒⇒ ϕ′〉 such that there is a symbolic path τ s which partially covers (τ, ρ) and τ s |=
ϕ ⇒⇒⇒ ϕ′.

We arbitrarily choose 〈(τ, ρ), ϕ ⇒⇒⇒ ϕ′〉 ∈ X. Then, there is τ s such that τ s & (τ, ρ) and
τ s |= ϕ ⇒⇒⇒ ϕ′. We distinguish the following cases:

1. τ s = ϕ0. Since τ s |= ϕ ⇒⇒⇒ ϕ′ then T |= ϕ0 → ϕ ∧ ϕ′ (cf. Definition 5.1). Also,
from τ s & (τ, ρ), that is, ϕ0 & (τ, ρ), we obtain (hd(τ), ρ) |= ϕ0 by (16), and thus,
(hd(τ), ρ) |= ϕ ∧ ϕ′ (cf. Definition 3.9). Hence 〈(τ, ρ), ϕ ⇒⇒⇒ ϕ′〉 ∈ (̂3, 4)(X) by using (3).

2. τ s = ϕ0 ⇒s
{ϕ1 ⇒⇒⇒ϕ2} τ

′s, where ϕ1 ⇒⇒⇒ ϕ2 ∈ S. From τ s |= ϕ ⇒⇒⇒ ϕ′ we obtain T |= ϕ0 → ϕ

and τ ′s |= ∆{ϕ1⇒⇒⇒ϕ2}(ϕ ⇒⇒⇒ ϕ′) (♠) (cf. Definition 3.18). On the other hand, from
τ s & (τ, ρ), we obtain τ = γ0 ⇒{ϕ1⇒⇒⇒ϕ2} τ

′, (γ0, ρ) |= ϕ0, and τ ′s & (τ ′, ρ) (♦) (cf.
Definition 4.2). Using (♠) and (♦) we have that ((τ ′, ρ),∆{ϕ1⇒⇒⇒ϕ2}(ϕ ⇒⇒⇒ ϕ′)) ∈ X, which,
together with (γ0, ρ) |= ϕ0 ∧ ϕ ensures that 〈(τ, ρ), ϕ ⇒⇒⇒ ϕ′〉 ∈ (̂3, 4)(X) by using (4).

Since 〈(τ, ρ), ϕ ⇒⇒⇒ ϕ′〉 ∈ X was chosen arbitrarily it follows that X ⊆ (̂3, 4)(X), i.e., X is
backwards closed w.r.t. (̂3, 4). By applying the coinduction principle we obtain X ⊆ ν (̂3, 4). 2
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Proof of Theorem 5.1, Page 19. We start by recalling the theorem:
If S is total then S |= ν ̂SYSTEP.
Let T be a proof tree of an RL formula under SYSTEP. We define a function f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)),

for ϕ ⇒⇒⇒ ϕ′ ∈ T and (τ, ρ) a complete execution path starting from ϕ, that computes a symbolic
execution path that partially covers (τ, ρ) and satisfies ϕ ⇒⇒⇒ ϕ′:

• f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) = ϕ if T |= ϕ→ ϕ′.
Since (τ, ρ) starts from ϕ and T |= ϕ→ ϕ′, we obtain (hd(τ), ρ) |= ϕ ∧ ϕ′;

• f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) = ϕ⇒s
S f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′, (τ ′, ρ)) if ϕ is S-derivable, τ = γ0 ⇒S τ ′,

and γ0 ⇒ρ
{ϕ1⇒⇒⇒ϕ2} hd(τ ′).

Note that γ0 and ϕ1 ⇒⇒⇒ ϕ2 ∈ S exists because S is total and ϕ is S-derivable. If there
is more than one rule ϕ1 ⇒⇒⇒ ϕ2 ∈ S that matches the step γ0 ⇒ρ

S hd(τ ′), then f chooses
arbitrarily one of them. We have ∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′ ∈ T , and (τ ′, ρ) is a complete
execution path starting from ∆{ϕ1⇒⇒⇒ϕ2}(ϕ). Since τ = γ0 ⇒S τ ′ starts from ϕ we have
(γ0, ρ) |= ϕ. Also, by Definition 3.12 we obtain (γ0, ρ) |= ϕ1, and thus, (γ0, ρ) |= ϕ ∧ ϕ1.

In order to show that f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) satisfies ϕ ⇒⇒⇒ ϕ′ we prove that the set X = {〈f(ϕ ⇒⇒⇒
ϕ′, (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 | ϕ ⇒⇒⇒ ϕ′ ∈ T, (τ, ρ) starts from ϕ} is backward closed w.r.t. (̂9, 10). Let
〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 be an arbitrarily chosen pair in X. We distinguish the following
cases:

• f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) = ϕ and T |= ϕ → ϕ′. In this case, since T |= ϕ → ϕ we get
T |= ϕ→ ϕ∧ϕ′ and we obtain 〈ϕ,ϕ ⇒⇒⇒ ϕ′〉 ∈ (̂9, 10)(X) by (9), i.e 〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), ϕ ⇒⇒⇒
ϕ′〉 ∈ (̂9, 10)(X).

