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Abstract

We extend the notion of Store Atomicity [4] to a system with atomic transactional memory. This gives a
fine-grained graph-based framework for defining and reasoning about transactional memory consistency. The
memory model is defined in terms of thread-local Instruction Reordering axioms and Store Atomicity, which
describes inter-thread communication via memory. A memory model with Store Atomicity is serializable:
there is a unique global interleaving of all operations which respects the reordering rules and serializes all
the operations in a transaction together. We extend Store Atomicity to capture this ordering requirement by
requiring dependencies which cross a transaction boundary to point in to the initiating instruction or out
from the committing instruction. We sketch a weaker definition of transactional serialization which accounts
for the ability to interleave transactional operations which touch disjoint memory. We give a procedure for
enumerating the behaviors of a transactional program—noting that a safe enumeration procedure permits
only one transaction to read from memory at a time. We show that more realistic models of transactional
execution require speculative execution. We define the conditions under which speculation must be rolled
back, and give criteria to identify which instructions must be rolled back in these cases.

Keywords: computer architecture, multiprocessor memory consistency, cache coherence, transactional
memory, instruction reordering, store atomicity

1 Introduction

In a recent paper [4] we describe Store Atomicity, a graph-based framework for
reasoning about a large class of multiprocessor memory consistency models. We
take the view that a system consists of a single atomic memory on which multiple
apparently-sequential threads are operating. This paper follows up on that work
by introducing a simple form of transactional memory akin to that described by
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Herlihy and Moss [11]. The present paper does not assume familiarity with Store
Atomicity; we retain the explanation of the fundamentals of the original work.

When we refer to an atomic memory we mean that there is a single monolithic
memory shared by program threads. Actions on this memory are serializable: there is
a single serial history of all Load and Store operations, consistent with the execution
behavior of each thread, which accounts for the observed behavior of the program.
Introducing transactions requires a more complex definition of serializability; all the
operations in a transaction must be serialized as a group.

When we say threads are apparently sequential, we mean that a single thread
in isolation will always behave as if it is running sequentially. This implies a few
constraints which must not be taken for granted: for example, a Store cannot be
reordered with respect to another Load or Store to the same memory location, or
the illusion of sequential execution will be shattered. Similarly, we expect that
dependencies between branches and subsequent stores are respected; if branch
prediction occurs, it cannot have an observable effect.

In this setting, Sequential Consistency [14], or SC, remains the gold standard
against which all other multiprocessor memory models are judged [12]. In SC,
sequential behavior is enforced by requiring that serializations respect the exact
order in which operations occurred in the program. There are two views of SC which
are widely understood. The first is a declarative view, in which an existing execution
is proven to be sequentially consistent by showing that an appropriate serialization
of program operations exists. The declarative view is most useful for determining
that the behaviors exhibited by a particular memory system provide the appearance
of SC. The second view is an operational view, in which we model the execution of a
program under SC by choosing the next instruction from one of the running threads
at each step. The operational view is useful for verifying the correctness of programs
running under SC; we can in principle enumerate all the possible executions of a
program simply by following the operational rules.

Store Atomicity provides a unifying framework in which SC and relaxed memory
models with an atomic memory can be understood; however, the version given in [4]
cannot account for memory transactions.

As a running example, we choose a relaxed model which permits aggressive
instruction reordering. Our model is similar in spirit to a transactional version
of the memory model of the PowerPCTM architecture [15] or the RMO model for
the SPARC R© architecture [19], but it differs from both models in minor respects.
For the purposes of this paper we rule out nested transactions, the use of non-
transactional memory operations within a transaction, and other extensions of
the basic transaction mechanism. Our example model is otherwise flexible, and
permits ambitious architectural features; it treats all threads uniformly, increasingly
important when multiple threads share execution resources that were previously
private; and it is simple.

In addition to the present surge in interest in transactional memory, there are
several other reasons it is instructive to model transactions within the framework
of Store Atomicity. First, we can use transactions to model existing atomic fetch-
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and-operate instructions such as compare and swap. Second, transactions require
us to model atomic updates which affect multiple memory locations simultaneously.
For example, a complete memory model must deal with byte and word updates
to the same storage. We might consider a word access to be an atomic group of
byte-sized accesses; conversely we might instead model a byte store as an atomic
read-modify-update of a word-sized location. In either case we might reasonably ask
whether there are ordering constraints on the various components of these operations
(the fetch, modify, and update of each of the locations involved).

Memory models with atomic storage are distinguished by varying rules for intra-
thread instruction reordering, described in Section 2; for our purposes, we consider
the instructions within a thread to be partially ordered rather than totally ordered
as in SC. All communication between threads occurs through memory, which we
discuss in Section 3; memory obeys the same rule (serializability) in all of the models
we consider.

However, serializability alone gives very little intuition about the ordering de-
pendencies between instructions in different threads. Store Atomicity (Section 3.4)
describes the ordering constraints which must exist in serializable models. We reason
about an execution, characterized by the instructions executed, the mapping source
between each Load and the Store it observes, and the partial order ≺ of each thread’s
instructions. Note that there is no explicit memory in our formalism; Store Atomicity
reasons directly in terms of the Load and Store operations and the source relation.
Formally, there are three closely-related views of Store Atomicity which we make
use of in this paper, and it is useful to spell them out:

First, given an execution along with a partial order (or equivalently a directed
acyclic graph) of dependencies among instructions, we can say whether the execution
obeys the conditions of Store Atomicity. The central claim of our work is that
any execution for which there is a partial order which obeys Store Atomicity is
serializable. The partial order here may correspond to a concrete implementation
of a particular desired memory model; a violation of Store Atomicity indicates a
problem in the implementation.

