3,027 research outputs found

    The exponentially convergent trapezoidal rule

    Get PDF
    It is well known that the trapezoidal rule converges geometrically when applied to analytic functions on periodic intervals or the real line. The mathematics and history of this phenomenon are reviewed and it is shown that far from being a curiosity, it is linked with computational methods all across scientific computing, including algorithms related to inverse Laplace transforms, special functions, complex analysis, rational approximation, integral equations, and the computation of functions and eigenvalues of matrices and operators

    Perspectives on Beam-Shaping Optimization for Thermal-Noise Reduction in Advanced Gravitational-Wave Interferometric Detectors: Bounds, Profiles, and Critical Parameters

    Get PDF
    Suitable shaping (in particular, flattening and broadening) of the laser beam has recently been proposed as an effective device to reduce internal (mirror) thermal noise in advanced gravitational wave interferometric detectors. Based on some recently published analytic approximations (valid in the infinite-test-mass limit) for the Brownian and thermoelastic mirror noises in the presence of arbitrary-shaped beams, this paper addresses certain preliminary issues related to the optimal beam-shaping problem. In particular, with specific reference to the Laser Interferometer Gravitational-wave Observatory (LIGO) experiment, absolute and realistic lower-bounds for the various thermal noise constituents are obtained and compared with the current status (Gaussian beams) and trends ("mesa" beams), indicating fairly ample margins for further reduction. In this framework, the effective dimension of the related optimization problem, and its relationship to the critical design parameters are identified, physical-feasibility and model-consistency issues are considered, and possible additional requirements and/or prior information exploitable to drive the subsequent optimization process are highlighted.Comment: 12 pages, 9 figures, 2 table

    Stochastic expansions using continuous dictionaries: L\'{e}vy adaptive regression kernels

    Get PDF
    This article describes a new class of prior distributions for nonparametric function estimation. The unknown function is modeled as a limit of weighted sums of kernels or generator functions indexed by continuous parameters that control local and global features such as their translation, dilation, modulation and shape. L\'{e}vy random fields and their stochastic integrals are employed to induce prior distributions for the unknown functions or, equivalently, for the number of kernels and for the parameters governing their features. Scaling, shape, and other features of the generating functions are location-specific to allow quite different function properties in different parts of the space, as with wavelet bases and other methods employing overcomplete dictionaries. We provide conditions under which the stochastic expansions converge in specified Besov or Sobolev norms. Under a Gaussian error model, this may be viewed as a sparse regression problem, with regularization induced via the L\'{e}vy random field prior distribution. Posterior inference for the unknown functions is based on a reversible jump Markov chain Monte Carlo algorithm. We compare the L\'{e}vy Adaptive Regression Kernel (LARK) method to wavelet-based methods using some of the standard test functions, and illustrate its flexibility and adaptability in nonstationary applications.Comment: Published in at http://dx.doi.org/10.1214/11-AOS889 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    On accurate and efficient valuation of financial contracts under models with jumps

    Get PDF
    The aim of this thesis is to develop efficient valuation methods for nancial contracts under models with jumps and stochastic volatility, and to present their rigorous mathematical underpinning. For efficient risk management, large books of exotic options need to be priced and hedged under models that are exible enough to describe the observed option prices at speeds close to real time. To do so, hundreds of vanilla options, which are quoted in terms of implied volatility, need to be calibrated to market prices quickly and accurately on a regular basis. With this in mind we develop efficient methods for the evaluation of (i) vanilla options, (ii) implied volatility and (iii) common path-dependent options. Firstly, we derive a new numerical method for the classical problem of pricing vanilla options quickly in time-changed Brownian motion models. The method is based on ra- tional function approximations of the Black-Scholes formula. Detailed numerical results are given for a number of widely used models. In particular, we use the variance-gamma model, the CGMY model and the Heston model without correlation to illustrate our results. Comparison to the standard fast Fourier option pricing method with respect to speed appears to favour our newly developed method in the cases considered. Secondly, we use this method to derive a procedure to compute, for a given set of arbitrage-free European call option prices, the corresponding Black-Scholes implied volatility surface. In order to achieve this, rational function approximations of the inverse of the Black-Scholes formula are used. We are thus able to work out implied volatilities more efficiently than is possible using other common methods. Error estimates are presented for a wide range of parameters. Thirdly, we develop a new Monte Carlo variance reduction method to estimate the expectations of path-dependent functionals, such as first-passage times and occupation times, under a class of stochastic volatility models with jumps. The method is based on a recursive approximation of the rst-passage time probabilities and expected oc- cupation times of Levy bridge processes that relies in part on a randomisation of the time- parameter. We derive the explicit form of the recursive approximation in the case of bridge processes corresponding to the class of Levy processes with mixed-exponential jumps, and present a highly accurate numerical realisation. This class includes the linear Brownian motion, Kou's double-exponential jump-di usion model and the hyper-exponential jump- difusion model, and it is dense in the class of all Levy processes. We determine the rate of convergence of the randomisation method and con rm it numerically. Subsequently, we combine the randomisation method with a continuous Euler-Maruyama scheme to es- timate path-functionals under stochastic volatility models with jumps. Compared with standard Monte Carlo methods, we nd that the method is signi cantly more efficient. To illustrate the efficiency of the method, it is applied to the valuation of range accruals and barrier options.Open Acces

    General Semiparametric Shared Frailty Model Estimation and Simulation with frailtySurv

    Get PDF
    The R package frailtySurv for simulating and fitting semi-parametric shared frailty models is introduced. Package frailtySurv implements semi-parametric consistent estimators for a variety of frailty distributions, including gamma, log-normal, inverse Gaussian and power variance function, and provides consistent estimators of the standard errors of the parameters' estimators. The parameters' estimators are asymptotically normally distributed, and therefore statistical inference based on the results of this package, such as hypothesis testing and confidence intervals, can be performed using the normal distribution. Extensive simulations demonstrate the flexibility and correct implementation of the estimator. Two case studies performed with publicly available datasets demonstrate applicability of the package. In the Diabetic Retinopathy Study, the onset of blindness is clustered by patient, and in a large hard drive failure dataset, failure times are thought to be clustered by the hard drive manufacturer and model
    • …
    corecore