• f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) = ϕ⇒s
S f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′, (τ ′, ρ)), ϕ is S-derivable, τ = γ0 ⇒S τ ′,

and γ0 ⇒ρ
{ϕ1⇒⇒⇒ϕ2} hd(τ ′). We have 〈f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′, (τ ′, ρ)),∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒

ϕ′〉 ∈ X because ∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′ ∈ T by the definition of proof trees under SYSTEP
and (τ ′, ρ) is a complete execution path starting from ∆{ϕ1⇒⇒⇒ϕ2}(ϕ) by the definition of
γ0 ⇒ρ

{ϕ1⇒⇒⇒ϕ2} hd(τ ′) and (γ0, ρ) |= ϕ ∧ ϕ1. Since T |= ϕ → ϕ we obtain 〈f(ϕ ⇒⇒⇒

ϕ′, (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 ∈ (̂9, 10)(X) by (10).

Now we have that X is backward closed w.r.t. to (̂9, 10). Using the coinduction principle we
obtainX ⊆ ν (̂9, 10), i.e. f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) |= ϕ ⇒⇒⇒ ϕ′ for each 〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 ∈ X.

Next, we show that f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) partially covers (τ, ρ) in order to apply Lemma C.1
and prove our theorem. We prove that the set Y = {〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), (τ, ρ)〉 | ϕ ⇒⇒⇒
ϕ′ ∈ T, (τ, ρ) starts from ϕ} is backwards closed w.r.t. (̂16, 8). We arbitrarily choose 〈f(ϕ ⇒⇒⇒
ϕ′, (τ, ρ)), (τ, ρ)〉 in Y . We distinguish the following cases:

• f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) = ϕ and T |= ϕ → ϕ′. Since 〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 is in Y it
follows that (τ, ρ) starts from ϕ, i.e., (hd(τ), ρ) |= ϕ. We obtain 〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), ϕ ⇒⇒⇒
ϕ′〉 ∈ (̂16, 8)(Y ) by (16).

• f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) = ϕ⇒s
S f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′, (τ ′, ρ)), ϕ is S-derivable, τ = γ0 ⇒S τ ′,

and γ0 ⇒ρ
{ϕ1⇒⇒⇒ϕ2} hd(τ ′). We prove that 〈f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′, (τ ′, ρ)) ∈ Y in a similar

we proceeded for showing that 〈f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′, (τ ′, ρ)),∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′〉 ∈ X.
From 〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), (τ, ρ)〉 ∈ Y we obtain (τ, ρ) starts from ϕ, i.e., (γ0, ρ) |= ϕ. By
using (8) it follows that 〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), (τ, ρ)〉 ∈ (̂16, 8)(Y ).
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We have Y ⊆ (̂16, 8)(Y ), and by the coinduction principle we obtain Y ⊆ ν (̂16, 8), i.e.
f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) & (τ, ρ) for each 〈f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)), (τ, ρ)〉 ∈ Y .

If ϕ ⇒⇒⇒ ϕ′ ∈ ν ̂SYSTEP then there is a proof tree T of ϕ ⇒⇒⇒ ϕ′ under SYSTEP. If (τ, ρ) is a
complete execution path starting from ϕ, then f(ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) describes a symbolic path that
covers (τ, ρ) and satisfies ϕ ⇒⇒⇒ ϕ′, which, by Lemma C.1, implies that (τ, ρ) satisfies ϕ ⇒⇒⇒ ϕ′.
Since (τ, ρ) is arbitrarily chosen, it follows that S |= ϕ ⇒⇒⇒ ϕ′ by Definition 3.18.

Proof of Theorem 5.2, Page 20. We start with some intermediary lemmas, then prove the
theorem, which we re-state here for the sake of clarity:

Assume S total and that for each ϕc ⇒⇒⇒ ϕ′c ∈ G, var(ϕ′c) ⊆ var(ϕc). If ∆S(G) ⊆ ν ̂SCC(G)
then S |= G.

Lemma C.2 For all ML formulas ϕ and ϕ′, and for all RL formulas ϕl ⇒⇒⇒ ϕr, if T |= ϕ→ ϕ′

then T |= ∆{ϕl⇒⇒⇒ϕr}(ϕ)→ ∆{ϕl⇒⇒⇒ϕr}(ϕ
′).

Proof Consider an arbitrary (γ′, ρ) such that (γ′, ρ) |= ∆{ϕl⇒⇒⇒ϕr}(ϕ). Using Lemma 4.2 we
obtain a configuration γ such that (γ, ρ) |= ϕ and γ ⇒{ϕl⇒⇒⇒ϕr} γ

′. From T |= ϕ→ ϕ′ we obtain
(γ, ρ) |= ϕ′, which, together with γ ⇒{ϕl⇒⇒⇒ϕr} γ

′ gives us using Lemma 4.1 the ML formula
ϕ′′ , ∆{ϕl⇒⇒⇒ϕr}(ϕ

′) such that (γ′, ρ) |= ϕ′′, which proves the lemma. 2
We write τ s w τ iff there exists ρ : Var → T such that τ s w (τ, ρ). The w relation can be

extended to symbolic paths, too:

Definition C.2 Let τ s and τ ′s be two symbolic execution paths. Then τ s w τ ′s iff τ ′s w τ
implies τ s w τ , for all execution paths τ .