Second, given a serializable execution, we can define the least partial order �
which describes that execution and obeys Store Atomicity. Our second central claim
is that any serializable execution possesses such an ordering. We can ask which pairs
of instructions are ordered in every possible serialization of an execution. We claim
that under the definition of Store Atomicity given in Section 3.4 two instructions are
ordered in every serialization of an execution if and only if they are ordered by � .
However, this is not true for the relaxed rules for transactions given in Section 3.5.

Finally, given a program we can enumerate all possible executions of that program
in one of the memory models of interest. In Section 4 we give a strategy for doing
so. It relies crucially on constructing the � relation as the program executes. This
permits us to identify candidates(L), the Store operations which can be observed by
a Load L without leading to a violation of serializability.

Representing a program execution as a partial order or DAG has the advantage
of capturing many indistinguishable serializations in a single, compact form. The
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2nd instr→ +, etc. Branch L S Fence Trans Commit
1st instr↓ y y, j

+, etc. indep indep indep indep
Branch never never

L x indep indep indep x �= y never never
S x, i x �= y x �= y never never

Fence never never

Trans never never N/A never
Commit never N/A

Fig. 1. Weak Reordering Axioms. Entries indicate when instructions can be reordered. Instructions pairs
marked N/A are illegal and should not occur.

operational view in Section 4 therefore provides a more compact way to reason about
SC execution than the usual technique of enumerating all possible serializations.
The sole source of non-determinism in our operational characterization is the choice
of which Store is chosen as source(L) from among candidatesL.

In the presence of transactions we must either restrict parallel execution of
transactions, or we must speculate—permit executions in which � would need to
contain a cycle in order to obey Store Atomicity. This is the final reason for our
interest in transactions: a transaction potentially running in parallel with a conflicting
memory update fundamentally requires the use of speculative execution. The usual
execution model for transactions aborts the transaction and re-executes it from
the beginning if memory consistency is violated. Indeed, one reason for the recent
surge in interest in transactional memory is that it can leverage existing techniques
for speculative execution to provide a powerful and easy-to-use synchronization
mechanism.

In Section 5 we formally define speculation as any execution which may result in
a violation of Store Atomicity. Broadly, speculation must identify and break cycles
in � before they form. Because such cycles span multiple threads, there are usually
several choices of which instructions to roll back in order to recover from speculation
failure. We describe how to identify minimal sets of instructions to roll back. It is
not generally necessary to roll back entire transactions on speculation failure.

We conclude by discussing some of the most relevant related work, then look
ahead at applications of the techniques we describe in this paper.

2 Instruction reordering

On a uniprocessor instructions can be reordered as long as the apparent sequential
behavior of the program is preserved. On a shared memory system one has to be
more careful because parallel threads may rely on the relative order in which Loads
and Stores to several addresses are performed.

Figure 1 presents in tabular form one possible set of rules for reordering instruc-
tions. Table entries indicate when instruction reordering is permitted. Instruction
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A

B

Local ordering, A ≺ B

L

S

Observation, S = source(L)

A

S

Store Atomicity

Fig. 2. The three types of � edges.

pairs with blank entries may always be reordered. Entries marked “never” may never
be reordered. Data dependencies constrain execution order, indicated by the entries
marked indep. In this and subsequent figures w, x, y, z stand for arbitrary addresses,
while i, j, k, l stand for arbitrary values. In either case a register value ri may be
used. The three entries labeled x �= y prevent the reordering of Stores with respect
to Loads and Stores to the same address; this ensures that single-threaded execution
will be deterministic. In line with present practice, we ignore resource limitations
encountered by an actual processor; we permit unbounded register renaming and
arbitrarily deep Load and Store pipelines. To the authors’ knowledge, no extant
memory model imposes resource bounds.

It is necessary (for programmers’ benefit, if nothing else) for every memory model
weaker than SC to provide some mechanism to order any pair of memory operations.
Modern processors provide memory fences [19,15,6] for this purpose. Fences allow
memory operations to be reordered between two fences but force all the Loads and
Stores before a fence to be ordered with respect to speculative execution of memory
transactions offers opportunities for additional behaviors in this vein.

3 Store Atomicity

Having established a local ordering ≺ among the instructions in a single thread, we
must now describe the behavior of multiple threads which execute together. The
only means of communication between threads is via Stores and Loads. At the
highest level, any multithreaded execution must be serializable modulo reordering.
We begin by giving a formal definition of serializability in a transactional setting;
this definition is more complex than the definition of non-transactional serializability.

A formal definition of serializability gives very little insight into how programs
behave in practice; our goal is to uncover the conditions under which pairs of
instructions must be ordered in every serialization. These conditions define Store
Atomicity. We say A�B (“A is before B”) when the rules of Store Atomicity require
instruction A to be ordered before instruction B. We explore the conditions which
must be imposed by Store Atomicity by examining non-serializable behaviors. One
shortcoming of our definition of transactional Store Atomicity is that it rigidly orders
entire transactions when those transactions access overlapping state; we consider
how we might go about relaxing this restriction.
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3.1 Serializability

An execution (or, equivalently, behavior) of a program is given by a partially ordered
set of operations. We say A

a=B if A and B operate on the same memory address.
Every Load L observes the value of some Store S, which we refer to as source(L);
clearly source(L) a= L. In our definitions, we abbreviate Trans instructions by T

and Commit instructions by C. We define the set of instructions in the transaction
delimited by T and C, transaction(T, C), as follows:

(i) ∅ if T �≺ C ∨ ∃C ′.T ≺ C ′ ≺ C ∨ ∃T ′.T ≺ T ′ ≺ C (T and C do not delimit a
transaction)

(ii) {A | T ≺ A ≺ C} otherwise.

