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Abstract

The aim of this thesis is to develop efficient valuation methods for financial contracts

under models with jumps and stochastic volatility, and to present their rigorous mathe-

matical underpinning. For efficient risk management, large books of exotic options need

to be priced and hedged under models that are flexible enough to describe the observed

option prices at speeds close to real time. To do so, hundreds of vanilla options, which

are quoted in terms of implied volatility, need to be calibrated to market prices quickly

and accurately on a regular basis. With this in mind we develop efficient methods for the

evaluation of (i) vanilla options, (ii) implied volatility and (iii) common path-dependent

options.

Firstly, we derive a new numerical method for the classical problem of pricing vanilla

options quickly in time-changed Brownian motion models. The method is based on ra-

tional function approximations of the Black-Scholes formula. Detailed numerical results

are given for a number of widely used models. In particular, we use the variance-gamma

model, the CGMY model and the Heston model without correlation to illustrate our re-

sults. Comparison to the standard fast Fourier option pricing method with respect to

speed appears to favour our newly developed method in the cases considered. Secondly,

we use this method to derive a procedure to compute, for a given set of arbitrage-free

European call option prices, the corresponding Black-Scholes implied volatility surface. In

order to achieve this, rational function approximations of the inverse of the Black-Scholes

formula are used. We are thus able to work out implied volatilities more efficiently than

is possible using other common methods. Error estimates are presented for a wide range

of parameters. Thirdly, we develop a new Monte Carlo variance reduction method to

estimate the expectations of path-dependent functionals, such as first-passage times and

occupation times, under a class of stochastic volatility models with jumps. The method is

based on a recursive approximation of the first-passage time probabilities and expected oc-

cupation times of Lévy bridge processes that relies in part on a randomisation of the time-

parameter. We derive the explicit form of the recursive approximation in the case of bridge

processes corresponding to the class of Lévy processes with mixed-exponential jumps, and
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present a highly accurate numerical realisation. This class includes the linear Brownian

motion, Kou’s double-exponential jump-diffusion model and the hyper-exponential jump-

diffusion model, and it is dense in the class of all Lévy processes. We determine the rate

of convergence of the randomisation method and confirm it numerically. Subsequently,

we combine the randomisation method with a continuous Euler-Maruyama scheme to es-

timate path-functionals under stochastic volatility models with jumps. Compared with

standard Monte Carlo methods, we find that the method is significantly more efficient. To

illustrate the efficiency of the method, it is applied to the valuation of range accruals and

barrier options.
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Introduction

It is by now well established that the classical Black-Scholes model, introduced in 1973,

lacks the flexibility to fit accurately to observed option price data (see, e.g., Gatheral [62]

and the references therein). Still, four decades after its introduction, the model continues

to be widely used, especially as a universal benchmark model, in part due to its tractability.

In a frictionless market in which the asset price is modelled as a geometric Brownian motion

(GBM) with constant drift and constant volatility, the price of a European call or put

option has a closed form: the celebrated Black-Scholes formula. The Black-Scholes formula

is employed by traders to convert prices into units of implied volatility and vice versa.

However, the presence of an implied volatility smile in option markets contradicts the

assumptions of the Black-Scholes model, and demonstrates that the returns are asymmetric

and leptokurtic. At shorter maturities, the volatility smile becomes more pronounced,

showing an increasing deviation from the GBM model. Additionally, real market asset

prices typically exhibit jumps and volatility clustering, while price paths in the Black-

Scholes model are continuous and have constant volatility. When assuming that asset

prices are continuous, one neglects the abrupt price movements in which most of the risk

seems to be concentrated. These observations are well known: we refer the reader to

Cont & Tankov [43] and Gatheral [62] for relevant background and further references.

A variety of models has been proposed to provide an improved description of the

price dynamics of the underlying that can more accurately describe the option surface.

Most of these models incorporate jumps, where empirical data strongly suggests their

presence. The incorporation of jumps is usually achieved by modelling the noise of the

stochastic differential equation (SDE) by a Lévy process with stationary and indepen-

dent increments, which can fit the volatility smile at a single maturity very well (see,

e.g., Schoutens [123] and the references therein). When the asset price is modelled as

St = S0eXt , where Xt is a Lévy process, it is common to refer to it as an exponential

Lévy model. A variety of models in the exponential Lévy class have been proposed in the

literature: KoBoL (also known as CGMY) model (Boyarchenko & Levendorskĭı & Leven-

dorskĭı [23], Carr et al. [38]), variance-gamma (VG) model (Madan & Seneta [99], Madan
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et al. [98]), Normal-inverse Gaussian (NIG) model (Barndorff-Nielsen [14]), Merton model

(Merton [105]), double-exponential jump-diffusion model (Kou [78]), hyper-exponential

jump-diffusion model (Lipton [93], Mordecki [108]) and mixed-exponential jump-diffusion

model (see, e.g., Cai & Kou [34]), among others. All of these models are able to account

for asymmetry and excess kurtosis in the returns while incorporating jumps, and therefore

overcome most of the shortfalls of the Black-Scholes model.

Stochastic volatility models represent another important generalisation of the Black-

Scholes model. In particular, the observed feature of volatility clustering is well handled by

stochastic volatility models and cannot be handled by exponential Lévy models because of

their independent increments. These models can generate smiles and skews similar to those

observed in the market, but are not able to calibrate well to short-term implied volatility

patterns. In order to overcome this issue, stochastic volatility models with jumps were

introduced such as the Bates model (Bates [17]) and the Scott model (Scott [124]). Note

that stochastic volatility Lévy models (Carr et al. [39]) also combine stochastic volatility

and jumps.

For these more realistic and more suitable models, tractable closed-form solutions for

vanilla options, barrier options and range accruals, which are amongst the most popular

derivatives in the financial market, are rarely available. Barrier options form effective

risk management tools and are liquidly traded in the Foreign Exchange markets. Range

accruals, together with callable range accruals and accrual swaps, on the other hand, are

occupation time derivatives, which are amongst the most popular exotic derivatives in

the interest rates market (see Brigo & Mercurio [30], for example). The closely related

corridor options have been considered in Fusai & Tagliani [60] for the Black-Scholes model

and in Cai et al. [33] for the Kou model.

A financial institution active in the derivatives market will seek to evaluate large port-

folios of vanilla options at speeds close to real time in order to control its risk positions.

Additionally, the large portfolios of exotic options need to be efficiently priced and hedged

in models that are flexible enough to describe the observed option prices (i.e., calibrate to

the vanilla market price quotes). It is therefore of paramount importance to price vanilla

options, as well as exotic options, as quickly and accurately as possible. To account for

this necessity, a particularly high emphasis of this thesis is put on the efficiency of the

introduced valuation methods, so that this work can also be seen to lie in the area of
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computational finance.

Chapter 2 is devoted to the development of a new and efficient method for the pricing

of vanilla options in the class of time-changed Brownian motion models, using rational ap-

proximations. Such approximations are known to offer an efficient and accurate method

for computation of the cumulative normal distribution function (see Abramowitz & Ste-

gun [3] for details) and could therefore be expected to perform well for approximations of

the Black-Scholes formula, which is given in terms of the cumulative normal distribution

function. Drawing on this theory, the value of a vanilla option in a time-changed model is

approximated, taking the form of a linear combination of a number of negative exponential

moments of the clock. The clock is an increasing stochastic process independent of the

Brownian motion driving the asset price. This yields an explicit approximation for the

value of a vanilla option in those time-changed models for which the Laplace transform

(and hence any negative exponential moment) of the clock is available in tractable form.

For many of the popular time-changed models the Laplace transform of the clock is known

in closed-form, where stochastic volatility Lévy models can also be handled. The rational

function approximation method is then applied to compute Black-Scholes implied volatil-

ities more efficiently than with the use of other common methods. In the case of implied

volatility, the method is not limited to time-changed models, but can be used for any given

set of arbitrage-free vanilla option prices.

Especially for the path-dependent barrier options and the range accruals considered

in Chapter 3, analytic expressions that can be evaluated efficiently rarely exist. Gener-

ally, one needs to utilise Monte Carlo, finite difference or Fourier-based methods for the

numerical evaluation of these exotic options. It is worth noting that (semi-)analytical

approaches have been developed for specific models (for parametric diffusion models see

Davydov & Linetsky [50] and Lipton [92], and for particular subclasses of exponential Lévy

models see Boyarchenko & Levendorskĭı [21], Geman & Yor [65], Jeannin & Pistorius [77],

Lipton [93], Kou & Wang [80], Rogers [117] and Sepp [125]). Kuznetsov et al. [82] recently

introduced the so called Wiener-Hopf Monte Carlo method for general Lévy processes,

which draws upon Carr’s so-called ‘Randomisation’ technique. However, one needs to

sample each path in the Monte Carlo method at a large number of exponential random

times, which makes the algorithm rather slow. The method presented in Chapter 3 of

this thesis is different since it enables one to sample the endpoint of the path, in the case
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of a Lévy process, in one big step and then utilises derived results of the corresponding

bridge. For this reason, we refer to the method as Lévy bridge Monte Carlo method,

which is based on a recursive approximation of path-dependent functionals that relies in

part on a randomisation of the time-parameter. Combined with the continuous Euler-

Maruyama scheme, the method can be used for a class of stochastic volatility models with

jumps. For the class of mixed-exponential jump-diffusion (MEJD) models, the recursions

are given in explicit form, which follow from the explicit Wiener-Hopf factorisation for this

class of models. Employing the randomisation method, a recursive algorithm is built to

quickly approximate these path-dependent quantities at a fixed maturity, T , where we use

Richardson extrapolation to accelerate convergence. The resulting bridge sampling Monte

Carlo method converges faster than the standard Euler-Maruyama method, while taking

advantage of the generality and flexibility of Monte Carlo methods. We analyse the rate

of convergence and run times for the recursive algorithm in detail, and perform a variety

of Monte Carlo simulations for a number of exotic derivatives and models. By utilising the

Lévy bridge Monte Carlo method we investigate the convergence rate of the discrete and

continuous Euler scheme under a class of stochastic volatility models with jump. We find

strong evidence for the rates to carry over from the diffusion setting, for which Gobet [68]

rigorously proved the rates of convergence to be 0.5 and 1.0 for the discrete and continuous

Euler scheme respectively.

The remainder of this thesis is organised as follows. In Chapter 1 we present pre-

liminaries on options, models and methods that are relevant for the derivations in later

chapters. Chapter 2 is devoted to the development of the rational function approximation

for time-changed Brownian motion models and implied volatilities. Chapter 3 presents the

Lévy bridge Monte Carlo method, and its application to the valuation of barrier options

and range accruals. At the end of Sections 2 and 3 we give concluding remarks.



Chapter 1

Preliminaries on options, models

and methods

In this chapter of the thesis we review preliminary topics needed for the discussion and

derivations in Chapters 2 and 3. In all that follows, we assume frictionless markets and

no arbitrage, and take as given an equivalent martingale measure (EMM) Q chosen by

the market. All stochastic processes defined in the following are assumed to live on the

complete filtered probability space (Ω,F , {Ft, t ≥ 0},Q). The underlying is defined as a

stochastic process St, which usually refers to a stock process in the equity market, but

can also refer to an interest rate, exchange rate, swap rate, default rate or a commodities

price. The majority of this thesis is devoted to pricing (exotic) options, the three of which

are discussed in Section 1.1, on exponential Lévy models and stochastic volatility models

with jumps. Since we assume the risk-free interest rate r ≥ 0 and the dividend yield

q ≥ 0 to be constant throughout this thesis, the only unknown after we have defined the

payoff of the option is the law of (St)t≥0 under Q, where we assume that Ste
−(r−q)t is a

martingale (under the measure Q and with respect to its natural filtration). We present the

most common models for (St) in Section 1.2. Tractable closed-form expressions for option

pricing are not available for most of the discussed models, not even for vanilla options,

and one needs to rely on numerical pricing methods to determine their value. Section 1.3

reviews the three main pricing methods used for the models and options discussed here.

Mathematical tools and techniques that will be crucial to derive the valuation methods

presented in the remainder of the thesis are summarised in Section 1.4.
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1.1 Payoffs

In the following we define three types of European options by their payoff HT . These are

European because they must be exercised, if at all, on a specified date, and are therefore in

contrast to American options where the time of exercise is at the holder’s discretion. HT

represents the amount of money paid by the option writer to the option holder at maturity

T . In our market setting, the value Πt(HT ) at time t of a financial instrument with payoff

HT and maturity T may then be computed as the discounted conditional expectation of

its terminal payoff with respect to the EMM Q such that:

Πt(HT ) = e−r(T−t)EQ[HT |Ft], (1.1.1)

where r denotes the deterministic and constant interest rate throughout this thesis. We will

discuss plain vanilla call and put options in Section 1.1.1, barrier options in Section 1.1.2

and range accruals in Section 1.1.3.

1.1.1 Plain vanilla call and put options

The term plain vanilla refers to the simplest, most standard, and most widely traded

options. Therefore, plain vanilla mainly refers to the European call and put options

discussed in this section, which are traded on automated exchanges.

A European call option on an asset (St) with maturity date T and strike price K is a

contingent claim that gives its holder the right, but not the obligation, to buy the asset

at date T for a fixed price K. The payoff at maturity is therefore HT (K) = max(ST −

K, 0). The arbitrage-free value of a call option at time zero can hence be expressed as the

discounted expectation of this payoff:

C0(K,T ) = e−rTEQ[(ST −K)+]. (1.1.2)

Similarly, we define the arbitrage-free value of a European put option as

P0(K,T ) = e−rTEQ[(K − ST )+], (1.1.3)

where the two can be linked through the put-call parity, which holds independently of

the chosen model for the underlying St. The put-call parity for a stock with continuous

dividend yield q, for example, is given by

Ct(K,T ) + Pt(K,T ) = Ste
−q(T−t) −Ke−r(T−t).
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In this framework, one could therefore deduce the put value from that of the call, or vice

versa, when the other parameters are given. We use this parity in Chapter 2, so that we

only need to focus on the valuation of call options.

1.1.2 Barrier options

Barrier options belong to the class of most widely-used instruments in derivative markets.

One of the main reasons for their popularity is the fact that they are cheaper than standard

(vanilla) options, but can offer a similar kind of payoff. Single barrier options, that are

barrier options with only one barrier level, are so common in the FX market, for example,

that they are sometimes included in broader definitions of the vanilla class. A natural

extension is formed by the class of double barrier options.

Single barrier options are available in eight different types, which is any possible com-

bination of down or up, knock-in or knock-out and put or call. An up-and-out call option

with strike K, for example, has the same payoff profile as a European call option with

strike K as long as the underlying has not reached or exceeded the barrier level H. As

soon as the underlying is quoted at or above the barrier, the up-and-out call becomes

worthless. The payoff profiles of all other barrier options follow logically. It should be

noted that any barrier option is therefore a path dependent exotic option.

To further illustrate, the general expression for the payoff, HT , of a knock-out option

at expiry can be summed by Equation (1.1.4).

Hout
T (K,H) = [φ(ST −K)]+I{ηSt>ηH,0≤t≤T}, (1.1.4)

where φ = 1 for a call and φ = −1 for a put. In addition, η = 1 if a down-and-out is

considered and η = −1 if an up-and-out is considered. The indicator function I has a

value of 1 as long as ηSt > ηH holds for all t between 0 and T and a value of 0 otherwise.

A similar functional form can be given for all knock-in options, which also follows from a

more instructive result however. Equation (1.1.5) gives the payoff of a knock-in option as

the difference of the corresponding knock-out option and the underlying plain vanilla call

or put with same strike as the barrier options (see Carr & Chou [37]).

H in
T (K,H) = Hvanilla

T (K)−Hout
T (K,H). (1.1.5)

By no arbitrage and since the two sides of the previous equation deliver the same payoff

at maturity, their value should also be the same at every time t before maturity. This
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identity is usually referred to as in-out-parity and is very useful if valuing the in option is

substantially easier than valuing the out option, or vice versa.

Another way to define barrier options is via the upper hitting time

(τU = inf {t : St ≥ U}) or lower hitting time (τL = inf {t : St ≤ L}), so that the payoff of

an up-and-out call, for example, can be defined as Hout
T (K,U) = [ST −K]+I(τU>T ). If, in

addition, we define τLU = min(τL, τU ), the payoff of a double-out barrier call option can be

expressed as Hout
T (K,L,U) = [ST −K]+I(τLU>T ). In the celebrated Black-Scholes model,

there are analytic formulas for single-barrier options, based on the reflection principle

for Brownian motion and a quickly converging infinite series for double-barrier options.

Valuation formulas for single barrier options in the Black-Scholes model go back as far as

the papers by Goldman et al. [69] and Merton [104]. For early work on double barrier

options see Kunitomo & Ikeda [81], Geman & Yor [65] and Pelsser [110]. For barrier

options under universal volatility models, we refer to Lipton & McGhee [95]. The special

case of the zero correlation Heston model is treated in Lipton [92]. However, when pricing

barrier options in exponential Lévy models or stochastic volatility models, one usually

needs to resort to numerical methods. We reference more recent work in Section 1.3

when discussing the particular numerical method. Also the static hedging of single barrier

options is by now well understood. Pioneering work in this direction include the articles

by Derman et al. [52] and Carr & Chou [36]. For an overview of more recent static hedges

and an analysis of their performance under realistic market conditions see Stolte [128].

1.1.3 Range accruals

Range accruals are a subclass of occupation time derivatives, where the payoff depends on

the time spent by the underlying asset (most commonly the Libor rate) in a predetermined

range. Like barrier options, range accruals are usually traded at a discount when compared

to standard products, like floating rate notes, since no interest is paid for the time the

range is left. Usually range accruals are written on interest rates, stock indices or swap

rates. Range accruals essentially come in two different forms, where the accruing time

is either discrete or continuous. The discrete version can be priced as a sum of digital

options, since the payoff depends on a finite number of discrete time points (e.g. for every

trading day at 12:00am, one needs to check whether the 3-month Libor rate is in some

predefined range over the lifetime of the option). See Fusai & Tagliani [60] for work in
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this direction. The continuous version, which we consider in Chapter 3, has the following

time-zero value;

RN0(a1, a2) = e−rTE
[
C

T

∫ T

0
I{a1≤Ss≤a2}ds

]
,

where a1 and a2 are the lower and upper bounds respectively, and C is the nominal.

The integral term measures the time the underlying spends in the range [a1, a2], and the

payoff is the ratio of this integral and the total time to maturity multiplied by the nominal

amount.

Occupation time options are sometimes defined to be slightly more general in that a

minimum coupon clause is included in the payoff

HCO
T = max

[
C

T

∫ T

0
I{a1≤Ss≤a2}ds,K

]
,

or that these interest payments are made every three month, for example, over a two year

maturity, where we refer to these options as corridor options (CO).

Akahori [4] obtains a pricing formula for RN0(a1, a2) for the case that the underlying

follows a geometric Brownian motion and a1 = −∞ (or a2 = ∞). Fusai [59] derives the

Laplace transform when both a1 and a2 are finite (also for corridor options). This work

was extended by Cai et al. [33] for Kou’s double-exponential jump-diffusion model (see

Section 1.2.3) by deriving double Laplace transforms for the option value. Two related

derivatives are the step options introduced by Linetsky [91] and the Parisian options

introduced by Chesney et al. [41]. In both of these articles, the authors use inverse Laplace

transforms to calculate the option price in the geometric Brownian motion setting. These

two options can be seen as hybrids between barrier options and occupation time options,

where the knock-out/knock-in only occurs if the underlying spends a predefined time

above/below the barrier. The option value and delta are therefore continuous functions

of the underlying price at the barrier (contrary to the standard barrier option), which

enables continuous hedging.