The following technical lemma states a property of (one-step) symbolic execution paths re-
garding the w relation:

Lemma C.3 Let ϕ′1 ⇒s
S ϕ

′
2 be a one-step symbolic execution path and ϕ1 an S-derivable ML

formula. If T |= ϕ′1 → (∃var(ϕ1))ϕ1 then there exists ϕ2 such that ϕ1 ⇒s
S ϕ2 w ϕ′1 ⇒s

S ϕ
′
2 and

T |= ϕ′2 → ϕ2.

Proof We assume w.l.o.g. that var(ϕ1) ∩ var(ϕ′1, ϕ
′
2) = ∅ (variables in formulas can be renamed

if necessary).
By Definition 4.1 we have on the one hand that ϕ′2 ∈ ∆S(ϕ′1), i.e., there is a rule α , ϕl ⇒⇒⇒

ϕr ∈ S such that ϕ′2 , (∃var(ϕl, ϕr))(ϕl ∧ ϕ′1)=? ∧ ϕr (cf. Definition 3.15), and on the other
hand that ϕ′2 is satisfiable since ϕ′1 is S-derivable as required by Definition 4.1.

Let us choose ϕ2 , (∃var(ϕl, ϕr))(ϕl ∧ ϕ1)=? ∧ ϕr. Obviously, ϕ2 ∈ ∆S(ϕ1). In order to
show that ϕ1 ⇒s

S ϕ2 is indeed a symbolic execution path (cf. Definition 4.1) we have to prove
that ϕ2 is a symbolic execution path itself, that is, that ϕ1 is S-derivable and ϕ2 is satisfiable.
Note that for a symbolic execution path consisting of one transition the two above conditions
are equivalent.

Hence, we prove that ϕ2 is satisfiable. For this, we prove the following result:

For all (γ2, ρ), if (γ2, ρ) |= ϕ′2 then (γ2, ρ) |= ϕ2 (♠).

Let (γ2, ρ) be an arbitrary pair such that (γ2, ρ) |= ϕ′2, that is, (γ2, ρ) |= (∃var(ϕl, ϕr))(ϕl ∧
ϕ′1)=? ∧ ϕr. By Definition 3.9, there is a valuation ρ′ with xρ′ = xρ for all x 6∈ var(ϕl, ϕr) such
that (γ2, ρ

′) |= (ϕl ∧ ϕ′1)=? ∧ ϕr. Hence, we have (γ2, ρ
′) |= (ϕl ∧ ϕ′1)=? and (γ2, ρ

′) |= ϕr. Since
(ϕl ∧ ϕ′1)=? is a FOL formula then we have ρ′ |= (ϕl ∧ ϕ′1)=?. By Proposition 3.3, there is γ0

such that (γ0, ρ
′) |= (ϕl ∧ ϕ′1), i.e., (γ0, ρ

′) |= ϕl and (γ0, ρ
′) |= ϕ′1.
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From the hypothesis, T |= ϕ′1 → (∃var(ϕ1))ϕ1, which implies that (γ0, ρ
′) |= (∃var(ϕ1))ϕ1,

wherefrom we obtain a valuation ρ′′ such that xρ′′ = xρ′ for all x 6∈ var(ϕ1) and (γ0, ρ
′′) |= ϕ1.

Since var(ϕ1) ∩ var(ϕ′1, ϕ
′
2) = ∅ we can choose xρ′′ = xρ′ for x ∈ var(ϕ1) too, and we obtain

(γ0, ρ
′) |= ϕ1.

It follows that (γ0, ρ
′) |= (ϕl ∧ ϕ1) and (again, by Proposition 3.3) ρ′ |= (ϕl ∧ ϕ1)=?. Since

(γ2, ρ
′) |= ϕr then (γ2, ρ

′) |= (ϕl ∧ ϕ1)=? ∧ ϕr. Now, we have a valuation ρ′ with xρ′ = xρ
for all x 6∈ var(ϕl, ϕr) such that (γ2, ρ

′) |= (ϕl ∧ ϕ1)=? ∧ ϕr. By Definition 3.9 we obtain
(γ2, ρ) |= (∃var(ϕl, ϕr))(ϕl ∧ ϕ1)=? ∧ ϕr. Hence, (γ2, ρ) |= ϕ2. Note that (γ2, ρ) was arbitrarily
chosen, and thus we have T |= ϕ′2 → ϕ2 (♣).

Also, ϕ′2 - satisfiable implies that there are γ′2 and ρ′ such that (γ′2, ρ
′) |= ϕ′2. Using ♣ we

obtain (γ′2, ρ
′) |= ϕ2 which implies that ϕ2 is satisfiable too, which proves (♠).

Thus, we conclude that ϕ1 ⇒s
S ϕ2 is indeed a symbolic execution path.

There remains to prove ϕ1 ⇒s
S ϕ2 w ϕ′1 ⇒s

S ϕ
′
2. Let τ s , ϕ1 ⇒s

S ϕ2 and τ ′s , ϕ′1 ⇒s
S ϕ
′
2.