We make use of the fact that the reordering rules in Figure 1 imply that T ≺ A ≺ C

exactly for instructions in the transaction.
A serialization of an execution is a total order < on all operations obeying the

following conditions:

(i) A ≺ B ⇒ A < B: Local instruction ordering must be respected. This is
what we mean by serialization modulo instruction reordering. Conventionally
serialization is instead defined with respect to the original program order.

(ii) source(L) < L: A Store executes before any Load which observes it.

(iii) �S
a= L. source(L) < S < L: Every load must obtain the value of the most

recent store to the same address; there must be no intervening overwriting
store.

(iv) T < A < C ⇐⇒ (A ∈ transaction(T, C) ∨ transaction(T, C) = ∅): For every
transaction the instructions between T and C in the serialization are exactly
the instructions in the transaction.

An execution 〈≺, source, a=〉 is serializable if there is an order < satisfying the above
conditions. In general an execution will have a set X of many possible serializations.
Our goal is to define Store Atomicity such that A�B if A < B in every serialization
in X.

An execution represents a distinct outcome of a multithreaded program: which
instructions are executed in each thread, which reordering constraints apply, and
most importantly which Store operation is observed by each Load. A program has a
set of possible executions. By contrast, the fact that a single execution has many
serializations is irrelevant detail: all of these serializations exhibit the same behavior
in practice, and there is no real non-determinism involved. We say two executions
are equivalent when they have the same set of serializations.

3.2 Violations of serializability

The conditions imposed by serializability are most easily understood by examining
examples of executions which appear to violate memory atomicity, and attempting
to understand which ordering dependencies in serialized executions prevent those
violations. Those readers familiar with our previous paper [4] can safely skip this
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a

S1 x,1

S2 y,2

L6 x

S3 y,3

S4 x,4

L5 y

Thread A Thread B
S1 x, 1 S3 y, 3
Fence Fence
S2 y, 2 S4 x, 4
L5 y = 3 L6 x = 1?

b

L4 y

S1 x,1

S2 x,2

L6 x

S3 y,3

S5 y,5

Thread A Thread B
S1 x, 1 S3 y, 3
S2 x, 2 S5 y, 5
Fence Fence
L4 y = 3 L6 x = 1?

Fig. 3. Left: When a Store to y is observed to have been overwritten, the stores must be ordered. Right:
Observing a Store to y orders the Load before an overwriting Store.

section, as the motivating examples have not changed; the next section describes
similar examples of transactional executions which lead to violations of serializability.
Each example shows a program fragment and a corresponding execution graph (the
desired � relation). The meaning of the edges in our illustrations is summarized in
Figure 2. Solid edges are those required by local ordering ≺. Ringed edges are source
edges indicating that the value written by Store S is observed by Load L. Our goal
is to identify the dotted Store Atomicity edges: additional ordering constraints which
must be respected in every execution. These edges indicate ordering relationships
which must always hold—that is, for which A < B in every serialization.
Figure 3, left demonstrates that Loads can impose ordering relationships between
Stores in different threads. Some notational rules are in order: Loads and Stores
are numbered with small subscripts; this numbering is chosen to reflect one possible
serialization of the observed execution. Letters refer to constant memory addresses.
Non-subscripted numbers are simply arbitrary program data (in our examples we
endeavor to have Store Sk write its unique instruction number k to memory). Finally,
the notation L5 y = 3 indicates that in the pictured execution, the Load of y observes
the value 3 written by S3. This is followed by question mark as in L6 x = 1? if the
observation violates serializability.

Here L5 in Thread A observes S3, so S2 must have been overwritten. We capture
this by adding the dotted dependency a, making S2 �S3. Thus S1 �S4 �L6; S1 has
been overwritten and cannot be observed by L6.

Note that we have pictured only one of several possible executions of this fragment.
It is possible for L5 to instead observe S2. In that case, no known ordering would
exist between S2 and S3, and L6 could observe either S1 or S4. �

Figure 3, right shows that when a Load observes a value which is later overwritten,
the Load must occur before the overwriting store. L4 in Thread A observes S3 in
Thread B. It therefore must occur before S5 overwrites S3. We insert the dotted
dependency b to reflect this fact, making L4 �S5. Thus S1 �S2 �L6, so L6 cannot
observe S1, which was overwritten by S2.
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c

L5 y

S2 y,2

S6 z,6

S4 y,4

L7 z

S8 x,8

L9 x

S1 x,1

L3 y

Thread A Thread B Thread C
S1 x, 1 S2 y, 2 S4 y, 4
Fence Fence Fence
L3 y = 2 S6 z, 6 L7 z = 6
L5 y = 4 Fence

S8 x, 8
L9 x = 1?

Fig. 4. Unordered operations on y may order other operations.