1.2 An overview of models for the underlying process

We recall that the time t value of an option is equal to the discounted expectation of

its terminal payoff with respect to the EMM Q as defined in Equation (1.1.1). After

defining the payoff of an option, the only ingredient missing is specifying the model for
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the underlying process (St)t≥0. In the general setup outlined above, specifying an option

pricing model is then equivalent to specifying the law of (St)t≥0 under Q, which is also

referred to as the ‘risk-neutral’ or ‘risk-adjusted’ dynamics of S. Here we will concentrate

on some of the most popular risk-neutral dynamics of S that will all be utilised in the

remainder of this thesis. Many of the models utilised here are exponential Lévy models,

where Lévy processes are introduced next. We will then discuss three subclasses of Lévy

processes: time-changed Brownian motions, jump-diffusion processes and infinite active

processes in Section 1.2.2, 1.2.3 and 1.2.4 respectively. In Section 1.2.5 we review stochastic

volatility models (with jumps). All models reviewed in this section can be written as

St = S0eYt , where Yt is a stochastic process. We review below some of the most popular

models St together with the dynamics for the corresponding stochastic process Yt.

1.2.1 Lévy processes

A Lévy process (Xt)t≥0 is a stochastic process with independent stationary increments

that is stochastically continuous with X0 = 0. It has marginal distributions that are

infinitely divisible. A probability distribution F on R is said to be infinitely divisible if for

any integer m ≥ 2, there exists m i.i.d. random variables Y1, ..., Ym such that Y1 + ...+Ym

has distribution F . Well-known examples of infinitely divisible laws are the Gaussian and

the gamma distributions. Lévy processes provide key examples of stochastic processes in

continuous time and are used widely in mathematical finance to model the risk-neutral

price dynamics.

The characteristic function of a random variable is the Fourier transform (see Sec-

tion 1.3.2) of its distribution. This transform is very useful in the current context as

many probabilistic properties of a random variable correspond to analytical properties

of its characteristic function. Given a Lévy process (Xt)t≥0, define the corresponding

characteristic function as follows:

ΦXt(z) ≡ E[eizXt ] =

∫ ∞
−∞

eizxdµXt(x) = e−tφ(z), z ∈ R, (1.2.1)

where φ : R → C is called the characteristic exponent and µXt is the distribution of Xt

(note that the associated density may not exist - indeed, the distribution of a compound

Poisson process has an atom at zero for all t). Note that the characteristic exponent

is the cumulant generating function of X1 and that the only degree of freedom we have
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in specifying a Lévy process is to specify its distribution at a single point in time (e.g.

at t = 1). A characteristic function is always continuous and satisfies ΦX(0) = 1. The

characteristic exponent can be shown to exist and shown to be a continuous function. By

the Lévy-Khintchine representation it is also known that the characteristic exponent can

be written as

φ(z) = −iγz +
1

2
Az2 +

∫ ∞
−∞

(
1− eizx + izxI|x|≤1

)
ν(dx),

with characteristic triplet (A, ν, γ), where γ ∈ R represents a linear drift, A represents the

diffusion component and ν is named the Lévy measure, which is a measure on (R,B(R))

satisfying the conditions:∫
|x|≤1

|x|2ν(dx) <∞,
∫
|x|≥1

ν(dx) <∞.

For any set B ∈ B(R), for which ν(B) is finite, ν(B) is equal to the expected number, per

unit time, of jumps whose size belongs to B.

In addition it is known that any Lévy process can be decomposed into the sum of a

Brownian motion, a linear drift and a purely discontinuous process composed by super-

posing independent compound Poisson processes. This important result is known as the

Lévy-Itô decomposition (for more details see Sato [121]).

Lévy models can be broadly divided into two categories: (a) jump-diffusion or finite

activity models (discussed in Section 1.2.3), and (b) infinite activity models (discussed in

Section 1.2.4). Many of the models in the second category can be written as Brownian

motions time-changed by an increasing stochastic process. We will discuss time-changed

Brownian motion models in Section 1.2.2. The idea of stochastic time-changes was first

discussed in a financial context by Clark [42], who modelled the observed price process as

a Brownian motion run on an independent second process called the clock.

A research direction that obtained a lot of attention in recent years is the investiga-

tion of the asymptotic behaviour for the short-term or long-term volatility smile of Lévy

processes. For a recent survey and new results see Andersen & Lipton [8] and references

within. For background on the application of Lévy processes in option pricing see Cont

& Tankov [44] and Schoutens [123]. Sato [121] and Bertoin [18] are general treatments of

the theory of Lévy processes.
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1.2.2 Time-changed Brownian motions

A time-changed Brownian motion with drift is defined as

Xt = θZt + σWZt , (1.2.2)

where (Wt)t≥0 is a Brownian motion and (Zt) is an independent stochastic process called

the clock. The clock (Zt)t≥0 is required to be an increasing process for which the Laplace

transform at time t should be available in tractable form. Typically, the process (Zt) is

modelled by either a Lévy subordinator or as a time integral of a positive diffusion; we

discuss both of these approaches below in more detail. Note that suitable models for the

clock can also be constructed by combining these two ingredients and therefore include

time-changes of the form Zt = Z1
t +Z2

t or Zt = Z1
Z2
t
, where both (Z1

t ) and (Z2
t ) can be (i)

a Lévy subordinator, (ii) an integral of a non-negative process, or (iii) any other increasing

process. It is worth noting that the three stochastic volatility Lévy processes discussed

by Carr et al. [39] are of this form. This follows since the processes considered in [39] are

three Lévy processes time-changed by a mean-reverting square root process, where each

of the Lévy processes itself (the processes corresponding to the normal inverse Gaussian

model, the VG model and the CGMY model) can be written as a time-changed Brownian

process.

Time-changing with an independent Lévy subordinator. A Lévy subordina-

tor (Zt)t≥0 is a Lévy process that takes values in R+ with characteristic triplet (0, ρ, β)

satisfying ρ((−∞, 0]) = 0,
∫∞

0 (x ∧ 1)ρ(dx) < ∞, and β ≥ 0; that is, (Zt)t≥0 has no dif-

fusion component, only non-negative jumps of finite variation, and a non-negative drift.

As a consequence, the trajectories of Z are almost surely increasing. Since (Zt) is a pos-

itive random variable for all t, it is natural to describe its distribution using the Laplace

transform:

E[e−uZt ] = e−tψ(u) = e−t(βu+
∫∞
0 (1−e−ux)ρ(dx)), ∀u ≥ 0, (1.2.3)

where ψ(u) is called the Laplace exponent of Z (see Section 1.3.2 for details on Laplace

transforms). Since (Zt)t≥0 is an increasing process, it can be interpreted as a ‘time defor-

mation’ and be used as a stochastic clock. Subordinating any Lévy process (in particular,

a Brownian motion) by another independent Lévy process will yield a new Lévy process

with known Lévy triplet:
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Theorem 1.2.1 (Theorem 30.1 in Sato [121]). Let {Zt : t ≥ 0} be a subordinator (an

increasing Lévy process on R) with Lévy measure ρ, drift β0, and PZ1 = λ. That is,

E
[
e−uZt

]
=

∫
[0,∞)

e−usλt(ds) = etφ(−u), u ≥ 0,

where, for any complex w with Re w ≤ 0,

φ(w) = β0w +

∫
(0,∞)

(ews − 1) ρ(ds)

with

β0 ≥ 0 and

∫
(0,∞)

(1 ∧ s) ρ(ds) <∞.

Let {Xt : t ≥ 0} be a Lévy process on Rd with generating triplet (A, ν, γ) and let µ = PX1.

Suppose that {Xt} and {Zt} are independent. Define

Yt(w) = XZt(w)(w), t ≥ 0.

Then {Yt} is a Lévy process on Rd and

P [Yt ∈ B] =

∫
[0,∞)

µs(B)λt(ds), B ∈ B(Rd),

E
[
ei〈z,Yt〉

]
= etφ(log µ̂(z)), z ∈ Rd.

The generating triplet (A#, ν#, γ#) of {Yt} is a follows:

A# = β0A,

ν#(B) = β0ν(B) +

∫
(0,∞)

µs(B)ρ(ds), B ∈ B(Rd\{0}),

γ# = β0γ +

∫
(0,∞)

ρ(ds)

∫
|x|≤1

xµs(dx).

If β0 = 0 and
∫

(0,1] s
1/2ρ(ds) <∞, then {Yt} is a type A or B and has drift 0.

Subordinating a Brownian motion leads to another Brownian motion if it is observed on

a new time scale, that is, the stochastic time scale given by Zt. The financial interpretation

of this new time scale is business time, which is faster when more information arrives at the

market and slower when less information arrives. This makes models derived by Brownian

subordination easier to interpret than general Lévy models. In particular, all models

discussed in Section 1.2.4 can be represented as time-changed Brownian motion models,

where (Zt) is modelled by a Lévy subordinator. For each of the three models discussed in
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that section, we give details about the Laplace transform of the clock. Standard references

on Lévy subordination include Bertoin [18] (Chapter 3) and Sato [121]. Also see Geman et

al. [64] for background on the role of subordination in financial applications.

Time-changing with a time integral of a positive Markov process. In this

case the stochastic clock (Zt)t≥0 is defined as follows:

Zt =

∫ t

0
Vsds, (1.2.4)

where (Vt)t≥0 is a mean-reverting non-negative Markov process. The mean-reversion is

required to guarantee that the random time-change persists. As an example of this class

of models, we refer to the Heston model without correlation discussed in Section 1.2.5.

Another example are the so-called quadratic models (see Leippold & Wu [85]), which arise

by taking (Vt)t≥0 to be a mean-reverting affine jump-diffusion process.

1.2.3 Jump diffusion processes

A Lévy process of jump-diffusion type has the following form:

Xt = µt+ σWt +

Nt∑
i=1

Ji, µ ∈ R, σ > 0, (1.2.5)

where Wt is a standard Brownian motion, σ the volatility, N is a Poisson process with

intensity λ and Ji are jump sizes (i.i.d. variables). All sources of randomness are as-

sumed to be independent of each other. To define a jump diffusion model completely, one

needs to specify the distribution of the jumps and this is where the four models discussed

in the sequel of this section differ from each other. In this category of models, a finite

number of jumps occurs at random times before a finite time-horizon and these can be

interpreted as rare events, crashes or large drawdowns. In all of these models, the dis-

tribution of the jump sizes is known, which makes them easy to simulate. These models

also perform quite well for the purposes of implied volatility interpolation and are par-

ticularly useful in pricing options with short maturities, which is one of the reasons they

are among the most popular alternatives to the classical Black-Scholes model. However,

they rarely lead to closed-form densities, so that statistical estimation and calculation of

moments or quantiles become computationally more involved. We proceed by presenting

the Merton model, Kou’s double-exponential jump-diffusion model, the hyper-exponential

jump-diffusion model and the mixed-exponential jump-diffusion model in more detail.
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Gaussian jumps (Merton model). The Merton model was introduced by Merton in

1976 [105] and he was the first to explore jump-diffusion models in a financial context. In

this model, the jumps Ji in Equation (1.2.5) are assumed to have a Gaussian distribution

with mean γ and standard deviation δ: Ji ∼ N (γ, δ2). In this model, it can be shown

that the probability density of Xt is a quickly converging series. Indeed,

P(Xt ∈ A) =

∞∑
k=0

P(Xt ∈ A|Nt = k)P(Nt = k)

entails that the probability density is

pt(x) = e−λt
∞∑
k=0

(λt)k exp
(
− (x−µt−kγ)2

2(σ2t+kδ2)

)
k!
√

2π(σ2t+ kδ2)

and that similarly, arbitrage-free values of European options follow as an infinite series of

terms involving the Black-Scholes formula (see Equation 2.1.5):

C0(K,T ) =
∞∑
k=0

(λ′T )ke−λ
′T

k!
CBS(S0,K, T, rn, 0, σn),

where λ′ = λeγ+δ2/2, σ2
nT = σ2T + nδ2, rnT = (r + µJ)T + n(γ + δ2/2), and µJ is the

jump compensator. The Lévy density is given by

ν(x) =
λ√
2πδ

exp

(
−(x− γ)2

2δ2

)
and it follows that the characteristic function of XT is be explicitly stated as

ΦXT (z) = exp

(
izωT − 1

2
z2σ2T + λT (eizγ−z

2δ2/2 − 1)

)
,

where ω = −1
2σ

2−λ(eγ+δ2/2−1). We refer to Merton [105] for more details and derivations.

Double-exponential jumps (Kou model). In the Kou model [78] the jumps are

distributed according to a double-exponential density

f(x) := p+α+e−α
+xI(0,∞)(x) + p−α−e−α

−|x|I(−∞,0)(x),

where p+ +p− = 1 and p± ∈ [0, 1]. In addition we restrict to α+ > 1 and α− > 0 to ensure

that the stock price has a finite expectation. It follows that the characteristic function is

given by

ΦXT (z) = exp

(
izωT − 1

2
z2σ2T + λT

(
p+

α+ − iz
− p−

α− + iz

))
,
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where ω = −1
2σ

2−λ
(

p+

α++1
− p−

α−−1

)
. Although the probability density is not available in

closed form, Kou derives tractable expressions for plain vanilla options, which depend on

special functions that can be time consuming and delicate to compute. Kou & Wang [79]

give analytic expressions for the Laplace transforms of barrier and lookback options, and

derive an iterative procedure to solve these, which again depend on the special function.

Hyper-exponential jumps (HEJD model). The hyper-exponential jump-diffusion

(HEJD) model was first used in a finance context by Lipton [93] and Mordecki [108], and

is a special case of the wider class of mixed-exponential jump-diffusions, which we discuss

below. It can be seen as a generalisation of Kou’s double-exponential jump-diffusion model

replacing the double-exponential distribution by a hyper-exponential distribution, which

is given by:

f(x) :=
m+∑
i=1

p+
i α

+
i e−α

+
i xI(0,∞)(x) +

m−∑
j=1

p−j α
−
j e−α

−
j |x|I(−∞,0)(x),

where

p±k ∈ [0, 1],
m±∑
k=1

p±k = q±, q++q− = 1 and −α−
m− < · · · < −α

−
1 < 0 < α+

1 < · · · < α+
m+ .

For this model the Laplace exponent ψ(s) = logE[esX1 ] for s ∈ (−α−1 , α
+
1 ) can be shown

to take the following form

ψ(s) = µs+ σ2s2/2 + λ

m+∑
i=1

p+
i

α+
i

α+
i − s

+

m−∑
j=1

p−j
α−j

α−j + s
− 1

 . (1.2.6)

If in addition α+
i > 1 for all i, then E[St] < ∞. When defining ρ±k (q) as the roots of the

Cramér-Lundberg equation

ψ(s) = q, q > 0, (1.2.7)

the roots satisfy

ρ−
m−+1

(q) < −α−
m− < ρ−

m−(q) < −α−
m−−1

< · · · < ρ−2 (q) < −α−1 < ρ−1 (q) < 0

0 < ρ+
1 (q) < α+

1 < ρ+
2 (q) < · · · < ρ+

m+(q) < α+
m+ < ρ+

m++1
(q),

if q is real. Note that this encapsulating structure makes it easy to find them numeri-

cally. It is also worth mentioning that the hyper-exponential distribution can approximate

any jump diffusion models with completely monotone jump size distributions arbitrarily
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closely. For further background on the HEJD process, which is a special case of a phase-

type Lévy process, see Asmussen et al. [10].

Mixed-exponential jumps (MEJD model). The mixed-exponential jump diffu-

sion (MEJD) model has been used in applied probability for many years (see Asmussen [9]

and references therein, for example) and was first used in finance by Cai & Kou [34]. The

jumps in the MEJD model have a mixed-exponential distribution, which is a weighted av-

erage of exponential distributions with possibly negative weights. It therefore generalises

the hyper-exponential distribution, where all weights need to be positive, as well as the

double-exponential distribution, which is a weighted average of only two exponential dis-

tributions. Compared to the hyper-exponential distribution, one loses the encapsulating

structure for the roots of the Cramér-Lundberg equation so that it takes longer to find

these numerically, but gains that this distribution is dense with respect to the class of all

distributions in the sense of weak convergence (see Botta & Harris [19]). For example in-

cluded are discrete distributions, the normal distribution and various exponential-, power-

and heavy-tail distributions.

The jumps Ji are distributed according to the mixed-exponential density

f(x) :=

m+∑
i=1

p+
i α

+
i e−α

+
i xI(0,∞)(x) +

m−∑
j=1

p−j α
−
j e−α

−
j |x|I(−∞,0)(x),

where

m±∑
k=1

p±k = q±, q+ + q− = 1 and − α−
m− < · · · < −α

−
1 < 0 < α+

1 < · · · < α+
m+ .

Since the weights, p±k , are allowed to be negative in the MEJD model, one needs

to restrict the model parameters to guarantee that f(x) remains a probability density

function (PDF). A necessary condition for it to be a PDF is p±1 > 0,
∑m±

k=1 p
±
k α
±
k ≥ 0.

A sufficient condition is
∑l

k=1 p
±
k α
±
k ≥ 0 ∀l = 1, ...,m± (for alternative conditions see

Bartholomew [16]). We impose the additional condition that α+
i > 1 to ensure that the

stock price St has a finite expectation. Contrary to the models before, here the roots can

(and mostly will) be complex. The Laplace exponent is of the same form as for the HEJD

model and we restate it here for convenience

ψ(s) = µs+ σ2s2/2 + λ

m+∑
i=1

p+
i

α+
i

α+
i − s

+

m−∑
j=1

p−j
α−j

α−j + s
− 1

 (1.2.8)

for s ∈ (−α−1 , α
+
1 ).
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1.2.4 Infinite activity models

The second category comprises models with infinitely many jumps in every time interval.

It has been argued that such models give a more realistic description of the price process

at various time scales (see Madan [97], Carr et al. [38] and Geman [63]). These models are

capable of generating non-trivial small-time behaviour and, as shown in [38], the Brownian

component is no longer needed. As mentioned above, many of the models in this category

can be constructed via Brownian subordination, which adds analytical tractability. We

now discuss three infinite active models in more detail.

Variance-gamma model. The variance-gamma (VG) process was first introduced

to finance by Madan & Seneta [99] in its symmetric version, and later extended to its

asymmetric version by Madan, Carr & Chang [98]. In the asymmetric version discussed

here, the VG process has three parameters: θ ∈ R, σ > 0, ν > 0. It is defined by

evaluating a Brownian motion with drift θ and volatility σ, as given in Equation (1.2.2), at

an independent gamma time. Specifically, the time-change (Zt) is now given by a gamma

process independent of (Wt) with marginal distribution at time t following a gamma

distribution G( tν , ν) with shape parameter t
ν and scale parameter ν. The probability

density function, conditional on Z0 = 0, is given by

fZt(x) =
x
t
ν
−1e−

x
ν

ν
t
ν Γ( tν )

. (1.2.9)

The Laplace transform of the value (Zt) of the corresponding clock at time t therefore has

the following form:

E[e−uZt ] = (1 + νu)−
t
ν . (1.2.10)

CGMY model. The eponymous CGMY model is named after Carr, Geman, Madan &

Yor [38] and can be seen as a generalisation of the VG model discussed above. It is also

referred to as the KoBoL model as it was first used in finance by Boyarchenko & Leven-

dorskĭı [23] and is based on Koponen processes. In particular, the class of tempered stable

processes that can be represented as time-changed Brownian motion coincides with this

model. The characteristic function of (Xt) in this model can be shown to equal:

E[eizXt ] = etCΓ(−Y )[(M−iz)Y +(G+iz)Y −MY −GY ]. (1.2.11)
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The Laplace transform of the corresponding clock (Zt) at time t (see Madan & Yor [100]

for details) is given by

E[e−uZt ] = etCΓ(−Y )[2rY cos(ηY )−MY −GY ] (1.2.12)

r =
√

2u+GM

η = arctan

(√
2u− ((G−M)/2)2

(G+M)/2

)
.

For this model we set the drift in Equation (1.2.2) equal to θ = G−M
2 and the volatility to

σ = 1.

