519 research outputs found

    Verifying atomicity via data independence

    Full text link
    We present a technique for automatically verifying atomicity of composed concurrent operations. The main observation behind our approach is that many composed concurrent operations which oc-cur in practice are data-independent. That is, the control-flow of the composed operation does not depend on specific input values. While verifying data-independence is undecidable in the general case, we provide succint sufficient conditions that can be used to establish a composed operation as data-independent. We show that for the common case of concurrent maps, data-independence re-duces the hard problem of verifying linearizability to a verification problem that can be solved efficiently with a bounded number of keys and values. We implemented our approach in a tool called VINE and evalu-ated it on all composed operations from 57 real-world applications (112 composed operations). We show that many composed opera-tions (49 out of 112) are data-independent, and automatically verify 30 of them as linearizable and the rest 19 as having violations of linearizability that could be repaired and then subsequently auto-matically verified. Moreover, we show that the remaining 63 oper-ations are not linearizable, thus indicating that data independence does not limit the expressiveness of writing realistic linearizable composed operations. Categories and Subject Descriptors

    Language and tool support for event refinement structures in Event-B

    No full text
    Event-B is a formal method for modelling and verifying the consistency of chains of model refinements. The event refinement structure (ERS) approach augments Event-B with a graphical notation which is capable of explicit representation of control flows and refinement relationships. In previous work, the ERS approach has been evaluated manually in the development of two large case studies, a multimedia protocol and a spacecraft sub-system. The evaluation results helped us to extend the ERS constructors, to develop a systematic definition of ERS, and to develop a tool supporting ERS. We propose the ERS language which systematically defines the semantics of the ERS graphical notation including the constructors. The ERS tool supports automatic construction of the Event-B models in terms of control flows and refinement relationships. In this paper we outline the systematic definition of ERS including the presentation of constructors, the tool that supports it and evaluate the contribution that ERS and its tool make. Also we present how the systematic definition of ERS and the corresponding tool can ensure a consistent encoding of the ERS diagrams in the Event-B models

    Store Atomicity for Transactional Memory

    Get PDF
    AbstractWe extend the notion of Store Atomicity [Arvind and Jan-Willem Maessen. Memory model = instruction reordering + store atomicity. In ISCA '06: Proceedings of the 33rd annual International Symposium on Computer Architecture, 2006] to a system with atomic transactional memory. This gives a fine-grained graph-based framework for defining and reasoning about transactional memory consistency. The memory model is defined in terms of thread-local Instruction Reordering axioms and Store Atomicity, which describes inter-thread communication via memory. A memory model with Store Atomicity is serializable: there is a unique global interleaving of all operations which respects the reordering rules and serializes all the operations in a transaction together. We extend Store Atomicity to capture this ordering requirement by requiring dependencies which cross a transaction boundary to point in to the initiating instruction or out from the committing instruction. We sketch a weaker definition of transactional serialization which accounts for the ability to interleave transactional operations which touch disjoint memory. We give a procedure for enumerating the behaviors of a transactional program—noting that a safe enumeration procedure permits only one transaction to read from memory at a time. We show that more realistic models of transactional execution require speculative execution. We define the conditions under which speculation must be rolled back, and give criteria to identify which instructions must be rolled back in these cases

    Linearizability with Ownership Transfer

    Full text link
    Linearizability is a commonly accepted notion of correctness for libraries of concurrent algorithms. Unfortunately, it assumes a complete isolation between a library and its client, with interactions limited to passing values of a given data type. This is inappropriate for common programming languages, where libraries and their clients can communicate via the heap, transferring the ownership of data structures, and can even run in a shared address space without any memory protection. In this paper, we present the first definition of linearizability that lifts this limitation and establish an Abstraction Theorem: while proving a property of a client of a concurrent library, we can soundly replace the library by its abstract implementation related to the original one by our generalisation of linearizability. This allows abstracting from the details of the library implementation while reasoning about the client. We also prove that linearizability with ownership transfer can be derived from the classical one if the library does not access some of data structures transferred to it by the client
    corecore