Notice that there is no overwriting Store between S5 and L6, so if L4 instead
observes S5, L6 can observe either S1 or S2. �

Figure 4 shows that operations on a single location (here y) may occur in an
ambiguous order, but they may establish an unambiguous order of operations
elsewhere in the execution. Here S1 is succeeded by two loads of y, L3 and L5.
Meanwhile, L7 is preceded by two stores to y, S2 and S4. There are two store/load
pairings to y, S2 �L3 and S4 �L5. These pairings cannot be interleaved—for example,
we cannot serialize S2 < S4 < L3 even though S4 is unordered with respect to the
other two operations. Every serialization of the example in Figure 4 will either order
S2 < L3 < S4 < L5 or S4 < L5 < S2 < L3. In either case, it is clear that S1 < L7.
The mutual ancestors of L3 and L5 must always precede the mutual successors of S2

and S4; this requires the insertion of edge c between S1 and L7. Because of this, L9

cannot observe S1; it must have been overwritten by S8. �

Note that we have motivated the examples in this section by looking for con-
tradictory observations, and showing that there are ordering relationships which
unambiguously rule them out. This is the chief purpose of Store Atomicity: it lets us
show not just that an execution is serializable, but also that execution can continue
without future violations of serializability.

3.3 Violations of Transactional Atomicity

In this section we examine two transactional programs which violate the atomicity of
transactions. Our goal is to understand how to enforce the dependencies described
in the previous section when a transaction is involved.
Figure 5, left shows that if an instruction in a transaction precedes an instruction
outside that transaction, then the Commit operation of the transaction must also
precede that instruction. Here S1 is followed within the same transaction by S3. If
L2 observes S1, then S1 < S3 < Commit < L2 in every serialization; we insert the
additional dependency a to reflect this fact. But this edge shows that S1 has been
overwritten and this observation is impossible.

Notice that reasoning transactionally has a somewhat different flavor from the
examples in the previous section: The contradictory edge a is only inserted as a
result of the attempt to read S1, it did not previously exist in the graph. �

Figure 5, right shows that if an instruction in a transaction follows an instruction
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a

S1 x,1

L2 x

Commit

Trans

S3 x,3

Thread A Thread B
Trans L2 x = 1?
S1 x, 1
S3 x, 3
Commit

b
ca

L4 x

S1 x,1 S3 x,3

Commit

Trans

L2 x

Thread A Thread B Thread C
Trans S1 x, 1 S3 x, 3
L2 x = 1
L4 x = 3?
Commit

Fig. 5. Left: Violation of atomicity of reads in a transaction. Right: Violation of atomicity of writes in a
transaction.

outside the transaction, then the Trans operation of the transaction must also
follow that instruction. Here L2 observes S1. By the definition of Linearizability,
S1 < Trans < L2 in every serialization; we insert the edge a to reflect this fact.
If L4 observes S3, we must similarly conclude that S3 < Trans < S4 in every
serialization, reflected by inserting the edge b. But now both Stores precede both
Loads; reasoning as in Figure 3 we are obliged to insert both edges c—these two
Store operations cannot be serialized, and we conclude that L4 cannot observe S3

given that source(L2) = S1. �

3.4 The Store Atomicity property

In this section we define the Store Atomicity property formally. Given an execution
〈≺, source, a=〉, we define � as the least partial order (that is, the order with the
fewest dependencies) obeying the rules given in this section. Any execution for
which a valid ordering � exists is said to obey Store Atomicity. The key conjecture
of Store Atomicity is that an execution is serializable if and only if it obeys Store
Atomicity.
Definition of Store Atomicity:
The definition of serialization directly tells us the following important facts about
the � relation:

(i) A ≺ B ⇒ A�B: local ordering is respected.

(ii) source(L)�L: a Load happens after the Store it observes.

(iii) �S
a=L. source(L)�S �L: A load cannot observe a Store which is certain to

be overwritten.

Store Atomicity imposes the following additional requirements on the � relation
(shown graphically in Figure 6):
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a. Predecessor Stores of a Load are ordered before its source: A prede-
cessor store to the same location is either observed or it must have occurred before
the Store which was observed (see example in Figure 3).

S
a=L ∧ S �L ∧ S �=source(L) ⇒ S �source(L)

b. Successor Stores of an observed Store are ordered after its observers:
When L sees source(L), L must occur before any subsequent S to the same location
(see example in Figure 3).

S
a=L ∧ source(L)�S ⇒ L�S

c. Mutual ancestors of Loads are ordered before mutual successors of the
distinct Stores they observe: Store/load pairs to the same address impose
an order on other nodes, even if they themselves are not ordered (see example in
Figure 4).

L
a=L′ ∧ A�L ∧ A�L′ ∧ source(L) �= source(L′) ∧
source(L)�B ∧ source(L′)�B ⇒ A�B

d. Predecessor operations precede the start of a transaction: A predecessor
operation must either occur in the same transaction, or must precede the transaction
itself.

B ∈ transaction(T, C) ∧ A�B ⇒ A ∈ transaction(T, C) ∨ A � T

e. Successor operations follow the end of a transaction: A successor
operation must either occur in the same transaction, or must succeed the transaction
as a whole.

A ∈ transaction(T, C) ∧ A�B ⇒ B ∈ transaction(T, C) ∨ C � B

�

Collectively, we refer to a–e as the Store Atomicity Conditions. The last two
properties (which talk about the relationship between the�relation as a whole and the
transactional structure of the program) subsume any conditions we might set about
specific relationships required by the source relation or by the Store Atomicity rules.
Note in particular that together they imply that if A�B in different transactions,
then the Commit operation of the first transaction will precede the Trans operation
of the second transaction (thus the careful use of � in d and e). Note also that
they imply in practice that any operation in the same thread as a transaction is
ordered either before the Trans operation or after the Commit operation in spite of
the reorderings permitted by Figure 1. In Section 3.5 we consider how these two
conditions might be relaxed while still guaranteeing serializability.