NIG model. The normal inverse Gaussian (NIG) model was introduced by Barndorff-

Nielsen [13]. In this model, the log returns of the risky asset log(St+s/St) are assumed to

follow a NIG(α, β, δs) distribution (where s represents the length of the increment). The

NIG distribution with parameters α > 0,−α < β < α, and δ > 0 is infinitely divisible and

defined as the normal variance-mean mixture of a normal distribution where the mixing

density is the inverse Gaussian distribution. The probability density function is defined

on the whole real line and given by

f(x;α, β, δ) =
αδ

π

K1(α
√
δ2 − x2)√

δ2 + x2
e

(
δ
√
α2+β2+βx

)
, x ∈ R,

where K1 is the modified Bessel function of third order and index 1. The corresponding

characteristic function is

Φ(u;α, β, δ) = exp
(
−δ
(√

α2 − (β + iu)2 −
√
α2 − β2

))
.

The NIG distribution is a special case of generalised hyperbolic distributions and can

approximate most hyperbolic distributions very closely. If we define the NIG process as a

Lévy process with stationary and independent NIG-distributed increments, where X0 = 0

with probability 1, then this process has no Brownian component, a Lévy measure of

ν(dx) = αδπ−1 exp(βx)K1(α|x|)(|x|)−1dx and a drift component of

γ = 2δαπ−1
∫ 1

0 sinh(βx)K1(αx)dx. Alternatively, the NIG process can be written as a

time changed Brownian motion – in the setting of (1.2.2) it follows that σ = δ, θ =

βδ2, and the clock follows an inverse Gaussian process with parameters µ = 1 and λ =

δ
√
α2 − β2. This model was later extended to the generalised hyperbolic class by Eberlein,

Keller & Prause [55].
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1.2.5 Stochastic volatility models

In a stochastic volatility model, a second random process (σt) is introduced, such that

dSt
St

= µdt+ σtdWt, (1.2.13)

where (σt)t≥0 is a positive stochastic process interpreted as the instantaneous volatility

of the underlying and chosen to be mean-reverting in most models. Contrary to the

exponential-Lévy models, the price process St is no longer Markovian, since it now also

depends on the level of volatility. Well known stochastic volatility models are the Hull-

White model [74], the Stein-Stein model [127] and the Heston model [72]. In all three of

these models, (σt)t≥0 is a diffusion driven by a Brownian motion, so that (St, σt) becomes

a two-dimensional Markovian diffusion. These models can generate smiles and skews

similar to those observed in the market, but are not able to calibrate to short-term implied

volatility patterns well. The Bates model [17] overcomes this issue by introducing jumps

in the price process. In general, jumps can be added to either the price process or the

volatility process, or both. In addition, the Brownian motion in the volatility process can

be correlated to the Brownian motion in the price process. If the characteristic functions

for the log-price exists in closed form, European options can be priced quickly using

the Fourier inversion method reviewed in Section 1.3.2. For path-dependent options the

Fourier transforms are not available in closed form though and one must turn to other

numerical methods. Andersen [6] and more recently Glasserman & Kim [67] develop

efficient simulation methods for the Heston model that can be used in a Monte Carlo

method (see Section 1.3.1). The Heston model is one of the most popular stochastic

volatility model, which is the reason we discuss it in more detail below (we discuss the

general case first and then restrict to the zero-correlation case). The stochastic volatility

model with jumps introduced by Bates is discussed at the end of this section. Two

further stochastic volatility models that are widely used are the SABR model [70] and the

Barndorff-Nielsen & Shephard model [15].

Heston model with correlation

In the Heston model [72], the volatility process σt in Equation (1.2.13) is equal to the

square root of a positive CIR rate process as introduced by Cox, Ingersoll & Ross [47].
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The stochastic differential equation for this square root process (Vt)t≥0 is given by

dVt = κ(δ − Vt)dt+ ξ
√
VtdBt, t ≥ 0, (1.2.14)

where Bt is another standard Brownian motion. The correlation between Wt and Bt is

given by ρ ∈ [−1, 1]. Additionally, the CIR activity rate process starts at V0 > 0, κ > 0 is

the rate of mean reversion, δ > 0 is the long-run activity rate level and ξ > 0 is the active

rate volatility. It is further assumed that the Feller condition (2κδ ≥ ξ2) is satisfied to

ensure that the process never hits zero. The transition law of the variance process (Vt)t≥0

is a scaled non-central chi-square distribution so that Vt can be simulated exactly given

V0:

Vt =
ξ2(1− e−κt)

4κ
χ
′2
θ

(
4κe−κt

ξ2(1− e−κt)
V0

)
, t > 0, θ =

4κδ

ξ2
, (1.2.15)

where χ
′2
γ (λ) denotes a non-central chi-square random variable with γ degrees of freedom

and non-centrality parameter λ.

Following the Broadie-Kaya method [31], the Heston model can then be described by

the following pair of stochastic differential equations

dSt
St

= µdt+
√
Vt(ρdBt +

√
1− ρ2dWt)

dVt = κ(δ − Vt)dt+ ξ
√
VtdBt, t ≥ 0,

so that one can write

St = S0 exp

(
µt− 1

2

∫ t

0
Vsds+ ρ

∫ t

0

√
VsdBs +

√
1− ρ2

∫ t

0

√
VsdWs

)
,

where the two Brownian motions Wt and Bt are now independent. Notice that it also

follows from (1.2.14) that∫ t

0

√
VsdBs =

1

ξ

(
Vt − V0 − κδt+ κ

∫ t

0
Vsds

)
. (1.2.16)

Broadie and Kaya then observe that log(St/S0) is conditionally normal, given
∫ t

0 Vsds:

log(St/S0) ∼ N
(
µt− 1

2

∫ t

0
Vsds+

ρ

ξ

(
Vt − V0 − κδt+ κ

∫ t

0
Vsds

)
,
√

1− ρ2

∫ t

0
Vsds

)
.

It therefore follows, that simulating St in the Heston model, given (S0, V0), reduces to

sampling from (∫ t

0
Vsds

∣∣∣∣V0, Vt

)
. (1.2.17)
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Broadie and Kaya sample from Equation (1.2.17), the conditional distribution of the inte-

grated variance over [0, t], given the level of the variance at the endpoints, through numeri-

cal inversion of its characteristic function. However, this method is rather time-consuming,

and Glasserman & Kim [67] develop a very efficient method to sample from (1.2.17) using

properties of squared Bessel bridges.

Heston model without correlation

The Heston model without correlation is obtained by setting ρ = 0 in the above and

can be written as a time-changed Brownian motion model. To do so, define (Vt)t≥0 in

Equation (1.2.4) to be equal to the positive CIR rate process defined in (1.2.14) where Bt

is now independent of the Brownian motion (Wt) in Equation (1.2.2).

The characteristic function of (Zt) is well known from the work of Cox, Ingersoll &

Ross [47]. We recall that the Laplace transform of (Zt) in this setting is given by

E[e−uZt ] = A(t, u)e−B(t,u)V0

=

(
2ηe

(η+κ)t
2

(η + κ)(eηt − 1) + 2η

) 2κδ
ξ2

exp

[
−2u(eηt − 1)V0

(η + κ)(eηt − 1) + 2η

]
, (1.2.18)

where η =
√

2ξ2u+ κ2. In the setting of (1.2.2), the Heston model without correlation

corresponds to the parameter values σ = 1 and θ = −σ2

2 = −1
2 .

Bates model

The Bates model [17] is a combination of the Heston model with correlation and the Merton

model. The only difference to the Heston model is that proportional log-normal jumps are

added to the price equation. As mentioned above, this seemingly small change overcomes

the difficulty that stochastic volatility models without jumps have when calibrating short

maturities. The model can be described by the following pair of stochastic differential

equations

dSt
St

= µdt+
√
Vt(ρdBt +

√
1− ρ2dWt) + cdZt

dVt = κ(δ − Vt)dt+ ξ
√
VtdBt, t ≥ 0,

where everything is defined as above, and Zt is a compound Poisson process with intensity

λ and log-normal distributed jump sizes as in the Merton model. Scott [124] generalises
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this model by modelling the interest rate by another independent mean-reverting stochastic

process. One can also generalise the Bates model by replacing the Gaussian distribution

for the jumps by any other distribution - we will refer to this model as the generalised

Bates model from here onwards.

1.3 Pricing methods

For most of the models discussed in the previous section even plain vanilla options are not

available in ‘truly’ tractable closed-form and one needs to resort to numerical methods for

their valuation. One might argue that two exceptions are the Heston model, for which

semi-closed-form Fourier transformations are available, and the Kou model, for which

vanilla options can be explicitly expressed in terms of special functions. In the Merton

model vanilla options follow as a quickly converging infinite series of Black-Scholes prices.

Computationally more complicated are exotic options however, for which no tractable

closed-form formulas are available for any of the discussed models. One is hence left with

the question of which numerical pricing method to choose. In mathematical finance, the

Monte Carlo method, Laplace/Fourier inversion method and finite difference methods are

the most widely used methods. Note that there are more tailored methods that might be

more efficient for a particular class of models/options.

Laplace/Fourier inversion methods are usually very efficient if the Laplace/Fourier

transformation of the quantity of interest can be derived in closed form. Additionally, the

Fast Fourier Transform (FFT) method can be used to perform the transform for many

options with same maturity but different strike in one go. Finite Difference methods

are very fast and efficient in low dimensions, but become less feasible for higher dimen-

sions because computational complexity grows exponentially with dimension (for a fixed

precision). Monte Carlo methods, on the other hand, grow linearly with dimension and

are therefore more efficient in these cases. The basic Monte Carlo method, the Euler-

Maruyama method defined below, converges rather slowly however, and one is therefore

fostered to use and develop efficient variance reduction techniques.

We discuss Monte Carlo methods in Section 1.3.1 and Laplace/Fourier inversion meth-

ods in Section 1.3.2. In the latter section, we also discuss the standard FFT method, as

presented by Carr & Madan [40], in detail. In both sections we review the main properties
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of the particular method, but put most emphasis on how to use them in order to price

(exotic) options for the models discussed in Section 1.2. The third method, the finite

difference method, is a numerical method for approximating the solution of a differential

equation using finite difference equations to approximate derivatives. For the class of Lévy

models, the option value solves a second-order partial integro-differential equation. We

refer the interested reader to the papers by Andersen & Andreasen [7] and Cont & Voltch-

kova [44] for more details. Note that other methods have been proposed to solve these

differential equation – see Amin [5], who uses multinomial trees, Boyarchenko & Leven-

dorskĭı [25] and Matache et al. [103], who use a wavelet Galerkin method. Since we do

not use the finite difference method in the remainder of this thesis, we will not discuss it

in more detail here.

1.3.1 Monte Carlo method

The well-known Monte Carlo method is one of the most widely used methods in science

and engineering due to its flexibility and generality. It is easy to implement, requires only

a few lines of coding (in its basic form) and is intuitive to understand. Already in the 18th

century people were using Monte Carlo simulations, without calling it that, to estimate the

value of π by experiment. For that they counted the number of throws that landed inside

a square compared to those ending up in an inscribed circle. However, it was also used

before to estimate the chances of a biased die for example. In the last century the Monte

Carlo approach pervaded a number of scientific fields including engineering, experimental

psychology, astronomy, biology, physics, economics and demography. Phelim Boyle (see

Boyle [27]) introduced the concept to finance in order to price options on stocks with

discrete dividend payments. Nowadays the method is heavily used in quantitative finance

to value exotic options (possibly depending on multiple underlyings) for which no analytic

expressions exist. The method is appealing for financial applications, since most derivative

securities can be priced in a coherent way and correlations are easy to handle. In its basic

form the method can be implemented directly from a contract’s term sheet without the

need for any further mathematics other than a model for the dynamics of the financial

underlyings.

In our context, we are interested in approximating an expectation of a given func-

tion E[f(X)] by drawing N ‘random’ numbers xi and evaluating the equally weighted
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N-iteration estimator:

ÊN [f(X)] :=
1

N

N∑
i=1

f(xi).

The core principle of the Monte Carlo method is the strong law of large numbers, which

establishes that the empirical average of N i.i.d. random samples X1, X2, ..., XN with

E[|Xi|] <∞ for i = 1, 2, ..., N converges to the expectation µ (= E[X1]) almost surely as N

goes to infinity. By the central limit theorem, if X1, X2, ..., XN are i.i.d. random variables

with finite second moment that have expectation µ and standard deviation 0 < σ < ∞,

then the sample mean

X̂N =
1

N

N∑
i=1

Xi

satisfies
X̂N − µ
σ/
√
N

d→ N (0, 1),

as N → ∞. The central limit theorem states that the error is asymptotically Gaussian,

with a standard deviation of the order of one over the square root of the number of samples.

From the above it follows that the probability that an interval of the form(
X̂N − zδ/2

σ√
N
, X̂N + zδ/2

σ√
N

)
covers µ approaches 1−δ as N →∞, where 1−Φ(zδ/2) = δ/2 and Φ denotes the standard

cumulative normal distribution. Note that the above should really be understood as an

asymptotically valid confidence interval for µ. Because σ is typically unknown, one usually

approximates it by the sample standard deviation of the random variables X1, X2, ..., XN :

sN =

√√√√ 1

N − 1

N∑
i=1

(Xi − X̂N )2,

where sN → σ as N →∞ and we refer to

X̂N ± zδ/2
sN√
N

(1.3.1)

as the 1 − δ confidence interval in Chapter 3. For more details on Monte Carlo methods

in finance, see Jäckel [75] and Glasserman [66], and references therein. See the latter in

particular for variance reduction techniques, which we review next.
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Variance reduction techniques

The Euler-Maruyama method approximates the solution of a stochastic differential equa-

tion by discretisation. To be specific, assume that the process X = {Xt, t ∈ R+} satisfies

the Itō stochastic differential equation

dXt = a(Xt)dt+ b(Xt)dWt, t > 0,

with initial condition X0 = x0. Then the Euler-Maruyama approximation to the true

solution X on the finite interval [0, T ] is the Markov chain Y ′ defined on the equidistant

grid TN = {0 = τ0 < τ1 < . . . < τN = T} as:

Y ′τn+1
= Y ′τn + a(Y ′τn)∆n + b(Y ′τn)∆Wn, n = 0, ..., N − 1,

where Y0 = x0, ∆n = T/N and ∆Wn = Wτn+1 −Wτn .

This basic method is known to converge extremely slowly, especially for path-dependent

quantities (see Boyle et al. [28] for example). As can be seen, the standard deviation of the

above classical method is sN/
√
N . Note that to reduce the standard deviation by a factor

of ten the number of simulations N has to be increased one hundredfold. Even with the

on-going technological progress, developing efficient variance reduction techniques (so to

reduce sN ) to make the Monte Carlo method converge quicker is therefore of paramount

importance. The most common techniques, which all reduce the variance to increase

the accuracy of the computation, are the antithetic sampling, control variate, importance

sampling and stratification technique. In general, variance reduction techniques amount

to rewriting the quantity to be computed as the expectation of a random variable that

has a smaller variance.

When samples are drawn from a symmetric law, like the Gaussian law, antithetic

sampling requires that the antithetic (symmetric) of each sample is also used. This assures

that the sample mean is always 0, as it should be, and has the advantage that one gets

two samples for the computational costs of one. We use this variance reduction technique

for all Monte Carlo methods utilised in Chapter 3.

In addition, it can be very beneficial to use a control variate, which is one of the most

widely used variance reduction techniques. The technique is particularly useful when pric-

ing barrier option or range notes in the models discussed above. The principle behind the

control variate variance reduction technique is to exploit information about the errors in
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estimates of known quantities to reduce the error in an estimate of an unknown quantity.

The variance of the Monte Carlo method is reduced, because rather than simulating the

unknown quantity, one simulates the difference between the known and unknown quan-

tity, which should have a lower variance if the two are strongly correlated. Assume that

unknown quantity X and control variate Y are two square integrable random variables.

Here we want to estimate E[X], which can be written as

E[X] = E[X − Y ] + E[Y ],

where E[Y ] is known and V ar(X − Y ) < V ar(X). Then, rather than simulating E[X]

directly, one can simulate E[X − Y ] in the Monte Carlo method and add the known value

E[Y ] for every sample. In particular, for all models discussed in Section 1.2, one can use

the quickly calculated price of a vanilla option (computed using a Fourier inversion method

or the rational approximation method discussed in Chapter 2) as a control variate to price

an exotic option. By the same argument, one could also use the price of the particular

exotic option in the Black-Scholes model as a control variate in a model where the exotic

option price is unknown. One should keep in mind however that the effectiveness of the

control variate variance reduction technique reduces rapidly with a decreasing correlation

(in absolute terms) between the two random variables, and one should always try to find

a control variate that is correlated as much as possible with the unknown quantity.

Importance sampling methods proceed by changing the law of the samples to reduce

the variance and stratified sampling constraints the fraction of samples drawn from spe-

cific subsets (called strata) of the sample space (for more details on variance reduction

techniques also see Dagpunar [49] and references therein). Both of these methods should

be used when applying the bridge sampling Monte Carlo method introduced in Chapter 3

in practice. We have not done so here in order to concentrate on the newly developed

method separately.

Simulating a Lévy process

When simulating a jump-diffusion process, it is important to note that the jump com-

ponent and the diffusion component are independent of each other, and can therefore be

simulated independently. The number of jumps NT of a Poisson process on the interval

[0, T ] is a Poisson random variable with parameter λT . The jump times can be obtained
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by sampling NT independent uniform random variables (on the interval [0, T ]), rearranged

in increasing order. The jump sizes are again independent, so that one needs to sample a

total of NT jumps according to the specific jump size distribution. A number of algorithms

have been developed for jump diffusions based on the observation that between two jumps,

the process simply follows a Brownian motion.

Lévy processes with infinite activity can usually not be simulated as described above,

since the law of increments is not known in closed-form. However, one way to proceed

is to approximate the jumps smaller than some ε > 0 by a properly renormalised Brow-

nian motion and therefore arrive at an approximating jump-diffusion (see Asmussen &

Rosiński [11], where they give necessary and sufficient conditions on the Lévy measure un-

der which the normalised error process resulting from the deletion of small jumps converges

to a Brownian motion).

As we discussed above, many of these models can be represented as time-changed

Brownian motion models. If it is easy to simulate the subordinator, simulation of paths

is equally straightforward.

Acceptance-Rejection method

The acceptance-rejection method, often used in Monte Carlo simulations, is an efficient way

to simulate from a known probability density function f(x), which is difficult or impossible

to sample. That is, we wish to generate a random variable X from F (x) = P(X ≤ x)

where an explicit formula for F−1(y) is not available or this inverse transform method

(and any other method that is available to us) is not efficient. The idea of this method is

to find an alternative probability distribution G, with density function g(x), from which

we can simulate efficiently and which is ‘close’ to f(x). In particular, we assume that the

ratio f(x)/g(x) is bounded by a constant c (supx (f(x)/g(x)) ≤ c), which we want to be

as close as possible to 1. The algorithm can then be quickly described as follows:

• Generate a random variable Y from the distribution of G.

• Generate a uniform random variable U (independent of Y ).

• If U ≤ f(Y )
cg(Y ) set X = Y (accept), otherwise start over (reject).

In the following, we would like to show that the conditional distribution of Y given that

U ≤ f(Y )
cg(Y ) is indeed F , that is: P

(
Y ≤ y

∣∣∣U ≤ f(Y )
cg(Y )

)
= F (y). First note that the ratio
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f(Y )
cg(Y ) is a random variable, because f(Y ) and g(Y ) are. The ratio is also independent of

U and 0 < f(Y )
cg(Y ) ≤ 1. The number of iterations, N , needed to successfully generate X is

itself a random variable following a geometric distribution (P(N = n) = (1 − p)n−1p for

n ≥ 1) with probability

p = P
(
U ≤ f(Y )

cg(Y )

)
=

1

c
.

The last equality can be shown to hold by first conditioning on Y

P
(
U ≤ f(Y )

cg(Y )

∣∣∣∣Y = y

)
=

f(y)

cg(y)
,

and then using the tower property and recalling that Y has density g(y):

p =

∫ ∞
−∞

f(y)

cg(y)
g(y)dy =

1

c

∫ ∞
−∞

f(y)dy =
1

c
.