We have to prove that for every execution path τ , γ1 ⇒S γ2, if τ ′s w τ then τ s w τ (cf.
Definition C.2). From τ ′s w τ and Definition 4.2 we obtain a valuation ρ such that (γ1, ρ) |= ϕ′1
and (γ2, ρ) |= ϕ′2. From T |= ϕ′1 → (∃var(ϕ1))ϕ1 and (γ1, ρ) |= ϕ′1 we obtain a valuation ρ′′ such
that (γ1, ρ

′′) |= ϕ1 and xρ = xρ′′ for all x 6∈ var(ϕ1).
Let ρ′′′ : Var → T be a valuation defined as follows: xρ′′′ = xρ, for all x 6∈ var(ϕ1)

and xρ′′′ = xρ′′ for all x ∈ var(ϕ1). From (γ1, ρ
′′) |= ϕ1 we obtain (γ1, ρ

′′′) |= ϕ1 because
ρ′′′ coincides with ρ′′ on var(ϕ1). On the other hand, from (γ2, ρ) |= ϕ′2 and the fact that
var(ϕ1)∩ var(ϕ′1, ϕ

′
2) = ∅ we obtain (γ2, ρ

′′′) |= ϕ′2 since ρ′′′ coincides with ρ on variables not in
var(ϕ1), particularly on var(ϕ′2). From (γ2, ρ

′′′) |= ϕ′2 and (♠) we obtain (γ2, ρ
′′′) |= ϕ2.

Thus, ϕ1 ⇒s
S ϕ2 w (τ, ρ′′′), i.e., ϕ1 ⇒s

S ϕ2 w τ , which proves the lemma. 2

Corollary C.1 Let ϕ′1 ⇒s
S ϕ′2 be a one-step symbolic execution path and ϕ1 an S-derivable

ML formula. If T |= ϕ′1 → ϕ1 then there exists ϕ2 such that ϕ1 ⇒s
S ϕ2 w ϕ′1 ⇒s

S ϕ′2 and
T |= ϕ′2 → ϕ2.

Remark C.1 In the rest of this section we assume the hypotheses of our theorem: S is total;
for each ϕc ⇒⇒⇒ ϕ′c ∈ G, var(ϕ′c) ⊆ var(ϕc); and ∆S(G) ⊆ ν ̂SCC(G).

Lemma C.4 G ⊆ ν ̂SCC(G).

Proof Each ϕ′′ ⇒⇒⇒ ϕ′c ∈ ∆S(ϕc ⇒⇒⇒ ϕ′c) has a proof tree Tϕ′′⇒⇒⇒ϕ′
c
under SCC, for all ϕc ⇒⇒⇒ ϕ′c ∈ G.

It follows that there is a proof tree Tϕc⇒⇒⇒ϕ′
c
under SCC for each ϕc ⇒⇒⇒ ϕ′c ∈ G obtained by

applying the rule [der]. Hence G ⊆ ν ̂SCC(G). 2

Lemma C.5 Let ϕc ⇒⇒⇒ ϕ′c ∈ G. If ϕ is S-derivable and T |= ϕ→ (∃var(ϕc))ϕc then there is a
proof tree T for ϕ ⇒⇒⇒ ∆{ϕc⇒⇒⇒ϕ′

c}(ϕ) under SCC(G).

Proof We show that each rule applied in the construction of Tϕc⇒⇒⇒ϕ′
c
(whose existence is known

by Lemma C.4) can be used to construct T as well, provided that the left-hand side of the current
node in T is satisfiable. Each time the same rule is applied for two corresponding nodes in T
respectively Tϕc⇒⇒⇒ϕ′

c
, there is a bijection between the children of the two nodes that preserves

the way each child is obtained.
At the end we shall obtain an injective tree homomorphism from T to Tϕc⇒⇒⇒ϕ′

c
that maps

the root of T into the root of Tϕc⇒⇒⇒ϕ′
c
and each child of a node x in T into its correspondent

given by the bijection between the children of x and the children of its homomorphic image. The
only exception when different rules are applied is that in which for a node in T the inference rule
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[impl] is applied and for its homomorphic image [der] is applied; in those cases the corresponding
node in T has no children.

Since ϕ is S-derivable, the rule [der] can be applied to the root ϕ ⇒⇒⇒ ϕ′c. Recall (cf. proof of
Lemma C.4) that the first rule applied in the construction of Tϕc⇒⇒⇒ϕ′

c
is [der] as well.

Thus, for the roots we may apply the same rule in S for building T and Tϕc⇒⇒⇒ϕ′
c
. Moreover,

if a child ϕ′ ⇒⇒⇒ ϕ′c of ϕc ⇒⇒⇒ ϕ′c is the homomorphic image of the child ϕ′′ ⇒⇒⇒ ∆{ϕc⇒⇒⇒ϕ′
c}(ϕ)

of ϕ ⇒⇒⇒ ∆{ϕc⇒⇒⇒ϕ′
c}(ϕ), we have T |= ϕ′′ → ϕ′ by Lemma C.3. We shall see that this relation

will be maintained between the nodes of T and their homomorphic image in Tϕc⇒⇒⇒ϕ′
c
, except the

roots (where T |= ϕ→ (∃var(ϕc)ϕc), which allowed us above to apply Lemma C.3).
For the rest of the trees we distinguish the following cases (we assume that ϕ′ ⇒⇒⇒ ϕ′c is the

homomorphic image of ϕ′′ ⇒⇒⇒ ϕ′c in each case):