These rules describe Store Atomicity as a declarative property—we can check
an arbitrary execution graph and say whether or not it obeys Store Atomicity. An
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b

S x

L x

S x

S x L x L x

S x S x

A

B

c

a ≺
Trans

B

A

Commit

Trans

Commit
B

A

e

≺

≺

d

≺

a. Predecessor S x must precede source(L x).
b. L x must precede successor S x.
c. Parallel pairs of observations of x order the ancestor

of both L x before the successor of both S x.
d. Predecessor operations precede the start of a transaction.
e. Successor operations follow the end of a transaction.

Fig. 6. Store Atomicity in brief. Wavy edges are arbitrary � relationships. When an operation occurs
inside a transaction, incoming atomicity edges must point to the Trans operation and outgoing atomicity
edges must start at the Commit operation.

c

d

a

b
L5 x

L6 y

S1 x,1

S3 y,3

S2 x,2S4 y,4 Thread A Thread B Thread C
S1 x, 1 S4 y, 4 S2 x, 2
Fence Fence
S3 y, 3 L5 x = 2
L6 y = 4

Fig. 7. Store atomicity may need to be enforced on multiple locations at one time.

execution graph is any graph which obeys the rules given above (in particular, unlike
� it need not be the least such graph). There are two important points in this
regard. First, it is legal to introduce additional edges in an execution graph so long
as no cycles are introduced—however, doing so rules out possible program behaviors.
For example, in Figure 4 we can insert an edge from L5 to S2. Doing so rules out
any execution in which S2 < L3 < S4 < L5. Real systems make use of this fact to
simplify implementation (see Section 4.2). Because � is the least ordering which
obeys store atomicity, it ensures that legal program behaviors are not ruled out
prematurely in this way.

Finally, note that adding a dependency to enforce Store Atomicity can expose
the need for additional dependencies. In Figure 7 no dependency initially exists
between S1 and S2, even after L5 observes S2 (edge a). However, when L6 observes
S4 (edge b), Store Atomicity requires the insertion of edge c between S3 and S4. This
reveals that S1 �L5. We must therefore also insert edge d, S1 �S2. In general, we
continue the process of adding dependencies until Store Atomicity is satisfied.

J.-W. Maessen, Arvind / Electronic Notes in Theoretical Computer Science 174 (2007) 117–137 127



3.5 Relaxing Serializability for Transactions

If two transactions touch entirely disjoint memory locations, then the dependencies
inserted by Store Atomicity permit these instructions to run in parallel—the result
will be indistinguishable from serialized executions in which one transaction or the
other is serialized first. However, conditions (d) and (e) in Section 3.4 have the effect
of strongly ordering operations which interact with a transaction. This obviously
satisfies the definition of transactional serializability from Section 3.1. However, it is
possible to relax this condition while still preserving the existence of a serializable
execution for transactions which share resources in common. We see examples of
this in practice: A transaction begins, another thread writes to a particular location,
and then the transaction reads the value written. So long as the write could have
been reordered before the start of the transaction, this behavior is consistent. The
only thing that matters is that potentially-conflicting instructions aren’t required
to overlap. We therefore conjecture that the following definitions are sufficient to
guarantee serializability:

d’. Operations must not interleave with a transaction: An operation which
is ordered (in the sense of �) with respect to both the beginning and end of a
transaction must be part of that transaction.

transaction(T, C) �= ∅ ∧ T �A�C ⇒ A ∈ transaction(T, C)

e’. Unique source for each address loaded: A Store which acts as the source
for a Load is either in the same transaction as that Load, or precedes all Loads of
the same location in that transaction.

L ∈ transaction(T, C) ⇒
(source(L) ∈ transaction(T, C) ∨
∀L′ ∈ transaction(T, C). L

a=L′ ⇒ source(L)�L′)

�

Note that when stores to the same location are ordered (replacing the L/L entry
in Figure 1 with x �= y), condition d’ implies condition e’. This is true for most
of the architectural memory models in use, though it is generally not true of the
memory model exposed by compilers.

Note also that under condition d’ it is no longer the case that A < B in
every serialization implies A�B: Operations outside a transaction are no longer
strongly ordered with respect to that transaction’s Trans and Commit instructions.
However, they are ordered with respect to all operations on the same address
within the transaction. We conjecture that there is a weakening of the definition of
transactional serialization given in Section 3.1 which does preserve this property,
and which permits exactly the same Load/Store behaviors as the present definition.
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4 Enumerating program behaviors

In this section we give a procedure for generating all possible execution graphs for a
program. This is conceptually very simple: Generate a node for each instruction
executed, and connect those nodes by edges which correspond to the� relation. To
generate the graph, a behavior must include the program counter (PC) and register
state of each of its threads. Register state is represented by a map RT [r] from a
register name to the graph node which produced the value contained in the register
at the current PC. When a node is generated, it is in an unresolved state. When its
operands become available, a node’s value can be computed and stored in the node
itself; this places the node in a resolved state. Conceptually we imagine instructions
such as Stores and Fences produce a dummy value; a Branch resets the thread’s PC
when it is resolved.