Next, note that

P
(
U ≤ f(Y )

cg(Y )

∣∣∣∣Y ≤ y) =
P
(
U ≤ f(Y )

cg(Y ) , Y ≤ y
)

G(y)

=

∫ y

−∞

P
(
U ≤ f(Y )

cg(Y )

∣∣∣Y = w
)

G(y)
g(w)dw

=
1

G(y)

∫ y

−∞

f(w)

cg(w)
g(w)dw

=
1

cG(y)

∫ y

−∞
f(w)dw

=
F (y)

cG(y)
.

Finally,

P
(
Y ≤ y

∣∣∣∣U ≤ f(Y )

cg(Y )

)
= P

(
U ≤ f(Y )

cg(Y )

∣∣∣∣Y ≤ y) G(y)

1/c
=

F (y)

cG(y)
cG(y) = F (y),

where we used the basic fact that P(A|B) = P(B|A)P(A)
P(B) . For more details on this method

we refer to Press et al. [113]. We will use the acceptance-rejection method in Chapter 3

to draw from the MEJD distribution (F ) and use the HEJD distribution as the auxiliary

distribution (G).

1.3.2 Laplace/Fourier inversion methods

A very natural and powerful method for solving boundary problems for partial differential

equations, and more generally for integro-differential and pseudo-differential equations, is
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the Laplace or Fourier transform method. The method is heavily used in mathematical

finance to derive plain vanilla option prices in the class of exponential Lévy models. For a

few of the models discussed in the previous section, even Laplace transforms of barrier and

lookback options are explicitly known. To obtain the option price, one therefore needs to

perform a Laplace or Fourier inversion. This standard mathematical tool was first used in

finance by Heston ([72]) for Gaussian models, and by Boyarchenko & Levendorskĭı ([22])

and Carr & Madan ([40]) for Lévy models. We discuss Laplace transforms, inverse Laplace

transforms and their application to mathematical finance below. We then discuss Fourier

transforms, inverse Fourier transforms and their application to mathematical finance. In

many practical cases, the inverse Fourier transforms are obtained by the Fast Fourier

Transform method, which we present at the end of this section.

The Laplace transform

The Laplace transform, named after the French mathematician and astronomer Pierre-

Simon Laplace, is a linear operator and integral transform of a function f(t) with real

argument t ≥ 0 to a function L{f(t)}(s) with a real argument s. The Laplace transform

L{f(t)} for a Borel measurable function f(t) on R+ that satisfies |f(t)| ≤Meαt for some

α > 0, (we will refer to this as ‘f is of exponential order’) is defined by the improper

integral:

F (s) = L{f(t)}(s) =

∫ ∞
0

f(t)e−stdt. (1.3.2)

A necessary condition for existence of the integral is that f must be locally integrable on

[0,∞). If the locally integrable function decays at infinity or is of exponential type, the

integral can be understood as a (proper) Lebesgue integral. Following from the definition,

the Laplace transform has many useful properties. Two of the most fundamental ones are

the convolution integral and the fact that the Laplace transform of f (n)(t) can be expressed

in terms of F (s) and f (m)(0) for m = 1, 2, ..., n − 1, where f (n)(t) is the nth derivative

of function f(t). In general, many relationships and operations over the original f(t)

correspond to simpler relationships and operations over the images F (s). In probability

theory, for example, if X is a random variable with PDF f , then the Laplace transform

of f is given by an expected value:

L{f}(s) = E
[
e−sX

]
. (1.3.3)
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Replacing s by −t yields the moment generating function of X.

The Inverse Laplace transform will be denote as

L−1{F (s)}(t) = f(t). (1.3.4)

Like the Laplace transform, also the inverse is linear and unique apart from the possible

addition of null functions. In many cases it may not be possible to find L{f(t)} explicitly

since it is an integral, but there is no guarantee at all of being able to find L−1{F (s)},

which is given by a complex integral. A formal definition of the inverse is provided in the

following theorem.

Theorem 1.3.1. (Inverse Laplace transform) If the Laplace transform of f(t) is of expo-

nential order and

F (s) =

∫ ∞
0

e−stf(t)dt,

then

f(s) = lim
k→∞

{
1

2πi

∫ σ+ik

σ−ik
F (s)estds

}
, t > 0,

where |f(t)| ≤ eMt for some positive real number M and σ is another real number such

that σ > M (here i =
√
−1 represents the imaginary unit).

Laplace transforms find a variety of applications in mathematical finance. We use

it in Chapter 2 to represent the stochastic clock ZT in a tractable form. In Chapter 3

we indirectly derive Laplace transforms of the one-sided first passage and the occupation

time of a MEJD bridge at an exponential random time, although we don’t refer to it as

such. The motivation in both cases is that one is only able to derive explicit expressions

in terms of the Laplace transforms and that these could be inverted numerically to obtain

the quantity of interest (for more details on numerical inversion of the Laplace transform

we refer to the algorithms presented in Abate & Whitt [2], and Petrella [111], and point

to a survey by Abate et al. [1] and references therein). Based on the idea of numerically

inverting Laplace transforms, there is a whole range of research articles that derive option

prices (even those of (double) barrier or lookback options) for a variety of Lévy models

in terms of their Laplace transform. Here we only name a few of the most prominent

ones. Lipton [93] derives Laplace transforms for single barrier options, lookbacks and re-

verse knock-outs relying on fluctuation identities for the hyper-exponential jump-diffusion
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process. Kou & Wang [79] work out Laplace transforms of single barrier and lookback

options for the Kou model using the memoryless property of the exponential distribu-

tion, Boyarchenko & Levendorskĭı [24] develop Laplace transforms for single barrier and

touch options under a wide class of Lévy processes, Sepp [125] derives Laplace transforms

for double barrier and touch options with time-depending rebates, and Jeannin & Pisto-

rius [77] propose Laplace transforms for single barrier options and sensitivities in the class

of HEJD models. Most recently, Cai & Kou [34] develop double Laplace transforms for

barrier options and sensitivities in the class of MEJD models. For a general treatment of

Laplace transforms, we refer to Schiff [122].

The Fourier transform

The Fourier transform, named after the French mathematician Joseph Fourier, is another

integral transform, which is defined as follows:

Definition 1.3.1. Let h be an integrable function defined for all x ∈ R with values in C.

The Fourier transform of h is a mapping F : L1 → L∞ defined by

F(h)(ω) =

∫ ∞
−∞

h(x)eiωxdx. (1.3.5)

Usually ω is real, but it can also be taken to be a complex number under suitable inte-

grability conditions on h. The Fourier transform is related to the Laplace transform, but

whereas the Laplace transform resolves a function into its moments, the Fourier transform

expresses a function as a series of modes of vibration (frequencies). Generalised functions

need to be introduced to calculate the Fourier transform of a constant or a polynomial,

for example. Under suitable conditions on h and F(h), following from Definition 1.3.1,

the Fourier inverse theorem states:

h(x) = F−1{F}(x) =
1

2π

∫ ∞
−∞
F(h)(ω)e−iωxdω. (1.3.6)

The Fourier inversion theorem holds for all continuous functions that are absolutely inte-

grable (i.e. L1(Rn)) with absolutely integrable Fourier transform. The Fourier transform

can also be derived as a Fourier series expressed in its complex form when the period of

the represented function is lengthened and allowed to approach infinity. When performed

correctly, this integral leads to the Fourier transform as defined above. Properties like the
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shift theorems, transforming derivatives, etc. also exist for the Fourier transform, which

makes it similarly useful for solving differential and integral equations.

In mathematical finance, Fourier transform methods have been mostly motivated by

the move from the classical Black-Scholes model to exponential Lévy models. As men-

tioned before, for these models there are no explicit formulas (even for vanilla options in

most cases), because the probability density of a Lévy process is typically not known in

closed form. Since the characteristic function of this density can be expressed in terms

of elementary functions for a majority of Lévy processes however, Fourier-based option

pricing has been utilised successfully. We will see below that to evaluate a vanilla option

for exponential Lévy models in this framework, one needs to perform one Fourier inver-

sion numerically. The overall complexity of this computation per option price is not much

higher than in the Black-Scholes framework, since one Fourier transform can simultane-

ously give option prices for a whole range of strikes and the procedure can be efficiently

performed with the FFT method (see below).

Before the utilisation of the FFT method in mathematical finance, Heston [72] was one

of the first to apply Fourier analysis to determine option prices. Heston numerically solved

for the delta and the risk-neutral probability of finishing in the money, which combined

with the stock price and the strike price generates option values. However, although the

decomposition of an option price into probabilistic elements is theoretically attractive, it is

numerically undesirable owing to discontinuity of the payoffs (see Bakshi & Madan [12]).

In addition, this approach was unable to harness the considerable computational power of

the FFT method. For a rigorous treatment on complex analysis and Fourier transforms

we refer to Rudin [119].

Fast Fourier Transform (FFT) method

The most commonly used FFT method is the Cooley-Tukey method (Cooley & Tukey [45]),

which was used in computer sciences for many years before applied to derivatives pricing.

Carr & Madan [40] are the first to utilise the FFT method in a financial context. They

derive the Fourier transforms of an option price and its time value for any model in which

the characteristic function of the risk neutral density is known analytically. The FFT

method allows them to perform the option pricing very efficiently. Both of the derived

Fourier transforms in [40] are expressed in terms of the characteristic function of the log
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price - we will concentrate on the Fourier transform of the option price here.

Let k = log(K) and let CT (k) be the value of a T -maturity call option with strike

ek. If we let the risk-neutral density of the log price sT be qT (s), then the characteristic

function as defined in (1.2.1) can also be written as the Fourier transform of its density,

ΦT (u) ≡
∫ ∞
−∞

eiusqT (s)ds.

The call option value CT (k) can then be expressed in terms of the risk-neutral density by

CT (k) ≡
∫ ∞
k

e−rT (es − ek)qT (s)ds.

However, since the call option value CT (k) tends to S0 as k tends to −∞, the call option

function is not square-integrable. Carr and Madan therefore introduce the modified call

price cT (k) defined as

cT (k) ≡ eαkCT (k)

for α > 0. One should now expect the modified call option function to be square-integrable

in k over the entire real line for a range of positive values of α. We define by ΨT the Fourier

transform of cT (k):

ΨT (v) =

∫ ∞
−∞

eivkcT (k)dk

=

∫ ∞
−∞

eivk
∫ ∞
k

eαke−rT (es − ek)qT (s)ds dk

=

∫ ∞
−∞

e−rT qT (s)

∫ s

−∞
(es+αk − ek+αk)eivkdk ds

=

∫ ∞
−∞

e−rT qT (s)

∫ s

−∞

(
es+(α+iv)k − e(1+α+iv)k

)
dk ds

=

∫ ∞
−∞

e−rT qT (s)

(
e(α+1+iv)s

α+ iv
− e(α+1+iv)s

α+ 1 + iv

)
ds

=
e−rTΦT (v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
. (1.3.7)

Note that the inverse Fourier transform of cT (k) follows from the first equation of the

above and is equal to

cT (k) =
1

2π

∫ ∞
−∞

e−ivkΨT (v)dv.

One is now able to express the call option value in terms of the characteristic function

CT (k) =
e−αk

2π

∫ ∞
−∞

e−ivkΨT (v)dv =
e−αk

π

∫ ∞
0

e−ivkΨT (v)dv

=
e−αk

π

∫ ∞
0

e−ivk
e−rTΦT (v − (α+ 1)i)

α2 + α− v2 + i(2α+ 1)v
dv, (1.3.8)
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where the second equation holds because CT (k) is real and therefore function ΨT (v) is

odd in its imaginary part and even in its real part. The final expression for CT (k) lends

itself for an application of the FFT, which we discuss next. For details on restrictions on

α and a derivation of the Fourier transform of the time value of an option, we refer to the

original paper.

The FFT is an efficient algorithm due to Cooley & Tukey [45] for computing the

following discrete transformation of a vector (xn, n = 1, ..., N) into a vector (wn, n =

1, ..., N):

wn =
N∑
j=1

e
−i2π(j−1)(n−1)

N xj for n = 1, ..., N. (1.3.9)

Typically N is a power of 2. The number of multiplications of the FFT algorithm is of

order O(NlogN) and is in contrast to the straightforward evaluation of the above sums

which gives rise to O(N2) numbers of multiplications. Note that the difference between

NlogN and N2 is immense when N gets large. Using the FFT on the N point-grid

(0, η, 2η, 3η, ..., (N − 1)η) gives the following approximation of (1.3.8):

CT (k) ≈ e−αk

π

N∑
j=1

e−ivjkΨT (vj)η, (1.3.10)

where vj = η(j − 1). The FFT returns N values of k, where we employ a regular spacing

of λ = 2b
N for log-strikes ranging from −b to b, so that kn = −b+ λ(n− 1) for n = 1, ..., N .

Substituting this into (1.3.10) yields:

CT (kn) ≈ e−αk

π

N∑
j=1

e−ivj(−b+λ(n−1))ΨT (vj)η

=
e−αk

π

N∑
j=1

e−iλη(j−1)(n−1)eivjbΨT (vj)η,

for n = 1, ..., N , noting that vj = (j − 1)η. With the choice of λη = 2π
N , the above is

an exact application of the FFT on the vector eivjbΨT (vj)η. The final step in applying

the FFT to the call option value, Carr & Madan [40] choose a more refined weighting

(Simpson’s rule) leading to the following approximation

CT (kn) ≈ e−αk

π

N∑
j=1

e
−i2π(j−1)(n−1)

N eivjbΨT (vj)η

(
3 + (−1)j − δj−1

3

)
,

where δn is the Kronecker delta function that is unity for n = 0 and zero otherwise.

Carr and Madan choose η to be 0.25 and α to be 1.5, which are the values we use in
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Chapter 2. As can be seen, if we now choose a value for N , one can first calculate the

corresponding values for λ and b, then generate the vectors v and k, before calculating the

vector Aj = eivjbΨT (vj)η
(

3+(−1)j−δj−1

3

)
and passing it into a FFT engine (Matlab, for

example, has a build-in FFT method). After that we multiply the resulting vector point-

wise with e−αk

π to obtain option values for a wide range of strikes (see Press et al. [113] for

more details).

We use the method, as presented here, as a benchmark to our newly developed method

in Chapter 2 and refer to it as standard FFT method throughout the thesis. The stan-

dard FFT method was generalised and improved by a number of authors (e.g. Bo-

yarchenko & Levendorskĭı [26], Eberlein et al. [54], Lee [84], Lewis [89], Lipton [94] and

Raible [114]). Other developments have taken place to make the FFT method faster. In

particular, the Lewis-Lipton formula (see Lewis [89] and Lipton [93]) utilises the fact that

payoff functions have their own representations in Fourier space. The approach expresses

the option price as a convolution of generalised Fourier transforms using the Plancherel

identity and can be up to 5 times faster than the original method by Carr and Madan.

When one only needs the value of a single option, Boyarchenko & Levendorskĭı [25] sug-

gest to transform the contour of integration in the complex plane to achieve improved

convergence. The alternative to these FFT methods that we present in Chapter 2, the ra-

tional approximation method, works without the need of inverse Fourier transforms. Note

however that the rational approximation method is only applicable for the class of time

changed Brownian motion models, which represents a subclass of the models the Fourier

inversion approach can handle.

1.4 Mathematical tools and techniques

We review rational function approximation in Section 1.4.1, Richardson extrapolation in

Section 1.4.2 and the Wiener-Hopf factorisation in Section 1.4.3.

1.4.1 Rational approximation

A rational function, Rn,m(x), is any function that can be written as the ratio of two

polynomial functions, Pn(x) and Qm(x), which are of degree n and m, respectively. With



1.4. Mathematical tools and techniques 51

this notation it follows that

Rn,m(x) =
Pn(x)

Qm(x)
,

where we defined Pn(x) =
n∑
i=0

pix
i and Qm(x) = 1+

m∑
i=1

qix
i. Rational approximations gen-

erally outperform polynomial approximations in terms of computational efficiency, where

we define computational efficiency as the maximum errors that can be achieved for a given

computational effort (see Morris [109]). For some functions, the optimal rational function

approximation is known further to be able to achieve substantially higher accuracy than

the optimal polynomial approximation with the same number of coefficients. Rational

function approximations have been extensively used in theoretical physics, engineering,

statistics and economics. For background on rational approximations and applications,

we refer to Ralston & Rabinowitz [115] (Chapter 7).

The ideal minimax solution would be that choice of p’s and q’s that minimises

ε = max
a≤x≤b

∣∣∣∣Rn,m(x)− Pn(x)

Qm(x)

∣∣∣∣ .
Since ε is bounded below by zero, some minimax solution is guaranteed to exist. Finding

this minimax solution for a rational approximation (as well as for a polynomial approx-

imation) is difficult and involves iterative procedures that can be computationally time

consuming. For rational approximations these iterative procedures lead to the so-called

Remes algorithms (Ralston & Wilf [116]). Chebyshev approximations can be obtained

more quickly as these do not involve iterations, while leading to errors very close to those

of the minimax solution. Therefore, when interested in obtaining rational approximations

in Chapter 2, we employ rational Chebyshev approximations because of their computa-

tional efficiency. We will first review the general theory of Chebyshev approximations and

then discuss rational Chebyshev approximations in more detail.

Chebyshev approximations

The Chebyshev polynomial of degree n is defined as

Tn(x) = cos(n arccos(x)) for − 1 ≤ x ≤ 1. (1.4.1)



1.4. Mathematical tools and techniques 52

Even though these terms may look trigonometric, it should be noted that explicit expres-

sions for Tn(x) can be found by the following recursion

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1 (1.4.2)

T3(x) = 4x3 − 3x

...

Tn+1(x) = 2xTn(x)− Tn−1(x) n ≥ 1,

which was derived using the well-known formula for the sum of two cosines

cos[(n+ 1)θ] + cos[(n− 1)θ] = 2 cos(nθ) cos(θ)

with x = cos(θ). Each Chebyshev polynomial Tn(x) is continuous and has n zeros on the

interval [−1, 1]. Each of the zeros is located at

xk = cos

(
π(k − 0.5)

n

)
k = 1,2,...,n,

whereas the n+ 1 extrema are located at

x∗k = cos

(
πk

n

)
k = 0,1,...,n.

At its maxima Tn(x) = 1 and at its minima Tn(x) = −1 for all n. In addition, the

Chebyshev polynomials satisfy a discrete orthogonality relation on [−1, 1].

Under Dini-Lipschitz continuity of the interpolated function f , the Chebyshev inter-

polation converges as the number of nodes tends to infinity. This leads to a representation

of f in terms of an infinite series of Chebyshev polynomials:

f(x) =
c0

2
+

∞∑
j=1

cjTj(x), −1 ≤ x ≤ 1.

With this, and using the orthogonality of the Chebyshev polynomials, we obtain

cj =
2

π

∫ 1

−1

f(x)Tj(x)√
1− x2

dx =
2

π

∫ π

0
f(cos θ) cos(jθ)dθ. (1.4.3)

To compute these coefficients, fast algorithms can be used for this cosine transform. A

discretisation of Equation (1.4.3) using the trapezoidal rule leads to a discrete cosine

transform:

cj =
2

N

N∑
k=1

f(xk)Tj(xk) =
2

N

N∑
k=1

f

(
cos

(
π(k − 0.5)

N

))
cos

(
πj(k − 0.5)

N

)
. (1.4.4)
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When setting

fCheb(x) =
c0

2
+
N−1∑
j=1

cjTj(x), (1.4.5)

it can be shown that this approximation is exactly equal to f(x) at all N zeros of TN (x),

and the approximation converges as N → ∞. If the coefficients cj decrease sufficiently

rapidly in magnitude, the error of this approximation is

EN (x) =

∞∑
j=N+1

cjTj(x) ≈ cN+1TN+1(x). (1.4.6)

That is, the error can be approximated by the next term in the sum. How fast the coeffi-

cients cj decrease depends on continuity and differentiability properties of the function to

be expanded.

