2,670 research outputs found

    Invariant set of weight of perceptron trained by perceptron training algorithm

    Get PDF
    In this paper, an invariant set of the weight of the perceptron trained by the perceptron training algorithm is defined and characterized. The dynamic range of the steady state values of the weight of the perceptron can be evaluated via finding the dynamic range of the weight of the perceptron inside the largest invariant set. Also, the necessary and sufficient condition for the forward dynamics of the weight of the perceptron to be injective as well as the condition for the invariant set of the weight of the perceptron to be attractive is derived

    Beyond Convexity: Stochastic Quasi-Convex Optimization

    Full text link
    Stochastic convex optimization is a basic and well studied primitive in machine learning. It is well known that convex and Lipschitz functions can be minimized efficiently using Stochastic Gradient Descent (SGD). The Normalized Gradient Descent (NGD) algorithm, is an adaptation of Gradient Descent, which updates according to the direction of the gradients, rather than the gradients themselves. In this paper we analyze a stochastic version of NGD and prove its convergence to a global minimum for a wider class of functions: we require the functions to be quasi-convex and locally-Lipschitz. Quasi-convexity broadens the con- cept of unimodality to multidimensions and allows for certain types of saddle points, which are a known hurdle for first-order optimization methods such as gradient descent. Locally-Lipschitz functions are only required to be Lipschitz in a small region around the optimum. This assumption circumvents gradient explosion, which is another known hurdle for gradient descent variants. Interestingly, unlike the vanilla SGD algorithm, the stochastic normalized gradient descent algorithm provably requires a minimal minibatch size

    Surrogate Functions for Maximizing Precision at the Top

    Full text link
    The problem of maximizing precision at the top of a ranked list, often dubbed Precision@k (prec@k), finds relevance in myriad learning applications such as ranking, multi-label classification, and learning with severe label imbalance. However, despite its popularity, there exist significant gaps in our understanding of this problem and its associated performance measure. The most notable of these is the lack of a convex upper bounding surrogate for prec@k. We also lack scalable perceptron and stochastic gradient descent algorithms for optimizing this performance measure. In this paper we make key contributions in these directions. At the heart of our results is a family of truly upper bounding surrogates for prec@k. These surrogates are motivated in a principled manner and enjoy attractive properties such as consistency to prec@k under various natural margin/noise conditions. These surrogates are then used to design a class of novel perceptron algorithms for optimizing prec@k with provable mistake bounds. We also devise scalable stochastic gradient descent style methods for this problem with provable convergence bounds. Our proofs rely on novel uniform convergence bounds which require an in-depth analysis of the structural properties of prec@k and its surrogates. We conclude with experimental results comparing our algorithms with state-of-the-art cutting plane and stochastic gradient algorithms for maximizing [email protected]: To appear in the the proceedings of the 32nd International Conference on Machine Learning (ICML 2015

    Simultaneous Model Selection and Optimization through Parameter-free Stochastic Learning

    Full text link
    Stochastic gradient descent algorithms for training linear and kernel predictors are gaining more and more importance, thanks to their scalability. While various methods have been proposed to speed up their convergence, the model selection phase is often ignored. In fact, in theoretical works most of the time assumptions are made, for example, on the prior knowledge of the norm of the optimal solution, while in the practical world validation methods remain the only viable approach. In this paper, we propose a new kernel-based stochastic gradient descent algorithm that performs model selection while training, with no parameters to tune, nor any form of cross-validation. The algorithm builds on recent advancement in online learning theory for unconstrained settings, to estimate over time the right regularization in a data-dependent way. Optimal rates of convergence are proved under standard smoothness assumptions on the target function, using the range space of the fractional integral operator associated with the kernel
    • …
    corecore