In general multiprocessor programs are non-deterministic, so we expect our
procedure to yield a set of distinct executions. Every step in our graph execution
is deterministic except for the resolution of a Load instruction. Resolving a Load
requires selecting a candidate Store. Each distinct choice of a candidate store
generates a distinct execution. Our procedure keeps track of all these choices; this is
the heart of enumeration.
Definition of Candidate Stores For each Load operation L, candidates(L) is
the set of all stores S

a=L such that:

(i) All prior Loads L′�S and Stores S′�S have been resolved.

(ii) �S′ a=L. S �S′�L: S has not been overwritten.

(iii) If S is in a transaction, and L is not in the same transaction, that transaction
must have committed and S must be the most recent store S

a= L in that
transaction:

S ∈ transaction(T, C) ∧ L �∈ transaction(T, C) ⇒
�S′ ∈ transaction(T, C).S′ a=S ∧ S ≺ S′

(iv) If L is in a transaction, and S is not in the same transaction, then any load
L′ a=L obtains its value either from S or from a store in the same transaction:

L ∈ transaction(T, C) ∧ source(L) �∈ transaction(T, C) ⇒
∀L′ ∈ transaction(T, C).L′ a=L ⇒

sourceof(L′) = S ∨ sourceof(L′) ∈ transaction(T, C)

It should be evident from the last two conditions above that transactional memory
substantially complicates the definition of candidates(L).

Memory is initialized with Store operations before any thread is started. This guar-
antees that there will always be at least one “most recent Store” S, so candidates(L)
is never empty.

Our definition of candidates(L) is valid only if every predecessor Load of L

has been resolved: resolving a Load can introduce additional inter-thread edges.
These new dependencies may cause predecessor Loads to violate Store Atomicity
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when they choose a candidate Store. We might imagine restricting the definition
of candidates(L); however, any simple restriction rules out legal executions. By
restricting Load resolution, we avoid this possibility.

4.1 Graph execution

In order to enumerate all the behaviors of a program, we maintain a set of current
behaviors B; each behavior contains a PC and register map for each thread along
with the program graph.

At each step, we remove a single behavior from B and refine it as follows:
1. Graph generation: Generate unresolved nodes for each thread in the system,
starting from the current PC and stopping at the first unresolved branch. Insert
all the solid ≺ edges required by the reordering rules. For example, for a Fence
instruction we must add ≺ dependencies from all prior Loads and Stores. In effect
we keep an unbounded instruction buffer as full as possible at all times.
2. Execution: Execution propagates values dataflow-style along the edges of
the execution graph. A non-Load instruction is eligible for execution only when
all the instructions from which it requires values have been executed (the Fence
instruction requires no data and can execute immediately.) After executing an
eligible instruction, update the node with its value. If the result of the instruction
serves as an address argument for a Load or Store, insert any ≺ edges required by
aliasing. Continue execution until the only remaining candidates for execution are
Loads.

Repeat steps 1 and 2 until no new nodes are added to the graph.
3. Load Resolution: Insert any dotted � edges required by Store Atomicity into
the graph. For each unresolved load L whose predecessor loads have been resolved,
compute candidates(L). For every choice of Store S ∈ candidates(L), generate a
new copy of the execution. In this execution, resolve source(L) = S, and update L

with the value stored by S. Once again insert any dotted � edges required by Store
Atomicity. Add each resulting execution to B.

If there is any transaction with a mixture of unresolved and resolved loads, we
only consider the unresolved loads in this transaction during the Load Resolution
step. In effect we run this transaction exclusively until all its loads have been
resolved. This rules out executions such as the one in Figure 8 where two different
transactions make mutually irreconcilable observations. We discuss this issue further
in Section 5. �

Load Resolution is the only place where our enumeration procedure may duplicate
effort. Imagine an execution contains two loads L1 and L2 which are candidates
for resolution. We will generate a set of executions which resolve L1 first, and then
L2, but we will also generate a set of executions which resolve L2 first, and then
L1. In many (but not all) cases, the order of resolution won’t matter. We discard
duplicate behaviors from B at each Load Resolution step to avoid wasting effort. It is
sufficient to compare the Load-Store graph of each execution. In a Load-Store graph
we erase all operations except L, S, Trans, and Commit, connecting predecessors and
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successors of each erased node. All the graphs pictured in this paper are actually
Load-Store graphs; we have erased the Fence instructions.

We have written the above procedure to be as clear as possible. However, it
is not a normalizing strategy : A program which contains an infinite loop can get
stuck in the graph generation and execution phases and never resolve a Load. More
complicated procedures exist which fix this problem (one starting point is to avoid
unfolding or execution past an unresolved Load).

Note that while graph generation blocks at a branch instruction, we nonetheless
achieve the effect of branch speculation: Once the graph has been generated, the
rules for candidates(L) allow us to “look back in time” and choose the candidate
store we would have chosen through branch speculation. Branch speculation in
our model is captured by the structure of the graph, not by the details of graph
generation.

4.2 Enforcing Store Atomicity in real systems

When defining � we are very careful to insert only those dependencies which are
necessary to enforce local instruction ordering and Store Atomicity. But it is safe
to impose an ordering between any pair of unordered nodes, so long as we add any
Store Atomicity edges which result from doing so. This will eliminate some possible
behaviors, but the behaviors which remain will be correct. Real systems have exactly
this effect. We can view a cache coherence protocol as a conservative approximation
to Store Atomicity. Ordering constraints are inserted eagerly, typically imposing
a well-defined order upon memory operations even when the exact order is not
observed by any thread.