If one inserts the expressions given for Tn(x) in (1.4.2) into Equation (1.4.5), one ob-

tains a polynomial in x, which approximates the function f(x) on the interval [−1, 1]. Even

though this Chebyshev approximating polynomial is not equal to the minimax polynomial,

which among all polynomials of the same degree has the smallest maximum deviation from

the true function, it comes very close (Morris [109], Chapter 6). The minimax polynomial

is very difficult and time consuming to calculate, whereas the Chebyshev approximating

polynomial is almost identical and is extremely easy to compute.

Finally, if one is interested in approximating a variable y ∈ [a, b], one should use the

following change of variable to map it onto x ∈ [−1, 1] and proceed as before

x =
2y − (b+ a)

b− a
. (1.4.7)

Rational Chebyshev approximations

Rather than approximating an arbitrary function f(x) by a linear combination of Cheby-

shev polynomials, one can approximate f(x) by a ratio of linear combinations of these

polynomials as follows:

f(x) ≈
∑m

j=0 ajTj(x)∑k
j=0 bjTj(x)

= Tm,k(x).

For simplicity and for all rational function approximations used here, set m = k, and

define

f(x) ≈
∑m

j=0 ajTj(x)∑m
j=0 bjTj(x)

= fmRA(x), (1.4.8)
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where Tn(x) are the Chebyshev polynomials defined in (1.4.1) and b0 = 1.

The error of the rational function approximation can be expressed as (see Morris [109]

p.184 for more details)

f(x)− fmRA(x) =
c0

2
+

∞∑
j=1

cjTj(x)−
∑m

j=0 ajTj(x)∑m
j=0 bjTj(x)

.

This equation can be rewritten as

f(x) − fmRA(x) =

[
c0
2 +

∑∞
j=1 cjTj(x)

] [∑m
j=0 bjTj(x)

]
−
∑m

j=0 ajTj(x)∑m
j=0 bjTj(x)

=
c0
2

∑m
j=0 bjTj(x) +

∑∞
j=1

∑m
i=0

bicj
2 [Ti+j(x) + T|i−j|(x)]−

∑m
j=0 ajTj(x)∑m

j=0 bjTj(x)
,

where we have used the fact that 2Tn(θ)Tm(θ) = Tn+m(θ) + T|n−m|(θ). Collecting coeffi-

cients of like terms (in Tj) and setting the resulting coefficients to zero, one gets

a0 =
m∑
i=0

bici
2
,

and

ar =
1

2

m∑
i=0

bi(ci+r + c|i−r|) r = 1, 2, ..., 2m,

where ar = 0 if r > m and b0 is chosen to be 1 (cj is defined as in Equation (1.4.4)).

This leads to a linear system of equations for any m, which can be solved easily for the

parameters aj and bj of Equation (1.4.8). To illustrate, the following is the resulting

system of equations for a 4× 4 rational function approximation:

2a0 = c0 + b1c1 + b2c2 + b3c3 + b4c4

2a1 = 2c1 + b1(c0 + c2) + b2(c1 + c3) + b3(c2 + c4) + b4(c3 + c5)

2a2 = 2c2 + b1(c1 + c3) + b2(c0 + c4) + b3(c1 + c5) + b4(c2 + c6)

2a3 = 2c3 + b1(c2 + c4) + b2(c1 + c5) + b3(c0 + c6) + b4(c1 + c7)

2a4 = 2c4 + b1(c3 + c5) + b2(c2 + c6) + b3(c1 + c7) + b4(c0 + c8)

0 = 2c5 + b1(c4 + c6) + b2(c3 + c7) + b3(c2 + c8) + b4(c1 + c9)

0 = 2c6 + b1(c5 + c7) + b2(c4 + c8) + b3(c3 + c9) + b4(c2 + c10)

0 = 2c7 + b1(c6 + c8) + b2(c5 + c9) + b3(c4 + c10) + b4(c3 + c11)

0 = 2c8 + b1(c7 + c9) + b2(c6 + c10) + b3(c5 + c11) + b4(c4 + c12).
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This system of equations can be written in matrix form as follows:

c0

c1

c2

c3

c4

c5

c6

c7

c8



= −1

2



−4

0

0

0

0

0

0

0

0

0

−2

0

0

0

0

0

0

0

0

0

−2

0

0

0

0

0

0

0

0

0

−2

0

0

0

0

0

0

0

0

0

−2

0

0

0

0

2c1

c2 + c0

c3 + c1

c4 + c2

c5 + c3

c6 + c4

c7 + c5

c8 + c6

c9 + c7

2c2

c3 + c1

c4 + c0

c5 + c1

c6 + c2

c7 + c3

c8 + c4

c9 + c5

c10 + c6

2c3

c4 + c2

c5 + c1

c6 + c0

c7 + c1

c8 + c2

c9 + c3

c10 + c4

c11 + c5

2c4

c5 + c3

c6 + c2

c7 + c1

c8 + c0

c9 + c1

c10 + c2

c11 + c3

c12 + c4





a0

a1

a2

a3

a4

b1

b2

b3

b4



.

Substituting the resulting coefficients of aj and bj into Equation (1.4.8) gives a rational

Chebyshev approximation of function f(x).

1.4.2 Richardson extrapolation

An important problem that arises in many scientific and engineering applications is that

of approximating the limit of a slowly converging infinite sequences {Pn}. Rather than

approximating the limit by calculating {Pn} for a large value of n, which can be compu-

tationally very expensive to obtain, many of these limits can be approximated by extrap-

olation with a few number of terms for which n is small. The Richardson extrapolation,

reviewed in this section, is one such extrapolation method and is named after Lewis Fry

Richardson, who introduced the technique in the early 20th century. Most of the material

reviewed in this section can also be found in a standard reference by Sidi [126].

In the cases of interest in this thesis, a given infinite sequence {Pn} can be related to

a function P (y), such that Pn = P (yn), n = 0, 1, ..., for some monotonically decreasing

sequence yn ⊂ (0, b], where P (y) is known and therefore computable for 0 < y ≤ b. We

further assume that lim
n→∞

yn = 0, so that it follows from lim
y→0+

P (y) = P that lim
n→∞

Pn = P

as well. If one further assumes that for some positive integer s, P (y) is of the form

P (y) = P +

s∑
k=1

αky
σk +O(yσs+1) as y → 0+, (1.4.9)

where 0 < σ1 < σ2 < ... < σs+1 and αk are constants independent of y, then lim
y→0+

P (y) =

P . It follows that one can approximate P by P (y) for sufficiently small values of y - the

error being P (y)−P = O(yσ1) as y → 0+. If σ1 is sufficiently large, P (y) can approximate
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P well, even for values of y that are not so small. Otherwise, we have to calculate P (y)

for very small values of y, which is not always applicable however.

The sequences of interest in Chapter 3, for example, are of the form lim
n→∞

P (T/n), where

T is the maturity of a financial derivative and n = 1, 2, 3, ... is the number of recursive

steps. If T is large, also n needs to be large in order to make yn = T/n feasibly small -

calculations for large values of n are computationally very expensive however and would

require High Precision Arithmetics to deal with round-off errors as detailed in Chapter 3.

The idea behind Richardson extrapolation on the other hand is to eliminate the yσ1

term in (1.4.9) and derive a new approximation whose error is O(yσ2) by taking a weighted

average between P (y) and P (ωy). To illustrate this technique, we now show how to first

eliminate the term yσ1 and then the term yσ2 from Equation (1.4.9). Define a constant

ω ∈ (0, 1) and set y′ = ωy, so that from (1.4.9) it follows

P (y′) = P +
s∑

k=1

αkω
σkyσk +O(yσs+1) as y → 0 + .

Define a weighted average of P (y) and P (ωy) as P (y, y′) and verify that

P (y, y′) =
P (y′)− ωσ1P (y)

1− ωσ1
= P +

s∑
k=2

ωσk − ωσ1

1− ωσ1
αky

σk +O(yσs+1) as y → 0 + .

Note that P (y, y′) − P = O(yσ2) for y → 0+, as we intended. To proceed, define a

term P (y′, y′′) analogous to P (y, y′), where y′′ = ω2y. One is then able to define a new

approximation by

P (y, y′, y′′) =
P (y′, y′′)− ωσ2P (y, y′)

1− ωσ2
= P +

s∑
k=3

ωσk − ωσ1

1− ωσ1

ωσk − ωσ2

1− ωσ2
αky

σk +O(yσs+1)

as y → 0+, which is a weighted average of P (y, y′) and P (y′, y′′). Note further that the

approximations P (y), P (y, y′) and P (y, y′, y′′) are of a similar form and that we have

now successfully deleted the yσ2 term in approximation P (y, y′, y′′). The error between

P (y, y′, y′′) and P is O(yσ3) as y → 0+. It should be obvious that one can proceed in the

same manner to eliminate more error terms in every step and therefore obtain yet better

approximations. Note however, that to calculate P (y, y′, y′′) one requires P (y), P (ωy) and

P (ω2y). For the sequences considered in this thesis, the easiest choice would be ω = 1
2 ,

because n has to be discrete and the recursion n + 1 is computationally notably more

expensive than recursion n. We therefore require P(T ), P(T/2) and P(T/4) to calculate

the approximation P (y, y′, y′′) and we would require P(T/8) and P(T/16) in addition for



1.4. Mathematical tools and techniques 57

approximation P (y, y′, y′′, y′′′, y′′′′) if we were to continue in the same fashion. It is possible

however to use the entire sequence of P(T/n) for n = 1, 2, 3, 4, ... by varying the ω from

step to step. The resulting formulas become more involved, but the idea remains the same.

It has been shown that this procedure can be reduced to

P1:N (T ) =
N∑
n=1

(−1)N−nnN

n!(N − n)!
P
(
T

n

)
, (1.4.10)

where the weights are now dependent on n (see Marchuk & Shaidurov [102] for details).

1.4.3 Wiener-Hopf factorisation

The Wiener-Hopf factorisation goes back to the early work of Wiener & Hopf [130], who

used it to solve systems of integral equations. The Wiener-Hopf factorisation of a Lévy

process, (Xt)t≥0, is a collection of identities, which factorise the Laplace transform (in t)

of the distribution of Xt into Laplace transforms (in t) of the distributions of the following

processes:

Xt := sup{Xs : s ≤ t}, Xt := inf{Xs : s ≤ t}, Yt := Xt −Xt,

to which we refer as supremum process, infimum process and reflection (or drawdown)

process of Xt, respectively.

Theorem 1.4.1 (Theorem 45.2 in Sato [121]). (i) Let q > 0. There exists a unique pair

of characteristic functions φ+
q (z) and φ−q (z) of infinitely divisible distributions having drift

0 supported on [0,∞) and (−∞, 0], respectively, such that

q

q + φ(z)
= φ+

q (z)φ−q (z), z ∈ R. (1.4.11)

(ii) The functions φ+
q (z) and φ−q (z) have the following representations:

φ+
q (z) = exp

[∫ ∞
0

t−1e−qtdt

∫ ∞
0

(
eizx − 1

)
µXt(dx)

]
,

φ−q (z) = exp

[∫ ∞
0

t−1e−qtdt

∫ 0

−∞

(
eizx − 1

)
µXt(dx)

]
.

The function φ+
q (z) can be continuously extended to a bounded analytic function

without zeros on the upper half plane and φ−q (z) can be similarly extended on the lower

half plane. Unfortunately, the factors φ+
q (z) and φ−q (z) are not known explicitly and must

be evaluated numerically for most Lévy processes – the general class of mixed-exponential
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jump-diffusion (MEJD) models discussed in Section 1.2.3 and all models in that class are

an exception however.

An extension to Equation (1.4.11) is given in the following theorem.

Theorem 1.4.2 (Theorem 45.7 in Sato [121]). For any q > 0, z ∈ R and w ∈ R,

q

∫ ∞
0

e−qtE
[
eizXt+iw(Xt−Xt)

]
dt = φ+

q (z)φ−q (w).

It should be noted that this theorem will be useful when calculating quantities involving

the maximum of a Lévy process like barrier options, double barrier options and lookback

options. It is also worth noting that Xt
d
=Xt −Xt and Xt

d
=Xt −Xt for all t ≥ 0.

If we let

φ+
q (s) =

∫ ∞
0

qe−qtE
[
eisXt

]
dt,

φ−q (s) =

∫ ∞
0

qe−qtE
[
eisXt

]
dt,

it was shown by Rogozin [118] that φ+
q (s), φ−q (s) is the unique Wiener-Hopf factorisation

of ψ. More details and the proofs of both theorems can be found in Sato [121].



Chapter 2

Fast computation of vanilla prices

in time-changed models and

implied volatilities using rational

approximations

As discussed in the introduction, the need for models that can calibrate well to market

prices has led to the generalisation of the GBM model. Many of these more general

models can be expressed as time-changed Brownian motion models, to which we restrict

in this chapter. We draw on the theory of rational functions to approximate the value

function of a vanilla option in such models. The approximation takes the form of a linear

combination of a number of negative exponential moments of the clock. This yields an

explicit approximation for the value of a vanilla option in those time-changed models for

which the Laplace transform (and hence any negative exponential moment) of the clock

is available in tractable form.

For trading and risk management it is important to be able to (a) price vanilla options

in models that provide an accurate description of market prices, and (b) generate the

corresponding arbitrage-free volatility surface quickly and efficiently. Fast calculation of

vanilla option prices in the specified model is also essential for carrying out the calibration

of the prices to market quotes in a timely fashion.

To provide a numerical illustration, the method was implemented for the variance-

59
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gamma (VG) model, the KoBoL (also known as CGMY) model and the zero-correlation

Heston model (the version of this model with correlation does not fall into the class of

models studied here, but could be analysed by a two-dimensional extension). The ratio-

nal function approximation method was found to yield stable, fast and accurate results.

Comparison of the method to the standard fast Fourier transform (FFT) method intro-

duced by Carr & Madan [40] (see Section 1.3.2 for a review) with respect to speed and

accuracy, appears to be favourable for the rational function approximation method in

the cases considered. At this point it is worth mentioning that several alternative and

refined Fourier methods have been developed for the pricing of European options — see

Boyarchenko & Levendorskĭı [26] for a recent overview of several Fourier methods includ-

ing an analysis of the different variations and recommendations for optimal parameter

choices. A detailed comparative study of all the different pricing methods is left for future

research.

The rational function approximation method is then applied to compute Black-Scholes

implied volatilities. The method uses the fact that the computation of the implied volatil-

ities that corresponds to a given set of arbitrage-free call option prices can be reduced to

the computation of a single function of two variables. Contrary to Li [90], who proposes to

approximate the entire resulting surface by a two-dimensional approximation, we perform

a number of one-dimensional approximations and interpolate between these for any given

combination of input parameters. For a wide range of parameters, the maximal approx-

imation error of this approach is bounded by 5.5 × 10−5, refining to our required level

of accuracy the approximation of Li [90], which achieves a maximal error of 3.3 × 10−3

over the same region. It should be noted that this procedure can be used independently

of the results derived for option pricing and is not limited to time-changed Brownian

motion models. We refer the reader who is primarily interested in the implied volatility

computation to Section 2.4.

The remainder of the chapter is organised as follows. In Section 2.1 the price of an

option in a time-changed Brownian motion model is expressed in terms of a normalised

Black-Scholes formula, and the approximation to the option price is presented in Sec-

tion 2.2. Section 2.3 is devoted to a study of the error of the method, the application to

computation of the implied volatility is given in Section 2.4, numerical results are reported

in Section 2.5 and a summary is given in Section 2.6.
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2.1 Vanilla options in time-changed Brownian motion mod-

els

In this chapter, we concentrate on the equity market and consider models in which the

stock price process (St) under Q can be represented as follows:

St = S0e(r−q)t+Xt−ωt, (2.1.1)

Xt = θZt + σWZt , (2.1.2)

where (Wt)t≥0 is a Brownian motion and (Zt) is the independent stochastic process called

the clock (as introduced in Section 1.2.2). Hence, (Zt) will be modelled either as a Lévy

subordinator or as a time integral of a positive diffusion.

As before, r ≥ 0 and q ≥ 0 denote the constant risk-free interest rate and the constant

dividend yield respectively, S0 denotes the known stock price at time zero and (St) denotes

the random stock price at time t. The condition that Ste
−(r−q)t is a martingale will be

guaranteed by an appropriate choice of the mean-correcting compensator ωt as follows:

ωt =
1

t
logE[eXt ], (2.1.3)

where E[eXt ] is assumed to be finite for all t ≥ 0. In the case that X is a Lévy process, a

necessary and sufficient condition for E[eXt ] to be finite is
∫∞

1 exv(dx) <∞ (see Sato [121],

Section 25). Note that only in the case that Xt is a Lévy process, wt does not depend on

t. Still, in the sequel we will suppress t from w for simplicity.

In Section 1.1.1 we introduced the payoff of plain vanilla options. In the Black-Scholes

model, the risk-neutral dynamics of S are described by the exponential of a Brownian

motion with drift,

St = S0e(r−q−σ
2

2
)t+σWt , (2.1.4)

where σ ≥ 0 is the volatility of the asset. The arbitrage-free value of a European call

option (Equation (1.1.2)) in this model is then given by the Black-Scholes (BS) formula:

CBS(S0,K, T, r, q, σ) = e−rTEQ[(S0e(r−q−σ
2

2
)T+σWT −K)+] (2.1.5)

= S0e−qTN (d1)−Ke−rTN (d2),

d1 =
log(S0/K) + (r − q + σ2

2 )T

σ
√
T

,

d2 =
log(S0/K) + (r − q − σ2

2 )T

σ
√
T

,
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where N represents the standard normal cumulative distribution function. The following

parametrisation of the Black-Scholes formula will be considered in what follows:

cBS(v;x, µ) = eµvN
(
x√
v

+

(
µ+

1

2

)√
v

)
− e−xN

(
x√
v

+

(
µ− 1

2

)√
v

)
. (2.1.6)

This normalisation is similar to the non-dimensional form of the Black-Scholes formula

proposed by Lipton [92] (Chapter 9.3). The function cBS is related to the original Black-

Scholes formula as follows:

CBS(S0,K, T, r, q, σ) = S0e−rT cBS
(
σ2T ; log(S0/K), (r − q)/σ2

)
. (2.1.7)

Typically, in time-changed models of the form given in Equations (2.1.1)–(2.1.2), no closed

form formulas for call option prices are known. The next proposition shows how the call

price of the time-changed model (CTC) can be expressed in terms of the normalised Black-

Scholes formula in (2.1.6).

Proposition 2.1.1. If the process (St)t≥0 under Q is given by the system of Equa-

tions (2.1.1) - (2.1.2), where (Wt) and (Zt) are independent, the vanilla call option price

with underlying S can be expressed as

CTC(S0,K, T, r, q, θ, σ) = S0e−(q+ω)TEQ [cBS (σ2ZT ;xTC , µTC
)]
, (2.1.8)

where

µTC =
θ

σ2
+

1

2
and xTC = log

(
S0

Ke(q−r+ω)T

)
. (2.1.9)

The parameters S0,K, T, r, q, θ and σ are all constant and defined above. From Equa-

tion (2.1.3) it follows that the mean-correction ω is available in closed-form:

E[eXt ] = E
[
eθZt+σWZt

]
= E

[
e

(
θ+σ2

2

)
Zt

]
= e

ψ
(
−θ−σ

2

2

)
t

= eωt, (2.1.10)

so that ω is specified as follows:

ω = ψ

(
−θ − σ2

2

)
, (2.1.11)

where ψ(s) = 1
t logE[e−sZt ] is the Laplace exponent of (Zt). In particular, it should be

noted that ω only changes with θ and σ, and stays constant once these market parameters

have been specified. In the Heston model with zero correlation, ω is equal to zero, which

follows from the fact that eXt is a true martingale in the Heston model.
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Remark. Note that µTC only depends on the market parameters θ and σ2 while xTC

depends on r, q, S0, T , K, θ, σ and ω. In particular, xTC is contract-dependent as it varies

with maturity T and strike K. We will refer to µTC and xTC as the market-dependent

parameter and the adjusted log-moneyness, respectively.