• the rule [impl] is applied for ϕ′ ⇒⇒⇒ ϕ′c, hence T |= ϕ′ → ϕ′c. We first show that T |= ϕ′c →
∆{ϕc⇒⇒⇒ϕ′

c
(ϕ) (♣). Let (γ′, ρ′) be such that (γ′, ρ′) |= ϕ′c. Any S-derivable ML formula is

satisfiable and hence there is (γ, ρ) |= ϕ. The hypothesis T |= ϕ → (∃var(ϕc))ϕc implies
that there is ρ′′ such that (γ, ρ′′) |= ϕc. We may assume w.l.o.g. that var(ϕ)∩var(ϕc, ϕ

′
c) =

∅, which allows us to consider ρ = ρ′′ and ρ(x) = ρ′(x) for all x ∈ var(ϕ′c). It follows that
(γ′, ρ) |= ϕ′c, which together with (γ, ρ) |= ϕ ∧ ϕc) implies (γ′, ρ) |= (ϕ ∧ ϕc)=? ∧ ϕ′c. We
obtain (γ′, ρ′) |= (∃var(ϕc, ϕ

′
c))(ϕ ∧ ϕc)=? ∧ ϕ′c. Since (γ′, ρ′) is arbitrary, it follows that

the implication (♣) holds.
Since T |= ϕ′′ → ϕ′c and T |= ϕ′c → ∆{ϕc⇒⇒⇒ϕ′

c
(ϕ) we obtain T |= ϕ′′ → ∆{ϕc⇒⇒⇒ϕ′

c
(ϕ)

and hence [impl] can be applied for ϕ′′ ⇒⇒⇒ ∆{ϕc⇒⇒⇒ϕ′
c
(ϕ) as well. In this case the two

homomorphic nodes have no children because [impl] is an axiom;

• the rule [der] is applied for ϕ′ ⇒⇒⇒ ϕ′c, hence ϕ′ is S-derivable. If ϕ′′ is not satisfiable,
then we can apply [impl]. Otherwise, since S is total and T |= ϕ′′ → ϕ′, it follows that
ϕ′′ is S-derivable and hence [der] can be applied for ϕ′′ ⇒⇒⇒ ϕ′c as well. The conclusion is
obtained using the same reasoning to that done for the roots, but usign Lemma C.1 instead
of Lemma C.3;

• the rule [circ] is applied for ϕ′ ⇒⇒⇒ ϕ′c, hence there is ϕd ⇒⇒⇒ ϕ′d ∈ G such that T |= ϕ′ →
(∃var(ϕd))ϕd. Since T |= ϕ′′ → ϕ′, we obtain T |= ϕ′′ → (∃var(ϕd))ϕd and hence [circ]
can be applied for ϕ′′ ⇒⇒⇒ ϕ′c as well. From T |= ϕ′′ → ϕ′ we obtain T |= ∆ϕd⇒⇒⇒ϕ′

d
(ϕ′′)→

∆ϕd⇒⇒⇒ϕ′
d
(ϕ′).

Now the proof of the lemma is finished. 2
We come back to the proof of the theorem. We show that the function f defined in the proof

of Theorem 5.1 can be extended to the set of proof trees

PT (G) =
⋃
ϕc⇒⇒⇒ϕ′

c∈G,T |=ϕ→(∃var(ϕc))ϕc
Tϕ⇒⇒⇒∆{ϕc ⇒⇒⇒ϕ′

c}
(ϕ).

Since f has to "visit" a collection of proof trees, f has now three arguments: f(ϕ,St , (τ, ρ)),
where St is a list (stack) of pairs 〈ϕ′, T 〉 such that T ∈ PT (G) and if 〈ϕ′, T 〉 is the first pair in
St then ϕ ⇒⇒⇒ ϕ′ is the current node in T . The definition of f is as follows:

1. the current ϕ ⇒⇒⇒ ϕ′ in T corresponds to [impl], i.e. T |= ϕ→ ϕ′:

(a) T is the proof tree of the initial goal:

f(ϕ, 〈ϕ′, T 〉, (τ, ρ)) = ϕ (17)
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(b) T is the proof tree of a circularity. In this case f goes back to the proof tree that used
the circularity:

f(ϕ, 〈ϕ′, T 〉St , (τ, ρ)) = f(ϕ,St , (τ, ρ)) (18)

where St is not empty;

2. the current ϕ ⇒⇒⇒ ϕ′ in T corresponds to [der], i.e. ϕ is S-derivable, τ = γ0 ⇒S τ ′, and
γ0 ⇒ρ

{ϕ1⇒⇒⇒ϕ2} hd(τ ′). This case is similar to the proof of Theorem 5.1:

f(ϕ,St , (τ, ρ)) = ϕ⇒s
S f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ),St , (τ ′, ρ)) (19)

3. the current ϕ ⇒⇒⇒ ϕ′ in T corresponds to [circ], i.e. T |= ϕ→ (∃var(ϕc))ϕc, ϕc ⇒⇒⇒ ϕ′c ∈ G,
and ϕ′ = ∆{ϕc⇒⇒⇒ϕ′

c}(ϕ). In this case f moves to the root of the proof tree of the circularity:

f(ϕ,St , (τ, ρ)) = f(ϕ, 〈ϕ′, Tϕ⇒⇒⇒ϕ′〉St , (τ, ρ)) (20)

The function f is well-defined, i.e. it defines a strategy for V in the game ((5, 6), f(x)), where
(5, 6) is the set of ground rules defined by (5) and (6). This is ensured by the fact that the
equations of the form f(. . .) = f(. . .) cannot be consecutively applied infinitely times:

• the equation (18)) decreases the length of the finite list St ;

• the equation (20)) can be applied only once because the first rule used in Tϕ⇒⇒⇒ϕ′ is [der].