For example, consider an ownership-based cache coherence protocol. Such a
protocol maintains a single canonical version of the data in each memory location,
either in memory or in an owning cache. A Store must obtain ownership of the
data—in effect ordering this Store after the Stores of any prior owners. Thus, the
movement of cache line ownership around the machine defines the observed order
of Store operations. Meanwhile, a Store operation must also revoke any cached
copies of the line. This orders the Store after any Loads which used the cached data.
Finally, a Load operation must obtain a copy of the data read from the current
owner, ordering the Load after the owner’s Store.

Transactional memory protocols typically build on this notion of ownership,
preventing cache lines touched during the transaction from being changed by another
thread until the transaction commits. This has the effect of ordering transactions
and of ensuring all Loads see consistent data. Because writes are not shared until
a transaction commits, only the final Store to a given location in the transaction
is observed. In effect, other processors which use data written by the transaction
are ordered after the Commit operation. However, this protocol can deadlock on
examples such as the one in Figure 8 unless transactions are serialized. In practice
speculation is used to resolve such conflicts: one of the transactions is rolled back.

Within a processor, an ordering relationship between two instructions requires
the earlier to complete before the later instruction performs any visible action.
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Thread A Thread B
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L3 y = 2 L4 x = 1?
S5 x, 5 S6 y, 6
CommitA CommitB

Fig. 8. Reading ahead results in violations of read atomicity.

When operations are not ordered by the reordering rules, they can be in flight
simultaneously—but limitations of dependency tracking, queuing, and so forth may
force them to be serialized anyhow.

Showing that a particular architecture obeys a particular memory model is
conceptually straightforward: simply identify all sources of ordering constraints, make
sure they are reflected in the � ordering, and show that the resulting constraints
are consistent with the local reordering rules and with Store Atomicity. In practice,
of course, identifying every possible source of ordering dependencies in a particular
cache coherence protocol is the chief challenge of protocol verification; too few
dependencies, and the memory model is violated, too many and the protocol will
deadlock.

5 Speculation

The use of speculative execution is fundamental to hardware transactional memory
implementations. The founding principle of transactional memory was to permit
lock-free parallel updates to shared data structures [11]. As we showed in Figure 8,
it is possible for two simultaneously-executing transactions to end up in a mutually
inconsistent state when, as part the transaction, each one overwrites state previously
read by the other transaction. One or the other of the transactions must be rolled
back.

What distinguishes speculation from mere reordering is the possibility that it can
go wrong. We can describe speculation in our graph-based formalism in two ways:
First, we can perform value speculation, guessing values and verifying them later; we
defer this to future work. Second, we can resolve instructions early, before all of their
dependencies have been satisfied. This can result in violations of Store Atomicity.
In [4] we discuss a particular example, address aliasing speculation, arguing that
while it permits new behaviors compared with a non-speculative model, it leads to a
simpler and easier-to-understand memory model.
Figure 8 demonstrates that running multiple transactions in parallel can lead to
violations of serializability. Here L3 observes S2, which implies that S2 < TransA < L3
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(edge a). In parallel, L4 observes S1, which in turn implies that S1 < TransB < L4

(edge b). When S5 subsequently executes, we must following the same reasoning as
in Figure 3, and conclude that L3 < S6 and thus that L3 < CommitA < TransB < S6

(edge c). Now we can observe that in any serialization S1 < S5 < L4 and thus
that it was illegal for L4 to have observed S1. The execution thus far cannot be
serialized; one of the transactions must be aborted and rolled back. Running multiple
transactions in parallel requires speculative execution. �

The operational framework given in Section 4.1 limits Load Resolution to a
transaction which contains a mix of resolved and unresolved Loads. Conceptually,
it is simple to permit Load Resolution to occur in any thread: simply discard a
behavior if it is ever discovered to contradict the rules of Store Atomicity. An actual
system, however, only works with one behavior at a time. When an inconsistency
occurs, we must decide which instructions to roll back.

It is straightforward to emulate the behavior of current transactional memory
implementations: with each Trans instruction we associate a snapshot of the thread
state at the point where the instruction was issued. If a violation of Store Atomicity
is discovered after resolving a Store in a particular transaction, all instructions in
the transaction can be erased; we then restart with the snapshot saved at the Trans
instruction.

This approach is somewhat restrictive, however. First, it chooses a fixed strategy
for conflict resolution—always roll back the transaction which most recently resolved
a Load. Second, it does not account for more aggressive forms of speculation. For
example, we might consider a model in which transactional Store operations can
be observed before the transaction commits, in a manner similar to the execution
shown in Figure 5. If these Store operations are later overwritten (as in S3), it causes
speculation failure in any observers (such as L2 and any subsequent instructions
in thread B). Finally, it may often be possible to perform partial rollback of
transactions.

If we can describe the minimal sets of instructions which must be discarded when
speculation fails, it is then easy to judge the correctness of any particular rollback
mechanism: it must roll back a superset of a minimal set of instructions.

