3,752 research outputs found

    Convex Programs for Temporal Verification of Nonlinear Dynamical Systems

    Get PDF
    A methodology for safety verification of continuous and hybrid systems using barrier certificates has been proposed recently. Conditions that must be satisfied by a barrier certificate can be formulated as a convex program, and the feasibility of the program implies system safety in the sense that there is no trajectory starting from a given set of initial states that reaches a given unsafe region. The dual of this problem, i.e., the reachability problem, concerns proving the existence of a trajectory starting from the initial set that reaches another given set. Using insights from the linear programming duality appearing in the discrete shortest path problem, we show in this paper that reachability of continuous systems can also be verified through convex programming. Several convex programs for verifying safety and reachability, as well as other temporal properties such as eventuality, avoidance, and their combinations, are formulated. Some examples are provided to illustrate the application of the proposed methods. Finally, we exploit the convexity of our methods to derive a converse theorem for safety verification using barrier certificates

    On the Aubin property of a class of parameterized variational systems

    Get PDF
    The paper deals with a new sharp criterion ensuring the Aubin property of solution maps to a class of parameterized variational systems. This class includes parameter-dependent variational inequalities with non-polyhedral constraint sets and also parameterized generalized equations with conic constraints. The new criterion requires computation of directional limiting coderivatives of the normal-cone mapping for the so-called critical directions. The respective formulas have the form of a second-order chain rule and extend the available calculus of directional limiting objects. The suggested procedure is illustrated by means of examples.Comment: 20 pages, 1 figur

    Sensitivity Analysis for Convex Multiobjective Programming in Abstract Spaces.

    Get PDF
    The main object of this paper is to prove that for a linear or convex multiobjective program, a dual program can be obtained which gives the primal sensitivity without any special hypothesis about the way of choosing the optimal solution in the efficient set.

    A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates

    Get PDF
    This paper presents a methodology for safety verification of continuous and hybrid systems in the worst-case and stochastic settings. In the worst-case setting, a function of state termed barrier certificate is used to certify that all trajectories of the system starting from a given initial set do not enter an unsafe region. No explicit computation of reachable sets is required in the construction of barrier certificates, which makes it possible to handle nonlinearity, uncertainty, and constraints directly within this framework. In the stochastic setting, our method computes an upper bound on the probability that a trajectory of the system reaches the unsafe set, a bound whose validity is proven by the existence of a barrier certificate. For polynomial systems, barrier certificates can be constructed using convex optimization, and hence the method is computationally tractable. Some examples are provided to illustrate the use of the method
    corecore