Proof. By conditioning on ZT and given that (Zt) and (Wt) are independent, we find the

following:

CTC(S0,K, T, r, q, θ, σ) = e−rTE[(ST −K)+] = e−rTE
[(
S0e(r−q)T+XT−ωT −K

)+
]

= e−rTE
[(
S0e(r−q)T+θZT+σWZT

−ωT −K
)+
]

= e−(q+ω)TE
[(
S0eθZT+σWZT −Ke(q−r+ω)T

)+
]

= e−(q+ω)TE

[(
S0e(µTCσ

2−σ
2

2
)ZT+σWZT −Ke(q−r+ω)T

)+
]

= e−(q+ω)TE
[
eµTCσ

2ZTCBS(S0,Ke(q−r+ω)T , ZT , µTCσ
2, 0, σ)

]
= S0e−(q+ω)TE

[
cBS

(
σ2ZT , xTC , µTC

)]
,

where we used the Definitions (2.1.5) and (2.1.7) of CBS and cBS .
2

In the case that eXt is a martingale (or equivalently, θ = −σ2

2 ), the normalised Black-

Scholes formula cBS admits a symmetry:

Corollary 2.1.1. If µ = 0, then the following holds true for all v ∈ R+ and x ∈ R:

cBS(v;−x, 0) = 1− e−x + e−xcBS(v;x, 0). (2.1.12)

This identity thus applies, for example, to the Heston model with zero correlation.

Proof. By straightforward algebra we get the following equalities:

cBS(v;−x, 0) = N
(
−x√
v

+

√
v

2

)
− e−xN

(
−x√
v
−
√
v

2

)
=

[
1−N

(
x√
v
−
√
v

2

)]
− e−x

[
1−N

(
x√
v

+

√
v

2

)]
= 1− e−x + e−x

[
N
(
x√
v

+

√
v

2

)
− exN

(
x√
v
−
√
v

2

)]
= 1− e−x + e−xcBS(v;x, 0).

2
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The discussion so far has only considered call options. However, with the help of the put-

call parity, one can easily obtain the value of a put option if the value of the corresponding

call option is known. For convenience, we restate the put-call parity for the time-changed

setting considered here at time 0:

PTC(S0,K, T, r, q, θ, σ) = CTC(S0,K, T, r, q, θ, σ) +Ke−rT − S0e−qT . (2.1.13)

On account of Proposition 2.1.1, the problem of pricing a call option in a time-changed

model reduces to the problem of evaluating E[cBS(σ2ZT ;x, µ)] for known values of x and

µ, which we address in the following section.

2.2 Rational approximations used for option pricing

To evaluate CTC given in Equation (2.1.8) we approximate the function v 7→ cBS(v;x, µ)

on a specified range v ∈ [a, b] by a rational function, for given values of x and µ. For an

integer m, we denote the rational function approximation of cBS(v;x, µ) with degree m

by cmRA(v;x, µ):

cBS(v;x, µ) ≈ cmRA(v;x, µ) =

∑m
j=0 a

x,µ
j vj∑m

j=0 b
x,µ
j vj

. (2.2.1)

To obtain the parameters ax,µj and bx,µj , for given x and µ, we use a rational Chebyshev

approximation (see Section 1.4.1 for a summary).

Next, assuming that the roots of the denominator in Equation (2.2.1) are distinct, we

use a partial fraction decomposition to rewrite the right-hand side of Equation (2.2.1) as

follows:

cmRA(v;x, µ) = Ax,µ0 +
m∑
j=1

Ax,µj
v −Bx,µ

j

. (2.2.2)

In the remainder of this chapter it is assumed that the roots of the denominator in Equa-

tion (2.2.1) are distinct. The parameters Ax,µj and Bx,µ
j will usually be complex numbers.

If Re(Bj) < 0, which will typically be the case (see also the remark below), we may rewrite

any of the denominators (v −Bx,µ
j )−1 in integral form as

1

v −Bx,µ
j

=

∫ ∞
0

e−(v−Bx,µj )ydy.
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Interchanging sum and integration yields the following:

cmRA(v;x, µ) = Ax,µ0 +

∫ ∞
0

 m∑
j=1

Ax,µj eB
x,µ
j y

 e−vydy. (2.2.3)

To approximate the integral in Equation (2.2.3) efficiently, we truncate the integral

and use a Gaussian quadrature:∫ ∞
0

f(x)dx ≈
∫ d

c
f(x)dx ≈

L∑
k=1

wkf(xk), (2.2.4)

where 0 ≤ c < d <∞, wk are the quadrature weights, xk the abscissas and f denotes the

integrand in (2.2.3). We compared a number of different Gaussian quadrature methods

and found that Gauss-Legendre performs particularly well; it results in small errors for all

parameter values and models considered here. Abscissas and weights are calculated by the

standard procedure (see Press et al. [113] for details) and do not depend on the integrand

f in the case of Gauss-Legendre quadrature. We thus obtain the following approximation:

cmRA(v;x, µ) ≈ Ax,µ0 +
L∑
k=1

wk m∑
j=1

Ax,µj eB
x,µ
j xk

 e−vxk , if Re(Bx,µ
j ) < 0 ∀j.(2.2.5)

To summarise, given constant values for x and µ, EQ[cBS(σ2ZT ;x, µ)] can be approximated

by a rational function of the form

EQ[cBS(σ2ZT ;x, µ)] ≈ Ax,µ0 +
L∑
k=1

wk m∑
j=1

Ax,µj eB
x,µ
j xk

EQ
[
e−σ

2ZT xk
]
, (2.2.6)

if Re(Bx,µ
j ) < 0 for all j, where Ax,µj and Bx,µ

j are the parameters of a rational func-

tion approximation with degree m (after applying a partial fraction decomposition), all

depending on x and µ.

Proof of Equation (2.2.6). If Re(Bx,µ
j ) < 0 for all j, it follows from Equation (2.2.1)

and Equation (2.2.5) that the following approximation is valid:

cBS(v;x, µ) ≈ Ax,µ0 +

L∑
k=1

wk m∑
j=1

Ax,µj eB
x,µ
j xk

 e−vxk .
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Substituting v = σ2ZT and taking expectations on both sides yields the following expres-

sion:

EQ [cBS(σ2ZT ;x, µ)
]
≈ EQ

Ax,µ0 +

L∑
k=1

wk m∑
j=1

Ax,µj eB
x,µ
j xk

 e−σ
2ZT xk


= Ax,µ0 +

L∑
k=1

wk m∑
j=1

Ax,µj eB
x,µ
j xk

EQ
[
e−σ

2ZT xk
]
.

Combining Equation (2.2.6) with Proposition 2.1.1 leads to an explicit approximation

of the call option prices in the time-changed model in terms of the Laplace transform of

the stochastic clock ZT .

Remark. Typically, the values Bx,µ
j in the rational approximation have negative real

part, but sometimes a coefficient Bx,µ
j has non-negative real part. If this is the case, the

easiest way to proceed is to increase the order of the rational function approximation. In

the cases where switching to a higher order approximation does not resolve the problem,

one can deal with the approximation of terms for which Re(Bx,µ
j ) ≥ 0 separately. For

those terms, we define a new variable v∗ = e−v and approximate the resulting function by

a Chebyshev approximation of order n to get

E

[
Ax,µj

v −Bx,µ
j

]
= E

[
−Ax,µj

log(v∗) +Bx,µ
j

]
≈ E

[
n∑
i=0

cx,µi (v∗)i

]
(2.2.7)

= E

[
n∑
i=0

cx,µi e−iv

]
=

n∑
i=0

cx,µi E
[
e−iv

]
(for a review of Chebyshev approximations see Section 1.4.1). Note that if more terms

with Re(Bx,µ
j ) ≥ 0 occur, only a single Chebyshev approximation is needed for all these

terms simultaneously. Thus, in Equation (2.2.6) the terms in the sum corresponding to

Bx,µ
j with non-negative real part should be replaced by an approximation of the form given

in Equation (2.2.7).

Remark. In the case of the Heston model with correlation, a similar conditioning ap-

proach would lead to a family of functions of two variables that needs to be approximated.

This follows since log (St/S0) is normal when conditioning on Vt and
∫ t

0 Vsds (which can

be found in Glasserman & Kim [67] or Broadie & Kaya [32]). For given values µ and x,

one would therefore approximate a two-dimensional function, which can then be rewritten
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in terms of negative exponential moments of the clock. However, a detailed analysis of

this case is left for future research, where one should investigate faster and more powerful

two-dimensional approximation methods.

2.2.1 Example: variance-gamma model

This example illustrates how to price a vanilla call option in the VG model with the

following parameters (taken from the original paper by Madan et al. [98])

σ = 0.1213, ν = 0.1686 and θ = −0.1436.

It follows that the time-change (Zt) is now given by a gamma process independent of (Wt)

with marginal distribution at time t given by a gamma distribution G( tν , ν) with shape

parameter t
ν and scale parameter ν (see Section 1.2.4 for more details). We assume that

S0 = 1, K = 1.1, r = 0.03, q = 0.01 and T = 1, so that we are pricing an out of the money

call option with one-year maturity. It then follows from Equation (2.1.9) that µTC and

xTC take the following rounded values:

µTC = −9.2596, xTC = 0.0594.

A rational approximation of cBS(v;x, µ) with degree m = 5 is then given as follows:

c5
RA(v;xTC , µTC) = −0.0041− 0.0009 + 0.0021i

v + (0.0387− 0.0667i)
− 0.0009− 0.0021i

v + (0.0387 + 0.0667i)

+
0.0034

v + 0.0356
+

8.0× 10−5

v + 0.0098
+

2.5× 10−5

v + 0.0014
,

for v ∈ [0.0027, 0.0405] after applying the partial fraction decomposition (it should be

noted that we rounded these values only to present them here, but use more accurate

values to derive the results stated below). Then, if we denote each ratio by
Aj
v−Bj , using

the Equation (2.2.3), the above can be rewritten as

c5
RA(v;xTC , µTC) = A0 +

∫ ∞
0

(
A1eB1y +A2eB2y +A3eB3y +A4eB4y +A5eB5y

)
e−yvdy,

where all five Bjs have negative real part.

In Figure 2.1, the difference of cBS(v; 0.0594,−9.2596) and c5
RA(v; 0.0594,−9.2596) is

plotted for v ∈ [0.0027, 0.0405]. The maximum error for this example is 2.39 × 10−8.

Finally we use Gaussian quadrature to approximate the infinite integral (with L = 500,

c = 0 and d = 7000). Employing Proposition 2.1.1 and Equation (2.2.6) to calculate the
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Figure 2.1: Difference between the normalised Black-Scholes formula, cBS(v; 0.0594,−9.2596),

and the corresponding rational approximation with degree 5, c5RA(v; 0.0594,−9.2596), for v ∈

[0.0027, 0.0405] in the VG model with σ = 0.1213, ν = 0.1686 and θ = −0.1436 (Madan et al. [98])

and S0 = 1, K = 1.1, r = 0.03, q = 0.01 and T = 1.

option price therefore yields CTC = 0.021403241. Comparing this value to the option price

computed using the FFT method (0.021403243) gives an error of 2× 10−9.

2.2.2 Offline calculation and interpolation

If one is interested in pricing a number of options with different strikes and maturities,

some practical improvements that yield substantial gains in computation time can be

made. Given the market parameters, and therefore µTC , one approximates the function

cBS(v;x, µTC) for a number of values of the adjusted log-moneyness x between xminTC and

xmaxTC (30 values of x should usually suffice). To calculate xminTC and xmaxTC , one only needs the

smallest and largest strike and maturity that one is interested in pricing, as all other values

of xTC lie between these four corners. One then stores the corresponding approximation

parameters Ax,µj and Bx,µ
j for each value of x and uses an interpolation method (cubic

splining, for example) for values in between. As a consequence, one is able to speed up

the method dramatically, since any option price with these market parameters can now be

calculated without the need of performing rational approximations. Although the rational

Chebyshev approximations can be performed very quickly, it should only be done once for
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a given set of market parameters.

Obviously, when approximating only a few values of x offline, which are then used

for the interpolation, one should make sure that the errors of these approximations are

sufficiently small. As illustrated in the next section, for some of the x values, errors are

much bigger than for others, due to numerical instability. However, each approximation

can be carefully checked by evaluating the resulting errors (see Section 2.3.2), as the

computational time for these approximations should not matter as much (given that it is

done only once offline). One can therefore search for a rational function approximation

that performs well for the given value of x.

Remark. When using this method for fast calibration, one could pre-calculate ap-

proximations of cBS(v;x, µ) for a number of parameter combinations of x and µ. The

online calculation of an option price would then involve a two-dimensional interpolation

between the values of x and µ calculated offline. This should be particularly feasible for

calibrations where parameters are not allowed to vary too much from parameters obtained

in the previous calibration, as one then has a well-defined range for µ. Investigation of

this idea is left for future research.

2.3 Numerical error estimates

Observe that the error from our method arises from the approximation in Equation (2.2.6)

only. This error can be subdivided into: (a) truncation error of v; (b) error in the rational

function approximation; and (c) error in the Gaussian quadrature. In attempts to control

the error, there will be a trade-off between the different sources of error (a) and (b), that

is the size of the truncation interval for v and the quality of the rational approximation for

a given degree. Since cBS(v;x, µ) decays as v1/2 for small v, approximating this function

accurately for very small values of a requires a high order of the rational approximation.

A suitable choice of the truncation limits a and b is therefore required to balance these two

different sources of error. In order to balance these errors and to find suitable choices for

a and b, we analyse the cumulative distribution function (CDF) of σ2ZT in Section 2.3.1.

Later, we consider the resulting error of the rational function approximation for the range

[a, b] and outside the range [a, b] in Section 2.3.2.

The third source of error is introduced by the numerical integration of the infinite
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Case Model Parameters Source µTC xmaxTC xminTC

I VG σ = 0.1213, ν = 0.1686, θ = −0.1436 Madan et al. [98] -9.2596 0.6099 -0.1436

II VG σ = 0.178753, ν = 0.13317, θ = −0.30649 Fiorani [58] -9.0920 0.9857 -0.1061

III Heston κ = 0.87, δ = 0.07, ξ = 0.34, V0 = 0.07 Detlefsen & Härdle [53]* 0 0.2731 -0.1773

IV Heston κ = 0.9, δ = 0.04, ξ = 0.3, V0 = 0.04 Andersen [6]* 0 0.2731 -0.1773

V CGMY C = 1, G = 5,M = 10, Y = 0.5 Madan & Yor [100] -2.0000 0.7264 -0.1320

Table 2.1: Computation of market-dependent parameter (µTC), and the maximum and minimum

adjusted log-moneyness (xmaxTC and xminTC ) for five sets of parameters found in the literature (*we

have set ρ equal to zero in these models, as our framework only considers the zero-correlation

Heston model, even though it was not zero in the original papers).

integral in Equation (2.2.3). The numerical integration method should be chosen such

that the resulting error is comparable to the other two errors. If necessary, an adaptive

quadrature method can be used to control for the error of this numerical integration.

In order to further analyse the error that arises from the method presented here, we

have chosen five sets of market parameters from the literature. We consider options with

strikes K = 0.8, 0.81, 0.82, ..., 1.19, 1.2 and maturities T = 0.25, 0.5, 1, 1.5, 2, 2.5 for each of

the five parameter sets detailed below, and set S0 = 1, r = 0.03 and q = 0.01. This leads

to a total of 246 options and therefore 246 different values of xTC for each set of market

parameters. Table 2.1 summarises the five cases and states the source of each parameter

set. Values of µTC , xmaxTC and xminTC are also given, where xmaxTC and xminTC represent the

maximum and the minimum of the 246 values of the adjusted log moneyness xTC for each

case.

One can see from the table that the values for µTC , xmaxTC and xminTC vary substantially

between different models and parameters. Note that µTC and ω are both zero in the case

of the zero-correlation Heston model, implying that µTC and xTC do not depend on the

model parameters at all. From here on we refer to these sets of parameters as Case I-V,

respectively.

2.3.1 Cumulative distribution functions

To choose appropriate values for a and b, the truncation values of v, we analyse the CDF

of ZT for Cases I - IV of Table 2.1. As stated in Section 1.2.4, ZT is gamma-distributed



2.3. Numerical error estimates 71

(a) Variance Gamma model (b) Heston model

Figure 2.2: Cumulative distribution function of σ2ZT , where ZT is the time-change of (a) the VG

model with parameters as in Case I and II, and (b) the Heston model with parameters as in Case

III and IV. For all cases we have plotted maturity T = 0.25 and T = 2.5.

(ZT ∼ G(Tν , ν)) for Cases I and II. By the scaling property of the gamma distribution, we

obtain that σ2ZT ∼ G(Tν , σ
2ν), with probability density function

fσ2ZT

(
x,
T

ν
, σ2ν

)
=

x
t
ν
−1e−

xσ2

ν

(σ2ν)
t
ν Γ( tν )

. (2.3.1)

Plotting the CDF for Cases I and II with maturity T = 0.25 and T = 2.5 results in

Figure 2.2(a). For the CGMY model and the Heston model, we need to simulate ZT to

estimate its CDF as there are no closed-form expressions. Madan & Yor [100] describe a

method to simulate ZT in the case of the CGMY model. Glasserman & Kim [67] describe

a method to simulate ZT in the case of the Heston model. In particular, given V0 in the

Heston model, one can simulate VT , the endpoint of the variance process, exactly as shown

in Equation (1.2.15). Then, conditional on V0 and VT , the distribution of ZT =
∫ T

0 Vsds

is given by Theorem 2.1 in Glasserman & Kim [67], and can therefore be simulated easily.

We implemented this procedure and estimated the CDF numerically for Cases III and

IV. Results are represented in Figure 2.2(b). As can be seen, the ranges of the CDFs

vary widely between the different models and different maturities (note that the scales of

Figures 2.2(a) and 2.2(b) are not the same).

To ensure that only 0.1% of the mass of σ2ZT lies in the regions [0, a] and [b,∞], we

set a and b equal to the 0.1% and 99.9% quantiles of σ2ZT , that is, we solve for x setting
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Case a(T = 0.25) b(T = 0.25) a(T = 2.5) b(T = 2.5)

I 2.84× 10−5 0.0201 0.0141 0.0735

II 1.48× 10−4 0.0382 0.0347 0.1491

III 0.0048 0.0413 0.0286 0.7283

IV 0.0021 0.2600 0.0130 0.4841

Table 2.2: Computation of a and b, that is the 0.1% and 99.9% quantiles of the cumulative

distribution function of σ2ZT , for Case I - IV with maturity T = 0.25 and T = 0.5.

p equal to 0.001 and 0.999 in the following equation:

F−1
σ2ZT

(p) = inf{x : Fσ2ZT (x) ≥ p}. (2.3.2)

For the gamma distribution, for example, this inverse is then given by

F−1
σ2ZT

(
p,
T

ν
, σ2ν

)
= inf

{
x : Fσ2ZT

(
x,
T

ν
, σ2ν

)
≥ p
}
, (2.3.3)

where

Fσ2ZT

(
x,
T

ν
, σ2ν

)
=

∫ x

0
fσ2ZT (s)ds = γ

(
T

ν
,
x

σ2ν

)
,

and γ is the upper incomplete gamma function defined as

γ(a, b) = Γ(a)−1

∫ b

0
ta−1e−tdt.

For the Heston model, we use simulated values of Fσ2ZT (x) to calculate a and b (and the

same could be done for the CGMY model). Results for Cases I - IV are presented in

Table 2.2, where we have again chosen maturities T = 0.25 and T = 2.5 as an example

and have calculated a and b for each case separately. These numbers confirm that the

region of interest will depend heavily on the model and maturity under consideration.