Violations of Store Atomicity lead to dependency cycles. This is true even for
examples such as the one in Figure 8 in which the violation can first be detected as
an observation of an overwritten value. In the figure, rule b from Section 3.4 requires
us to insert an additional edge L4 �S5, and thus by rules d and e we must also insert
an edge CommitB � TransA. This results in a cycle involving both transactions.
Any minimal set of instructions must begin with a Load, since this represents the
first place in the execution where a different choice can be made which would lead
to a consistent outcome. We can choose to roll back any Load instruction which
breaks the cycle, erasing it and any instructions which depend upon it (either in
the same thread or via source edges). Because the cycle in Figure 8 encompasses
both transactions, we are free to choose to erase either L3 and CommitA or L4 and
CommitB. In the right-hand example Figure 5, the operations L2 and L4 do not lie
on the cycle; they simply cause the insertion of an edge involved in the cycle. We
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are free to roll back either one.
In practice, however, we can obtain conflicts between transactions for which it

makes sense to roll back a Store instruction rather than a Load. This is because
our model has infinite recall—if we roll back a Load, we are free to choose a new
candidate Store which might be an ancestor or descendant of the original Store
chosen. In practice, there is typically only one value available for a Load to observe.
By rolling back a Store operation, we make an older, overwritten value available for
observation.

6 Related work

The literature on memory models is a study in the tension between elegant, simple
specification and efficient implementation. Collier [5] is a standard reference on the
subject for computer architects, and established the tradition of reasoning from
examples which we have continued. The tutorial by Adve and Gharachorloo [1] is
an accessible introduction to the foundations of memory consistency.

Hardware Transactional Memory was first proposed by Herlihy and Moss over a
decade ago [11]. There has been a surge in interest in recent years, in part because
of close connections between the transactional model and ideas such as speculative
lock elision [17] and speculative loop parallelization, culminating in efforts such
as TCC [8]. However, there is relatively little work presenting formal semantics
for transactional memory; existing formalizations [10] take a “big step” view of
transactional execution in which a transaction is thought of as a single, all-or-nothing
step. Our hope is that our small step view of transactional execution helps clarify
the fine-grained behavior of actual transactional memory mechanisms.

The work described in this paper stands on the shoulders of the work presented in
our prior ISCA paper [4]. This work, in turn, rests upon an enormous body of work
on memory consistency starting with Lamport’s [14] characterization of sequential
consistency in 1979. We continue to be heavily influenced by the CRF memory
model [18], which reduces memory consistency to a set of primitive instructions
which can be composed in different ways to obtain particular memory models. In
common with CRF and UMM [20], we maintain a clear separation of local and global
aspects of the model and capture reordering constraints in a simple table. However,
the prior models take an architectural view of memory consistency (using caches
in CRF and buffers in UMM). Of graph-based approaches to memory consistency,
our technique has the greatest in common with TSOtool [9]. We avoid some of the
worst problems with undecidability [3] by establishing a clear mapping between a
Load L and its source source(L), something which cannot in general be done simply
by observing the values read and written—many Stores may write the same value
to the same location. This gives us something similar to the data independence of
Qadeer [16].

For programmers, the compiler and runtime can have an enormous influence
on memory model guarantees. One hope of transactional memory is to provide an
easier-to-use and yet more-efficient programming model than was possible using
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locks. However, data races are still possible in a transactional setting if shared data
is manipulated outside a transaction. The idea of properly synchronized programs [2]
will continue to be relevant, albeit under simplified assumptions. The community
is just beginning to formulate transactional consistency protocols comparable to
release consistency [7,13].

7 Conclusions and future work

In this paper we have built upon the Store Atomicity framework of [4] to examine
the behavior of memory models with an atomic memory and atomic memory trans-
actions. These models generalize SC to a setting in which there are atomic memory
transactions, and in which instructions in each thread are partially ordered rather
than totally ordered. Our technique is parameterized by a set of reordering rules; it
is easy to experiment with a broad range of memory models simply by changing the
requirements for instruction reordering.

By drawing a clear boundary between legal and illegal behaviors for a particular
memory model, it is easy to judge the safety of speculation using our framework.
It is not well-understood how to determine when speculation violates a relaxed
memory model; we argued that violations of Store Atomicity indicate violations
of serializability. A realistic model of transactional memory requires the use of
speculation, and we argued that it was not necessary to roll back whole transactions
when conflict occurs; instead, we can roll back any Load which breaks a cycle,
along with the instructions which depend upon it. In practice, of course, it may be
necessary to roll back a Store operation in order to make a new value available to
be loaded. An interesting aspect of transactional execution is that there is usually a
choice in this matter—when transactions conflict, either one of them can be rolled
back.
Better understanding of transactional serialization: Store Atomicity is a
property that captures which instructions must be ordered in any serialization of
an execution. In this respect, our semantics for transactional memory are not yet
completely satisfactory: in practice many implementations interleave the instructions
of multiple transactions without harm. The conditions outlined in Section 3.5 are a
starting point, but further refinement of these conditions is undoubtedly possible.
Tools for verifying memory model violations: It should be relatively easy
to take a program execution and demonstrate that it is correct according to a
given memory model without the need to compute serializations. Graph-based
approaches such as TSOtool [9] have already demonstrated their effectiveness in
this area. Techniques similar to those described here (most notably routing inter-
thread dependencies through Trans and Commit operations) have been suggested for
checking transactional memory models. Similarly, it would not be difficult to adapt
the techniques of UMM [20] to perform exhaustive model checking in a transactional
setting.
Reference specification of a computer family: It is worthwhile to write an ISA
specification which permits maximum flexibility in implementation and yet provides
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an easy to understand memory model. It is our hope that transactional models are
simpler to understand, particularly for programmers. It has been conjectured [8]
that transactional techniques (particularly batched updates) can scale well even
when a relatively strong memory model is chosen. It remains to be seen how well
these claims stand up on very large systems (those with tens, hundreds, or even
thousands of multi-core CPUs).
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