Consequently, the rewriting relation ; defined by (18)) and (20)), seen as rewrite rules, is
terminating.

In the sequel we prove that the symbolic path computed by the function call f(ϕc, 〈ϕ′c, Tϕc⇒⇒⇒ϕ′
c
〉, (τ, ρ))

satisfies ϕc ⇒⇒⇒ ϕ′c and partially covers (τ, ρ), for all ϕc ⇒⇒⇒ ϕ′c ∈ G and (τ, ρ) starting from ϕc.
We assume that these symbolic paths are reprezented by expressions that are ;-irreducible. We
write ϕ′ ∈ St id St includes a pair 〈ϕ′, T 〉 and ST (ϕ ⇒⇒⇒ ϕ′, (τ, ρ)) be the set of the lists St
occurring in the proof tree of f(nil , ϕ ⇒⇒⇒ ϕ′, (τ, ρ)).

Lemma C.6 The set X = {〈f(ϕ,St , (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 | f(ϕ,St , (τ, ρ)) a suffix of a symbolic path
f(ϕc, 〈ϕ′c, Tϕc⇒⇒⇒ϕ′

c
〉, (τ, ρ)) with ϕc ⇒⇒⇒ ϕ′c ∈ G, ϕ′ ∈ St , and (τ, ρ) a complete execution path

starting from ϕc} is backward closed w.r.t. to (̂9, 10).

Proof Let 〈f(ϕ,St , (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 be in X and assume that St = 〈ϕ′, T 〉St ′, where St is a
possibly empty list. We distinguish the following cases:

• f(ϕ, 〈ϕ′, T 〉, (τ, ρ)) = ϕ and T |= ϕ → ϕ′. We obtain 〈f(ϕ, 〈ϕ′, T 〉, (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 ∈
(̂9, 10)(X) by (9).

• f(ϕ,St , (τ, ρ)) = ϕ ⇒s
S f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ),St , (τ ′, ρ)), ϕ is S-derivable, τ = γ0 ⇒S τ ′, and

γ0 ⇒ρ
{ϕ1⇒⇒⇒ϕ2} hd(τ ′). Since f(ϕ, 〈ϕ′, T 〉, (τ, ρ)) is a suffix of f(ϕc, 〈ϕ′c, Tϕc⇒⇒⇒ϕ′

c
〉, (τ, ρ))

with ϕc ⇒⇒⇒ ϕ′c ∈ G it follows that f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ),St , (τ ′, ρ)) is a suffix as well. We obtain
〈f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ),St , (τ ′, ρ)),∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒ ϕ′〉 in X by further noticing that (τ ′, ρ) a
complete execution path starting from ∆{ϕ1⇒⇒⇒ϕ2}(ϕ) by the definition of γ0 ⇒ρ

{ϕ1⇒⇒⇒ϕ2}
hd(τ ′) and (γ0, ρ) |= ϕ ∧ ϕ1. Since T |= ϕ → ϕ we obtain 〈f(ϕ,St , (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 ∈
(̂9, 10)(X) by (10).

2
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Lemma C.7 The set Y = {〈f(ϕ,St , (τ, ρ)), (τ, ρ)〉 | f(ϕ,St , (τ, ρ)) a suffix of a symbolic path
f(ϕc, 〈ϕ′c, Tϕc⇒⇒⇒ϕ′

c
〉, (τ, ρ)) with ϕc ⇒⇒⇒ ϕ′c ∈ G, ϕ′ ∈ St , and (τ, ρ) a complete execution path

starting from ϕc} is backward closed w.r.t. to (̂16, 8), where (16,8) is the set of rules given by
(16) and (8).

Proof Let 〈f(ϕ,St , (τ, ρ)), ϕ ⇒⇒⇒ ϕ′〉 be in X. We distinguish the following cases:

• f(ϕ, 〈ϕ′, T 〉, (τ, ρ)) = ϕ and T |= ϕ → ϕ′. We obtain 〈f(ϕ, 〈ϕ′, T 〉, (τ, ρ)), (τ, ρ)〉 ∈
(̂16, 8)(X) by (16).

• f(ϕ,St , (τ, ρ)) = ϕ ⇒s
S f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ),St , (τ ′, ρ)), ϕ is S-derivable, τ = γ0 ⇒S τ ′, and

γ0 ⇒ρ
{ϕ1⇒⇒⇒ϕ2} hd(τ ′). The fact that 〈f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ),St , (τ ′, ρ)), (τ ′, ρ)〉 is in Y is proved in

a similar way to the proof of the membership 〈f(∆{ϕ1⇒⇒⇒ϕ2}(ϕ),St , (τ ′, ρ)),∆{ϕ1⇒⇒⇒ϕ2}(ϕ) ⇒⇒⇒
ϕ′〉 ∈ X. From the hypothesis 〈f(ϕ,St , (τ, ρ)), (τ, ρ)〉 ∈ Y we obtain that (τ, ρ) starts from ϕ,
i.e., (γ0, ρ) |= ϕ. By using (8) it follows that 〈f(ϕ,St , (τ, ρ)), (τ, ρ)〉 ∈ (̂16, 8)(Y ).