Clearly, the more that is known about the possible range of σ2ZT and the smaller

we are able to make the range [a, b], the easier it will be to find an appropriate rational

approximation for this range. There are also extreme parameter combinations for which

the range of [a, b] is rather large and the method does not perform as well (that is if the

time change (Zt) is too wide). Also, for maturities smaller than T = 0.25 we found that

the resulting a might be too small for some of the parameter combinations and models,

and the rational approximation may result in larger maximum errors. For options with

short maturities we refer to the work of Levendorskĭı [86] and Andersen & Lipton [8].
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Case εmax[0,a] εmax[a,b] εmax[b,∞]

I 1.44× 10−6 1.13× 10−5 2.84× 10−6

II 1.29× 10−6 2.70× 10−5 6.36× 10−6

III 2.73× 10−10 5.78× 10−9 2.67× 10−10

IV 5.93× 10−8 5.84× 10−5 2.88× 10−8

Table 2.3: Computation of maximum errors resulting from the rational function approximation

for 246 parameter combinations over the region [0, a], [a, b] and [b,∞), which are denoted by εmax[0,a] ,

εmax[a,b] and εmax[b,∞] respectively.

2.3.2 Error from the rational function approximation

The error of most approximations looks similar to the error displayed in Figure 2.1, where

we now choose a and b as described in the previous section. Note that the support of the

time change in Equation (2.1.8) is over the whole positive real axis. The approximation

in Equation (2.2.6) therefore leads to errors over [0,∞) as well. We subdivide this region

into [0, a], [a, b] and [b,∞), and approximate the error for each region and for each of the

five cases of Table 2.1 separately. The errors can be calculated as follows:

ε[0,a] =

∫ a

0

[
cBS (z;x, µ)−

(
Ax,µ0 +

n∑
i=0

bie
−iz +

L∑
k=1

(
wk

m∑
j=1

Ax,µj eB
x,µ
j xk

)
e−xkzdy

)]
fσ2Zt(z)dz,

ε[a,b] =

∫ b

a

[
cBS (z;x, µ)−

(
Ax,µ0 +

n∑
i=0

bie
−iz +

L∑
k=1

(
wk

m∑
j=1

Ax,µj eB
x,µ
j xk

)
e−xkzdy

)]
fσ2Zt(z)dz,

ε[b,∞] =

∫ ∞
b

[
cBS (z;x, µ)−

(
Ax,µ0 +

n∑
i=0

bie
−iz +

L∑
k=1

(
wk

m∑
j=1

Ax,µj eB
x,µ
j xk

)
e−xkzdy

)]
fσ2Zt(z)dz.

Computing these errors for each of the 246 options of Cases I - IV separately results

in Table 2.3, where we represent the maximum absolute error for each case.

As can be seen, maximum logarithmic errors are of order −5 to −6. Even though

these errors are already relatively small, we observed that most of the 246 errors are much

smaller than these maximum errors for each case. To illustrate this point, we recalculate

the errors shown in Table 2.3, deleting the largest 25 values from each maximum absolute

error calculation. The results are given in Table 2.4, where we denoted these errors by

εmax25.

When pricing options, one could therefore delete x values that result in errors that are

too large and interpolate between the x values prices that had smaller errors (cf. discussion
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Case εmax25
[0,a] εmax25

[a,b] εmax25
[b,∞]

I 2.62× 10−7 3.70× 10−6 8.23× 10−7

II 9.32× 10−7 8.97× 10−6 3.39× 10−6

III 4.96× 10−11 9.56× 10−10 1.08× 10−11

IV 6.91× 10−11 3.67× 10−10 2.87× 10−11

Table 2.4: Computation of maximum errors resulting from the rational function approximation

for 246 parameter combinations over the region [0, a], [a, b] and [b,∞) after deleting the 25 largest

errors for each calculation, which are denoted by εmax25[0,a] , εmax25[a,b] and εmax25[b,∞] respectively.

in Section 2.2.2). From Table 2.4 we see that, especially for Cases III and IV (the Heston

model), the deletion of values with large errors and consequent interpolating should yield

a great improvement. We will detail this procedure further in the next section and give

error estimates in Section 2.5.

2.4 Implied volatility

The Black-Scholes formula is often used to express option quotes in terms of the implied

volatility: Given the option price and all parameters except σ in the Black-Scholes for-

mula (2.1.5), one searches for the value of σ that solves the equation. This value of σ is

referred to as implied volatility and we denote it by σIV . Since there is no closed-form

formula for σIV , it is usually solved for by using a solver method, which is typically rather

slow. To speed up the calculation Manaster & Kohler [101] developed a technique that

provides a starting value and guarantees convergence. More recent methods, such as the

methods developed by Brenner & Subrahmanyam [29], Corrado & Miller [46] and espe-

cially Jäckel [76], are faster and more accurate. Adopting the method described in this

section, we seek an approximation of the inverse function by a rational function approxi-

mation, and therefore present another fast and accurate alternative to the standard solver

methods.

We restate the normalisation of the Black-Scholes formula (2.1.6) with a slightly mod-

ified parametrisation:

cIV (v, x) = cBS(v2, x, 0) = N
(x
v

+
v

2

)
− e−xN

(x
v
− v

2

)
. (2.4.1)
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Any call option price can then be written in terms of this normalised formula as follows:

CBS(S0,K, T, σ, r, q) = S0e−qT cIV

(
σ
√
T , log

(
S0e(r−q)T

K

))
. (2.4.2)

Since the normalised Black-Scholes formula cIV is a function of only two variables,

finding a suitable rational approximation for any parameter combination becomes easier.

Note that the question of finding σIV reduces to finding vIV in Equation (2.4.1), where it

follows from (2.4.2) that

cIV =
CBS(S0,K, T, σ, r, q)

S0e−qT
,

x = log

(
S0e(r−q)T

K

)
,

which are both given constants when searching for the implied volatility. We therefore

need to solve for the value of v that solves Equation (2.4.1) for known values cIV (v, x) = c

and x. Once we obtain vIV , σIV is determined by σIV = vIV /
√
T . It should also be noted

that one can restrict, without loss of generality, to the case of call options, as the case of

put options follows on account of the put-call parity as in Section 2.1. A re-parametrised

version of the put-call parity can be stated as follows (see the proof of Corollary 2.1.1 for

more details):

cIV (v,−x) = excIV (v, x) + 1− ex, x ∈ R, v ∈ R+,

so that the following relation holds for the implied volatility:

vIV (c, x) = vIV (exc+ 1− ex,−x).

As a consequence, one can concentrate on the negative half-line x ∈ R−. All results pre-

sented in this section so far can be found in a recent article by Li [90], who concentrates on

approximating the two-dimensional Black-Scholes implied volatility formula vIV by a single

two-dimensional rational approximation1. Li approximates the inverse of Equation (2.4.1)

for −0.5 ≤ x ≤ 0 and cLB(x) ≤ c ≤ cUB(x) where

cLB(x) =
−0.00424532412773x+ 0.00099075112125x2

1 + 0.26674393279214x+ 0.03360553011959x2
,

cUB(x) =
0.38292495908775 + 0.31382372544666x+ 0.07116503261172x2

1 + 0.01380361926221x+ 0.11791124749938x2
.

1Note that it is also possible to build a lookup table for the entire two-dimensional function once and

interpolate between values in the table for the purpose of option pricing. However, we find that the

approximation approach presented here, is more efficient and accurate.
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This means that bounds are widest for x = 0 and become narrower as x decreases to −0.5.

These bounds are well chosen by Li, as it becomes more and more difficult to approximate

the function well for small values of x. Still, it should be noted that the range is rather

wide.

Note that the inverse is a function of two variables (c,x). Li therefore uses a two-

parameter rational approximation of the form

vIV (c, x) ≈ vLiRA(c, x) = p1x+ p2

√
c+ p3c+

∑
1≤i+j≤4 ni,jx

i√cj

1 +
∑

1≤i+j≤4mi,jxi
√
c
j
,

and obtains the approximation parameters using the downhill simplex search method.

Without further adjustments (like a Newton-Raphson polishing), Li states a maximum

error of 3.3× 10−3 for vIV over this region. It should be noted that the error is of similar

magnitude for many parameter combinations and that one still needs to divide by
√
T to

obtain σIV (making the error even bigger for short maturities). It should also be stressed

that the approximation of Li applies to all combinations of c and x (within the bounds)

and a total of 31 parameters is sufficient for any calculation. Having worked with the

downhill simplex search method ourselves, we note that this is a remarkable result and

that it should be used wherever this error bound is acceptable.

Rather than the ambitious attempt to approximate the whole function with one set of

parameters, we repeat the approximation for 105 values of x given by

x = 0,−0.0025,−0.005,−0.0075, ...,−0.02 and x = −0.025,−0.03,−0.035, ...,−0.5. For

each of these x values we use a rational function approximation of the following form:

vIV (c, x) ≈ vpRA(c, x) =

p∑
i=0

nxi
√
c
i

p∑
i=0

mx
i

√
c
i
,

where p varies between 7 and 9 for different values of x2. The approximation parame-

ters nxi and mx
i , where these all depend on x, can be obtained again using the rational

Chebyshev approximation (discussed in Section 1.4.1). However, we found that here it is

2For some values of x, the approximation is harder and we choose degree 9 for those. To approximate

the function, we solved for vIV using the Newton-Raphson method. For other values, degree 7 is sufficient

to obtain the desired error bound. Note that rational approximations of degree 9 can still be performed

easily with double precision. One can improve all the approximations performed in this section by switching

to higher order rational approximations, although, high precision arithmetic would become necessary for

degrees of 13 and higher.
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Figure 2.3: Error in the normalised Black-Scholes implied volatility, vimp, for x ∈ [−0.5;−0.2]

and cLB(x) ≤ c ≤ cUB(x) using rational function approximations.

advantageous to use the iterative algorithm discussed in Section 5.13 of Press et al. [113],

using a maximum of six iterations to get closer to the so-called ideal ‘minimax’ solu-

tion. Once the approximation has been performed for each value of x, approximation

parameters are stored to the computer and do not need to be recalculated, as detailed in

Section 2.2.2. Note that these approximations neither depend on the model nor on the

market parameters and can therefore be used for any option. To calculate vIV for any

value −0.5 ≤ x ≤ 0, one only needs to interpolate between the previously calculated values

(using linear interpolation or a cubic spline, for example). We observe that the maximum

absolute error for −0.5 ≤ x ≤ −0.0075 is 8.55 × 10−7, whereas the maximum absolute

error for −0.0075 < x ≤ 0 is 5.54× 10−5. For most of the input values, the absolute error

is even smaller than 1× 10−8 and we plot the error for x ∈ [−0.5;−0.2] in Figure 2.3. It

is clear that the algorithm used is able to spread the error almost evenly for any of the x

values and that all errors are rather small.

We would like to stress that this method, like the method presented by Li, does not

require any approximation when calculating the implied volatility online. All approxima-
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tions are done once and are stored to the hard-drive. The parameters one needs to store

are all real and the calculation could easily be performed in Microsoft Excel, for example,

without further adjustments. Evaluating the implied volatility for any model and any set

of parameters (within the bounds) can then be carried out extremely quickly via interpo-

lation. The region that is well approximated by this method is wide and applies to most

parameter combinations and options. The region where this method struggles is the region

where most methods do: options very close to maturity with only a few hours or days

remaining. In these cases, asymptotic methods are appropriate (see e.g. Gao & Lee [61]).

If some of the options being priced do not fall within the defined bounds (the bound on

x should hardly ever be an issue, but the bounds on c might be), there is no harm in

using your favourite solver method for these few cases. For all other cases, the method

presented here should yield a great improvement of computational efficiency and is easy

to implement.

2.5 Numerical results: case studies

This section comprises the numerical results of the rational approximation method. Sec-

tion 2.5.1 compares numerical results for option prices of the developed rational approxi-

mation method to those obtained by employing the standard FFT method. Section 2.5.2

compares the speeds of both methods, and Section 2.5.3 contains a comparison of accuracy

and speed for the implied volatility calculations.

2.5.1 Comparision of option prices to the FFT

As discussed in Section 1.3, other methods have been developed to evaluate options nu-

merically when the asset dynamics are assumed to be different than in the Black-Scholes

setting. Monte Carlo methods and finite difference schemes are two widely used exam-

ples. In the case of asset dynamics following Equations (2.1.1) - (2.1.2), the standard

methodology to evaluate vanilla options is to use Fourier-based option pricing methods

(see Section 1.3.2). We compare the rational approximation approach presented here to

the standard FFT method developed by Carr & Madan [40] since this method is well-

known and widely used in practice. Note that several more efficient methods have been

proposed in the literature and that the choice of parameters of the numerical scheme pro-
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posed by Carr and Madan does not hold in general (we refer the reader to Boyarchenko &

Levendorskĭı [26], to Levendorskĭı [88] especially for the case of the Heston model, and to

De Innocentis [51] for the Variance Gamma model). Note that for the FFT method, one

usually requires the characteristic function of the log of the stock price at time t (where

the stock price at time t is assumed to be as in Equation (2.1.1)), which is

E[eizlog(St)] = eiz(log(S0)+(r−q−φ(−i))t)EQ[eizXt ]. (2.5.1)

As can be seen, one therefore requires the Fourier transform of (Xt) as defined in Equa-

tion (1.2.1) rather than the Laplace transform of (Zt). The general formula to obtain the

resulting characteristic function ΦXt(z) for (Xt) from that of (Zt) is

EQ[eizXt ] = EQ[eiz(σWZt+θZt)] (2.5.2)

= EQ[e(izθ− z
2σ2

2
)Zt ], z ∈ R,

for all three models discussed above. From this it follows that, for example, the charac-

teristic function of (Xt) in the VG model is equal to

EQ[eizXt ] = (1− νziθ + σ2νz2/2)−
t
ν . (2.5.3)

We next compare prices of vanilla call options computed from both methods for the

three models discussed in Section 1.2.2. For each of the models, we select one set of

market parameters from Table 2.1 and compare plain vanilla call option prices for strikes

K ∈ [0.8, 1.2] and maturities T ∈ [0.25, 2.5]. Tables 2.5 - 2.7 give absolute errors between

the option price obtained by the FFT method and the rational approximation method. In

particular, Table 2.5 represents errors for Case I, Table 2.6 represents errors for Case V

and Table 2.7 represents errors for Case III. In these three tables, we set S0 = 1, r = 0.03

and q = 0.01. As can be seen, maximum errors in Table 2.5, 2.6 and 2.7 are 1.61× 10−5,

1.14× 10−6 and 8.59× 10−8, respectively.

For all three tables, we pre-calculated 30 values of xTC equally spaced between xmaxTC

and xminTC such that strikes K ∈ [0.8, 1.2] and maturities T ∈ [0.25, 2.5] are included. We

iterate over ten different values for a and b, and calculate errors for each of the ten cases,

rather than calculating the value for a and b with the help of the CDF, as this procedure

is much quicker. We take those values of a and b that lead to errors smaller than 1× 10−6

and delete x values for which no such combination can be found. In Equation (2.2.7), n
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was set to 7. The rational Chebyshev approximation in Equation (2.2.1) starts with degree

6 and increases to degree 8 to avoid positive roots, and the Gauss-Legendre quadrature in

Equation (2.2.4) was performed with 500 points, where c = 0 and d = 7000.

Remark. Note that these degrees (that is rational approximations with degree 6 and

8) can be performed with double precision. If one is interested in improving on the error

bounds given here, it might be worth investigating how switching to higher order rational

approximations, which will require high precision arithmetics, influences the errors. This

could be particularly relevant for the few approximations performed offline, for which

computational effort is not the main concern. We leave a detailed comparison of different

Gaussian quadrature methods for further research.

2.5.2 Comparison of speed

The relative computational speeds of the FFT method (with 2048 points) and of the

rational function method depend on the number of strikes and the number of maturities

that are considered. In the FFT method, all strikes can be computed in one go, given

that they have the same maturity. The rational function approximation, on the other

hand, approximates the normalised Black-Scholes formula (2.1.6) for a given strike, which

can then be used for any maturity. Therefore, pricing relatively few strikes and relatively

many maturities should be advantageous for the rational approximation method and vice

versa. Table 2.8 gives approximate computational times for the two different methods,

for different numbers of strikes and maturities. The first row resembles the example of

Table 2.5, where we can see that the rational function approximation clearly outperforms

the FFT method. As can also be seen, the rational function approximation is about five to

ten times faster than the FFT method, depending on the number of strikes and maturities

that need to be priced. The computational times given here were measured by Matlab

(version R2009b) on a Lenovo ThinkPad R60 (1.8 GHZ, 2GB RAM) and are given in

seconds.

2.5.3 Numerical results for implied volatility

We use our method presented in Section 2.4 to determine the volatility surface of the

CGMY model for T ∈ [0.1, 1.0] (steps of 0.01) and K ∈ [0.7, 1.3] (steps of 0.01) with

C = 1, G = 5, M = 10 and Y = 0.5 (these parameters are taken from Madan & Yor [100]).



2.5. Numerical results: case studies 81

K T = 0.25 T = 0.5 T = 1 T = 1.5 T = 2 T = 2.5

0.80 3.89E-06 1.02E-07 9.25E-06 3.60E-06 6.82E-06 8.25E-06

0.81 3.46E-06 3.06E-08 9.54E-06 5.13E-06 4.26E-06 8.35E-06

0.82 1.04E-06 4.47E-08 5.27E-06 6.65E-06 1.99E-06 8.90E-06

0.83 6.84E-07 1.80E-07 3.78E-07 6.89E-06 1.11E-06 9.57E-06

0.84 6.39E-07 2.81E-07 1.28E-06 5.58E-06 1.88E-06 1.01E-05

0.85 3.98E-07 1.50E-07 5.89E-07 2.80E-06 3.17E-06 1.03E-05

0.86 1.65E-06 3.58E-07 2.46E-07 5.73E-07 3.75E-06 1.02E-05

0.87 2.17E-06 3.92E-07 3.03E-07 2.90E-06 3.23E-06 9.60E-06

0.88 7.26E-07 8.94E-08 2.93E-09 2.86E-06 2.16E-06 8.62E-06

0.89 1.13E-06 1.84E-07 5.28E-08 1.27E-06 9.45E-07 7.26E-06

0.90 4.48E-07 3.90E-07 4.83E-08 1.70E-07 3.16E-07 5.73E-06

0.91 3.54E-06 4.24E-07 1.03E-07 4.26E-07 1.88E-06 4.24E-06

0.92 4.12E-06 3.28E-07 9.98E-08 1.27E-07 4.12E-06 3.09E-06

0.93 1.65E-06 6.39E-08 7.38E-08 1.70E-07 6.21E-06 2.81E-06

0.94 4.24E-07 9.95E-08 1.89E-08 1.88E-07 6.89E-06 3.24E-06

0.95 3.07E-07 1.14E-07 5.36E-10 1.11E-08 5.42E-06 3.75E-06

0.96 7.42E-07 1.11E-07 7.96E-08 3.95E-08 2.58E-06 4.01E-06

0.97 4.44E-07 8.60E-08 1.25E-07 5.21E-08 2.61E-08 3.73E-06

0.98 1.54E-06 3.07E-07 6.27E-08 6.28E-08 7.55E-07 2.61E-06

0.99 2.87E-06 4.47E-07 1.73E-07 2.01E-07 4.55E-07 7.06E-07

1.00 2.06E-06 6.61E-08 3.40E-08 1.42E-07 4.76E-08 1.59E-06

1.01 2.35E-06 1.05E-06 1.01E-07 1.41E-07 3.10E-07 3.57E-06

1.02 4.92E-06 2.06E-06 1.12E-07 1.41E-07 1.77E-07 4.15E-06

1.03 8.92E-06 9.71E-07 1.16E-08 4.51E-10 2.02E-08 2.98E-06

1.04 1.61E-05 2.41E-07 1.77E-07 9.86E-08 1.85E-08 1.21E-06

1.05 4.25E-07 9.88E-07 2.58E-08 1.10E-07 5.21E-09 1.63E-07

1.06 1.98E-06 7.80E-07 1.16E-07 5.74E-08 2.82E-08 6.32E-07

1.07 3.00E-06 3.22E-08 1.09E-07 1.31E-07 1.40E-07 3.75E-07

1.08 2.18E-06 3.68E-07 1.19E-08 3.58E-08 1.12E-07 5.33E-08

1.09 2.63E-06 8.86E-07 1.28E-07 3.46E-08 9.61E-08 1.21E-07

1.10 1.95E-06 3.44E-07 1.33E-08 7.36E-08 1.11E-07 5.65E-08

1.11 2.70E-06 1.49E-06 4.10E-08 1.82E-09 2.33E-08 1.63E-09

1.12 2.05E-06 7.31E-07 5.48E-08 5.10E-08 1.95E-08 7.60E-08

1.13 9.87E-07 1.14E-07 3.67E-09 4.54E-08 6.25E-08 7.01E-08

1.14 5.68E-08 6.47E-07 3.83E-08 1.07E-10 3.08E-08 8.57E-10

1.15 1.01E-06 3.59E-07 7.05E-09 3.31E-08 4.20E-08 2.93E-08

1.16 1.27E-06 6.50E-08 2.64E-08 1.38E-08 4.78E-08 7.66E-08

1.17 1.03E-06 9.28E-08 8.06E-09 2.44E-09 4.45E-09 7.42E-08

1.18 9.50E-08 7.57E-08 3.20E-08 1.53E-08 5.20E-09 7.77E-08

1.19 1.10E-06 1.07E-07 6.20E-08 8.27E-09 1.35E-08 6.56E-08

1.20 2.17E-07 6.09E-09 3.24E-09 9.02E-09 1.73E-09 1.86E-08

Table 2.5: Absolute errors between FFT method and rational function method for call options in the