2
If ϕc ⇒⇒⇒ ϕ′c ∈ G then there is a proof three Tc of ϕc ⇒⇒⇒ ϕ′c under SCC. For each node
∆ϕd⇒⇒⇒ϕ′

d
(ϕ′′ ⇒⇒⇒ ϕ′c) in Tc corresponding to the [circ] inference rule, there is a proof tree T ′′

for ϕ′′ ⇒⇒⇒ ∆ϕd⇒⇒⇒ϕ′
d
(ϕ′′) under SCC(G) by Lemma C.5. If (τ, ρ) is a complete execution path

starting from ϕ, then f(ϕc, 〈ϕ′c, Tϕc⇒⇒⇒ϕ′
c
, (τ, ρ)) is defined and describes a symbolic path that

partially covers (τ, ρ) by Lemma C.7 and its corollary, and it satisfies ϕ ⇒⇒⇒ ϕ′ by Lemma C.6.
By Lemma C.1 it follows that (τ, ρ) satisfies ϕ ⇒⇒⇒ ϕ′.

D Proofs of Results from Section 6
Proof of Lemma 6.1, Page 23. We first prove the lemma for X,Y = ∅ and then prove the
general case.

(⊆) Consider an arbitrary γ′ ∈ J∆{ϕ1⇒⇒⇒ϕ2}(ϕ)K, i.e., (γ′, ρ) |= ∆{ϕ1⇒⇒⇒ϕ2}(ϕ)
for some valuation ρ : Var → T . We prove γ′ ∈ Jπ2σ ∧φ1σ ∧ φ2σ ∧ φK, i.e., (γ′, η) |=

π2σ ∧φ1σ ∧ φ2σ ∧ φ for some σ ∈ µ(π1, π) and η : Var → T .
From (γ′, ρ) |= ∆{ϕ1⇒⇒⇒ϕ2}(ϕ) we obtain using Lemma 4.2 (which says that concrete execution

steps backaward-simulate symbolic ones) that there exists a configuration γ such that (γ, ρ) |=
ϕ , π ∧φ and γ ⇒{ϕ1⇒⇒⇒ϕ2} γ

′.
From γ ⇒{ϕ1⇒⇒⇒ϕ2} γ

′ we obtain a valuation ρ′ such that (γ, ρ′) |= ϕ1 , π1 ∧φ1 and (γ′, ρ′) |=
ϕ2 , π2 ∧φ2. Using the hypothesis var(ϕ) ∩ var(ϕ1, ϕ2) = ∅ we can choose ρ and ρ′ such that
ρ = ρ′.

We thus have γ = πρ = π1ρ, meaning that π1 and π are A-unifiable (cf. Definition 6.1 and
Remark 6.1). By Assumption 6.1 we obtain a substitution σ : var(π1)→ TΣ(var(π)) ∈ µ(π1, π)
such that π ∼=A π1σ and such that ρ = ση for some valuation η : Var → T . We extend σ to be
the identity over Var \ var(π1), and then η can be chosen to coincide with ρ over Var \ var(π1).
Thus, xρ ∼=A xση for all x ∈ Var . But since ∼=A is equality in the model T , denoted by "=", we
obtain xρ = xση for all x ∈ Var .

To conclude this direction of the proof we show γ′ ∈ Jπ2σ ∧φ1σ ∧ φ2σ ∧ φK; specifically, we
prove (†) (γ′, η) |= π2σ ∧φ1σ ∧ φ2σ ∧ φ:

• we have obtained (γ′, ρ) |= ϕ2 , π2 ∧φ2 above (since ρ′ = ρ), hence, (i) γ′ = π2ρ =
π2(ση) = (π2σ)η, and ρ = ση |= φ2, thus, (ii) η |= φ2σ;

• we have also obtained (γ, ρ) |= π1 ∧φ1, thus, ρ = ση |= φ1 and then (iii) η |= φ1σ;
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• moreover, we have obtained (γ, ρ) |= π ∧φ, thus, ρ = ση |= φ and then η |= φσ. But σ
is the identity everywhere except perhaps on var(π1) and using the hypothesis var(ϕ) ∩
var(ϕ1, ϕ2) = ∅ we obtain var(φ) ∩ var(π1) = ∅, thus, σ is the identity over var(φ) and
from η |= φσ we obtain (iv) η |= φ.

From (i)-(iv) we obtain (†) which concludes the proof of the ⊆ inclusion.

(⊇) Assume γ′ ∈ Jπ2σ ∧φ1σ ∧ φ2σ ∧ φK, i.e., (γ′, η) |= π2σ ∧φ1σ ∧ φ2σ ∧ φ for some σ ∈ µ(π1, π)
and η : Var → T , and let ρ , ση, where σ is the identity everywhere except perhaps on var(π1).
We prove (γ′, ρ) ∈ J∆{ϕ1⇒⇒⇒ϕ2}(ϕ)K.

For this, let γ = π1ρ. We shall first prove (♣): (γ, ρ) |= ϕ , π ∧φ.

• We prove γ = πρ: we have γ = π1ρ = π1(ση) = (π1σ)η and since σ ∈ µ(π1, π), π1σ ∼=A π.
Hence, (π1σ)η ∼=A πη, and since ∼=A is the equality "=" in T , we have (π1σ)η = πη. Using
the hypothesis var(ϕ)∩ var(ϕ1, ϕ2) = ∅ we obtain var(π)∩ var(π1) = ∅, and since σ is the
identity everywhere except perhaps on var(π1) and ρ , ση we obtain that η and ρ coincide
on var(π); hence, πη = πρ. The above chain of equalities ensures γ = πρ.

• We prove ρ |= φ: from hypothesis (γ′, η) |= π2σ ∧φ1σ ∧ φ2σ ∧ φ we obtain in particular
η |= φ. Using again the hypothesis var(ϕ) ∩ var(ϕ1, ϕ2) = ∅ we obtain that that η and ρ
coincide on var(φ), hence, ρ |= φ as well.

The statement (♣) is now proved. Next, we prove (♦): (γ, ρ) |= ϕ1 , π1 ∧φ1. We have
γ = π1ρ by the definition of γ. From (γ′, η) |= π2σ ∧φ1σ ∧ φ2σ ∧ φ we get η |= φ1σ which
implies ση |= φ1, hence, ρ = ση |= φ1, which proves (♦).

Finally, we prove (♥): (γ′, ρ) |= ϕ2 , π2 ∧φ2. We prove ρ |= φ2 by analogy with ρ |= φ1

above, and from (γ′, η) |= π2σ ∧φ1σ ∧ φ2σ ∧ φ we get γ′ = (π2σ)η = π2(ση) = π2ρ, which
concludes the proof of (♥).

Recapitulating, we have (♣): (γ, ρ) |= ϕ, (♦): (γ, ρ) |= ϕ1, and (♥) (γ′, ρ) |= ϕ2. From
(♦) and (♥) we get γ ⇒{ϕ1⇒⇒⇒ϕ2} γ

′. Using that and (♣) and Lemma 4.1, which says that
symbolic execution steps forward-simulate concrete ones, we obtain that there exists ϕ′ such
that ϕ ⇒s

ϕ1 ⇒⇒⇒ϕ2} ϕ
′ and (γ′, ρ) |= ϕ′. By definition of ⇒s, ϕ′ , ∆{ϕ1⇒⇒⇒ϕ2}(ϕ), which proves

(γ′, ρ) |= ∆{ϕ1⇒⇒⇒ϕ2}(ϕ), i.e., γ′ ∈ J∆{ϕ1⇒⇒⇒ϕ2}(ϕ)K and the conclusion of the (⊇) inclusion follows.
This completes the proof of the lemma for X,Y = ∅.
For the general case: ∆{ϕ1⇒⇒⇒ϕ2}(ϕ) , (∃var(ϕ1, ϕ2))(ϕ1 ∧ (∃X)π ∧φ)=? ∧ ϕ2 is, due to the

variable disjointness hypothesis in the lemma, ML-equivalent to the formula (∃X, var(ϕ1, ϕ2))(ϕ1∧
π ∧φ)=? ∧ ϕ2, i.e., to (∃X)∆{ϕ1⇒⇒⇒ϕ2}(π ∧φ).

To conclude the proof we apply the identity JϕK = J(∃X)ϕK, which holds for every ML
formulas ϕ and set X ⊂ Var of variables (which is a simple consequence of Def. 3.9 of the ML
satisfaction relation), to the two members of the equality in the lemma’s conclusion.

Proof of Theorem 6.1, Page 24. γ ∈ J∆S(ϕ)K iff there exists a rule ϕ1 ⇒⇒⇒ ϕ2 ∈ S, with
ϕ1 , π1 ∧φ1, ϕ2 , (∃Y )π1 ∧φ1, such that γ ∈ J∆{ϕ1⇒⇒⇒ϕ2}(ϕ)K. Using Lemma 6.1 this happens
if and only if γ ∈ J(∃X,Y )π2σ ∧φ1σ ∧ φ2σ ∧ φK for some σ ∈ µ(π1, π).

By construction of the symbolic language, the rule α , ϕ1 ⇒⇒⇒ ϕ2 ∈ S induces a rule
αs , (∃L)(π1 ∧s ψ) ∧ sat(φ1 ∧ ψ) ⇒⇒⇒ (∃L, Y )π2 ∧s (φ2 ∧ φ1 ∧ ψ) ∈ Ss.

The rule αs and substitution σ (N.B. a valuation in T s) generate the transition ϕ , (∃X)π ∧s φ⇒αs

(∃X,Y )π2 ∧s (φ2σ ∧ φ1σ ∧ φ) , ϕ′. That is, ϕ interpreted as an element of T s
Cfgs gives rise to a

transition in Ss to ϕ′ ∈ T s
Cfgs , i.e., ϕ⇒Ss ϕ′.

Hence, γ ∈ J∆S(ϕ)K iff γ ∈ Jϕ′K (now interpreted as an ML formula in the signature of L)
for some transition ϕ⇒Ss ϕ′, which proves the theorem.
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