VG model with parameters σ = 0.1213, ν = 0.1686 and θ = −0.1436 (Case I of Table 2.1) for varying

strikes and maturities (S0 = 1, r = 0.03, q = 0.01).
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K T = 0.25 T = 0.5 T = 1 T = 1.5 T = 2 T = 2.5

0.80 3.89E-06 1.02E-07 9.25E-06 3.60E-06 6.82E-06 8.25E-06

0.81 3.46E-06 3.06E-08 9.54E-06 5.13E-06 4.26E-06 8.35E-06

0.82 1.04E-06 4.47E-08 5.27E-06 6.65E-06 1.99E-06 8.90E-06

0.83 6.84E-07 1.80E-07 3.78E-07 6.89E-06 1.11E-06 9.57E-06

0.84 6.39E-07 2.81E-07 1.28E-06 5.58E-06 1.88E-06 1.01E-05

0.85 3.98E-07 1.50E-07 5.89E-07 2.80E-06 3.17E-06 1.03E-05

0.86 1.65E-06 3.58E-07 2.46E-07 5.73E-07 3.75E-06 1.02E-05

0.87 2.17E-06 3.92E-07 3.03E-07 2.90E-06 3.23E-06 9.60E-06

0.88 7.26E-07 8.94E-08 2.93E-09 2.86E-06 2.16E-06 8.62E-06

0.89 1.13E-06 1.84E-07 5.28E-08 1.27E-06 9.45E-07 7.26E-06

0.90 4.48E-07 3.90E-07 4.83E-08 1.70E-07 3.16E-07 5.73E-06

0.91 3.54E-06 4.24E-07 1.03E-07 4.26E-07 1.88E-06 4.24E-06

0.92 4.12E-06 3.28E-07 9.98E-08 1.27E-07 4.12E-06 3.09E-06

0.93 1.65E-06 6.39E-08 7.38E-08 1.70E-07 6.21E-06 2.81E-06

0.94 4.24E-07 9.95E-08 1.89E-08 1.88E-07 6.89E-06 3.24E-06

0.95 3.07E-07 1.14E-07 5.36E-10 1.11E-08 5.42E-06 3.75E-06

0.96 7.42E-07 1.11E-07 7.96E-08 3.95E-08 2.58E-06 4.01E-06

0.97 4.44E-07 8.60E-08 1.25E-07 5.21E-08 2.61E-08 3.73E-06

0.98 1.54E-06 3.07E-07 6.27E-08 6.28E-08 7.55E-07 2.61E-06

0.99 2.87E-06 4.47E-07 1.73E-07 2.01E-07 4.55E-07 7.06E-07

1.00 2.06E-06 6.61E-08 3.40E-08 1.42E-07 4.76E-08 1.59E-06

1.01 2.35E-06 1.05E-06 1.01E-07 1.41E-07 3.10E-07 3.57E-06

1.02 4.92E-06 2.06E-06 1.12E-07 1.41E-07 1.77E-07 4.15E-06

1.03 8.92E-06 9.71E-07 1.16E-08 4.51E-10 2.02E-08 2.98E-06

1.04 1.61E-05 2.41E-07 1.77E-07 9.86E-08 1.85E-08 1.21E-06

1.05 4.25E-07 9.88E-07 2.58E-08 1.10E-07 5.21E-09 1.63E-07

1.06 1.98E-06 7.80E-07 1.16E-07 5.74E-08 2.82E-08 6.32E-07

1.07 3.00E-06 3.22E-08 1.09E-07 1.31E-07 1.40E-07 3.75E-07

1.08 2.18E-06 3.68E-07 1.19E-08 3.58E-08 1.12E-07 5.33E-08

1.09 2.63E-06 8.86E-07 1.28E-07 3.46E-08 9.61E-08 1.21E-07

1.10 1.95E-06 3.44E-07 1.33E-08 7.36E-08 1.11E-07 5.65E-08

1.11 2.70E-06 1.49E-06 4.10E-08 1.82E-09 2.33E-08 1.63E-09

1.12 2.05E-06 7.31E-07 5.48E-08 5.10E-08 1.95E-08 7.60E-08

1.13 9.87E-07 1.14E-07 3.67E-09 4.54E-08 6.25E-08 7.01E-08

1.14 5.68E-08 6.47E-07 3.83E-08 1.07E-10 3.08E-08 8.57E-10

1.15 1.01E-06 3.59E-07 7.05E-09 3.31E-08 4.20E-08 2.93E-08

1.16 1.27E-06 6.50E-08 2.64E-08 1.38E-08 4.78E-08 7.66E-08

1.17 1.03E-06 9.28E-08 8.06E-09 2.44E-09 4.45E-09 7.42E-08

1.18 9.50E-08 7.57E-08 3.20E-08 1.53E-08 5.20E-09 7.77E-08

1.19 1.10E-06 1.07E-07 6.20E-08 8.27E-09 1.35E-08 6.56E-08

1.20 2.17E-07 6.09E-09 3.24E-09 9.02E-09 1.73E-09 1.86E-08

Table 2.6: Absolute errors between FFT method and rational function method for call options in the

CGMY model with parameters C = 1, G = 5, M = 10 and Y = 0.5 (Case V of Table 2.1) for varying

strikes and maturities (S0 = 1, r = 0.03, q = 0.01).
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K T = 0.25 T = 0.5 T = 1 T = 1.5 T = 2 T = 2.5

0.80 3.33E-09 1.84E-10 6.13E-09 3.44E-09 1.86E-08 8.36E-10

0.81 8.19E-10 1.10E-09 1.13E-09 8.08E-09 6.10E-09 2.07E-08

0.82 1.36E-08 1.27E-09 2.09E-09 2.63E-09 5.13E-09 3.04E-10

0.83 5.67E-09 2.33E-09 5.48E-09 2.36E-09 2.79E-09 5.42E-10

0.84 1.56E-09 2.96E-09 3.44E-09 5.04E-09 2.83E-09 2.06E-09

0.85 9.52E-09 4.86E-09 3.01E-09 4.02E-09 3.81E-09 3.24E-09

0.86 2.05E-08 2.49E-09 6.01E-09 2.18E-09 3.86E-09 1.89E-09

0.87 6.16E-08 8.58E-09 2.88E-09 4.85E-09 1.28E-09 1.54E-09

0.88 6.76E-08 1.31E-08 2.91E-09 3.10E-09 1.31E-09 4.22E-09

0.89 7.48E-08 5.79E-09 5.69E-09 1.55E-09 1.39E-09 1.42E-08

0.90 7.27E-08 1.21E-08 1.56E-09 4.20E-09 5.16E-09 2.93E-08

0.91 7.25E-08 1.62E-08 3.57E-09 2.19E-09 4.17E-09 4.55E-08

0.92 6.47E-08 6.48E-09 7.01E-09 2.47E-09 3.39E-09 5.05E-08

0.93 3.50E-08 1.39E-08 2.83E-09 5.19E-09 4.23E-11 3.89E-08

0.94 3.58E-08 1.52E-08 5.63E-09 2.59E-09 3.64E-09 1.64E-08

0.95 2.68E-08 8.73E-10 6.79E-09 3.16E-09 1.23E-10 4.96E-09

0.96 6.57E-09 6.81E-09 6.62E-10 4.37E-09 3.68E-09 1.93E-08

0.97 4.79E-09 1.24E-08 3.55E-09 1.61E-09 5.66E-10 4.03E-08

0.98 3.66E-08 9.89E-09 7.21E-09 3.51E-09 2.20E-09 2.42E-08

0.99 5.90E-08 1.92E-08 6.14E-09 4.72E-09 3.67E-09 2.24E-09

1.00 6.93E-08 1.54E-08 7.81E-09 2.70E-09 3.50E-09 4.25E-09

1.01 6.18E-08 3.47E-09 4.50E-09 3.73E-09 1.70E-09 3.40E-10

1.02 5.41E-08 1.20E-08 4.80E-10 2.68E-09 2.01E-09 1.09E-09

1.03 3.89E-08 1.01E-08 4.10E-09 1.05E-09 1.18E-09 5.24E-09

1.04 1.10E-08 2.49E-09 4.23E-09 3.23E-09 4.80E-09 2.49E-08

1.05 3.85E-10 8.45E-09 2.75E-09 3.30E-09 1.55E-09 4.42E-08

1.06 6.61E-09 3.29E-09 4.35E-09 2.79E-09 2.01E-09 2.93E-08

1.07 5.51E-09 2.04E-09 2.28E-09 3.55E-09 4.32E-09 1.11E-08

1.08 1.41E-08 4.55E-09 1.28E-09 2.57E-09 4.39E-09 1.02E-08

1.09 2.97E-08 5.54E-09 3.69E-09 2.75E-09 2.16E-09 4.30E-09

1.10 4.24E-08 4.46E-09 2.55E-09 3.15E-09 1.91E-09 9.78E-10

1.11 6.83E-08 7.55E-09 1.94E-09 2.14E-09 3.31E-09 1.54E-09

1.12 8.59E-08 9.40E-09 2.83E-09 2.16E-09 1.79E-09 3.90E-09

1.13 8.15E-08 1.06E-08 2.39E-09 2.28E-09 3.13E-09 1.05E-09

1.14 7.68E-08 8.75E-09 2.28E-09 1.76E-09 3.56E-09 3.15E-08

1.15 7.10E-08 7.58E-09 2.09E-09 1.85E-09 2.69E-10 4.10E-08

1.16 7.37E-08 8.91E-09 1.68E-09 1.69E-09 1.21E-09 1.68E-08

1.17 6.19E-08 9.94E-09 1.94E-09 1.62E-09 2.14E-09 7.82E-09

1.18 7.01E-09 1.25E-09 2.95E-09 1.63E-09 6.07E-09 2.41E-08

1.19 5.69E-08 2.98E-10 1.37E-09 1.81E-09 6.81E-09 5.02E-08

1.20 2.40E-09 3.74E-08 3.94E-10 1.78E-09 5.95E-09 5.77E-08

Table 2.7: Absolute errors between FFT method and rational function method for call options in the

zero-correlation Heston model with parameters κ = 0.87, δ = 0.07, ξ = 0.34 ,V0 = 0.07 and ρ = 0 (Case

III of Table 2.1) for varying strikes and maturities (S0 = 1, r = 0.03, q = 0.01).
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# Maturities # Strikes Time in sec. FFT Time in sec. RA

41 7 0.404 0.044

7 41 0.074 0.011

100 100 1.006 0.106

300 300 2.816 0.460

300 5 2.795 0.298

5 300 0.049 0.009

Table 2.8: Time comparison between FFT method and rational function method in seconds.

Again S0 = 1, r = 0.03 and q = 0.01. This gives a total of 5, 551 options and results in

a maximum error of 4.35 × 10−7. As stated before, this procedure is faster than the

usual solver methods. When comparing to Matlab’s built-in solver method (which uses

Newton’s method) for implied volatility (setting accuracy to 1 × 10−8), calculating these

5, 551 implied volatilities takes 80.22 seconds with our rational function method and 320.42

seconds with Matlab’s method. For details on how to construct a non-arbitrageable implied

volatility surface, we refer to Lipton & Sepp [96] and references therein.
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Figure 2.4: Volatility surface of CGMY model for T ∈ [0.1, 1.0] and K ∈ [0.7, 1.3] with C = 1,

G = 5, M = 10 and Y = 0.5 (these parameters are taken from Madan & Yor [100]). Again S0 = 1,

r = 0.03 and q = 0.01.

2.6 Summary

In this chapter, we illustrated how to use rational function approximations to derive an al-

ternative approach for calculating vanilla option prices and Black-Scholes implied volatil-

ities. In particular, by approximating a normalisation of the Black-Scholes formula, a

two-parameter function of one variable, we derived a pricing formula for any time-changed

Brownian motion model. The method was found to be stable and fast, since it is possi-

ble to rewrite the rational approximation in terms of negative exponential moments (the

Laplace transform) of the time change. The method can therefore be used for any model

for which the Laplace transform of the time change is available in tractable form. It is im-

portant to note that also stochastic volatility Lévy models are included in this framework.

Although rational Chebyshev approximations can be performed with little computational

effort, we showed that one can significantly speed up the method by pre-calculating the
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approximations and interpolating between them for the purpose of option pricing.

By way of illustration, we implemented the method for three popular models from the

literature, and found that the method compares favourably to the standard FFT with

respect to speed and accuracy.

Additionally, we used the methodology to approximate the inverse of the Black-Scholes

formula in order to compute implied volatilities, and found this method to be significantly

faster than existing methods. We are able to approximate the resulting two-dimensional

function by a total of 105 rational approximations. Implied volatilities for a wide range of

input parameters can then be obtained, for any given set of arbitrage-free vanilla option

prices, by interpolating between the previously calculated approximations. The absolute

error for this method was shown to be bounded by 5.5×10−5, although this can be refined

if necessary by choosing rational approximations with higher order.



Chapter 3

Lévy bridge Monte Carlo method:

Pricing of barrier options and

range accruals

Outline. The Markov-bridge sampling method presented in this chapter concerns the

estimation of the expectation E [F (T, ξ)] of a given path-functional F of a Markov pro-

cess ξ and the time horizon T > 0. It consists of averaging conditional expectations

F̃ (ξt0 , . . . , ξtN ) over M independent copies (ξ
(i)
t0
, . . . , ξ

(i)
tN

), i = 1, . . . ,M , of the random

vector (ξt0 , . . . , ξtN ) for values of the process ξ on an equidistant grid TN = {0 = t0 <

t1 < . . . < tN = T}:

E [F (T, ξ)] ≈ 1

M

M∑
i=1

F̃ (ξ
(i)
t0
, . . . , ξ

(i)
tN

), (3.0.1)

where F̃ (ξt0 , . . . , ξtN ) denotes the regular version of the conditional expectation

E [F (T, ξ)|ξt0 , . . . , ξtN ]. The name of the method derives from the fact that, conditional

on the values (ξt0 , . . . , ξtN ), the stochastic processes {ξt, t ∈ [ti, ti+1]}, i = 0, . . . , N−1, are

equal in law to Markov-bridge processes. The estimator in Eqn. (3.0.1) is unbiased and

has strictly smaller variance than the standard Monte Carlo estimator, as a consequence

of the tower property of conditional expectation and the conditional variance formula.

The Markov-bridge sampling method has the advantage that it allows for refinements of

the generated paths to the required level of accuracy, and that it can be combined with

importance sampling. Such a bridge method is especially suited for the evaluation of ex-

87
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pectations of path-dependent functionals (see Boyle et al. [28], for example). Since F̃ is, in

general, not available in closed or analytically tractable form, the viability of the Markov-

bridge sampling method hinges on the ability to efficiently approximate this function. In

this chapter we derive such an approximation method for the conditional expectation F̃

of certain path-functionals given in terms of occupation times and first-passage times,

and present a Markov-bridge method for the estimation of the corresponding expecta-

tion E[F (T, ξ)] under the stochastic volatility model with jumps defined in Eqns. (3.5.1)

and (3.5.2) below, which is a two-dimensional Markov process. The definition includes

the Heston model [72] and the variation of the Bates model [17] with mixed-exponential

jumps. We apply the method to the valuation of barrier options and range accruals, which

are common path-dependent derivative securities.

Several bridge sampling methods exist in the literature dealing with the case that ξ

belongs to the class of one-dimensional Lévy processes. In Figueroa-Lopez & Tankov [57]

an adaptive bridge sampling method is developed for the case of real-valued Lévy pro-

cesses based on short-time asymptotics of stopped Lévy processes. By conditioning on the

jump-skeleton and exploiting the explicit form of the distribution of the maximum of a

Brownian bridge, a simulation method for pricing of barrier options under jump-diffusions

is presented in Metwally & Atiya [106], and a refinement of this algorithm and application

to the pricing of corporate bonds is given in Ruf & Scherer [120].

Approximation of bridge functionals. As mentioned above, a key step in the

development of the Markov-bridge method is the availability of an efficient approximation

of the conditional expectation F̃ . Since generally the transition probabilities of the Markov

processes considered here are not explicitly available, the first step is to approximate

the Markov process in question by its continuous Euler-Maruyama (EM) scheme. The

approximation of expectations of path-dependent functionals using the continuous EM-

scheme is based on the harness property of a Lévy process: the collection of values of the

Lévy process at times t in between t1 and t2 is independent of the collection of values at

times t outside this interval, given the values of the process at t1 and t2. Note that a Lévy

process that is conditioned to start from position z and is pinned down to y at the horizon

T , is equal in law to a Lévy bridge process from (0, z) to (T, y) (for a visualisation see

Figure 3.1, where two paths of a Lévy bridge on the unit interval [0, 1] starting and ending

at 0 are depicted). We are led to the problem of evaluating the first-passage probabilities
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and the expected occupation times of a Lévy bridge.

Randomisation method. The approximation method of the Lévy bridge quantities

that we present is based in part on a randomisation of the time-parameter. A related

randomisation method was used successfully by Carr [35] for the valuation of American

put options, and was extended to the Lévy case in Boyarchenko & Levendorskĭı [21] and

Levendorskĭı [87], for example. As observed in Feller [56, Ch. VII.6], the approximation

of the value f(t) of a continuous and bounded function f at t > 0, by the expectation

E[f(Γn,n/t)] of f evaluated at an independent random time Γn,n/t with Gamma(n, n/t)

distribution (which has mean t and variance t2/n) is asymptotically exact. Since Γn,n/t

converges in distribution to a point mass at t, it follows that the expectation E[f(Γn,n/t)]

converges to f(t) as n tends to infinity. With regard to the rate of convergence, the form

of the probability density function (PDF) of Γn,n/t implies that, in the case that f is C2 at

t, the decay of the error E[f(Γn,n/t)]− f(t) is linear in 1/n. Moreover, E[f(Γn,n/t)] admits

the following expansion if the function f is C2k at t:

E[f(Γn,n/t)]− f(t) =

k∑
m=1

bm(t)

(
1

n

)m
+ o(n−k) as n→∞,

for certain functions b1, . . . , bk (proved in Thm. 3.1.1 below). We show that the functions f ,

which we consider, are sufficiently smooth, so that the use of the Richardson extrapolation

is fully justified in order to increase the rate of convergence. We show that the first-

passage probability and expected occupation time, observed at the independent random

time Γn,n/t, are solutions to certain recursions. Restricting ourselves to the dense class

of Lévy processes of mixed-exponential jump-diffusion type (the definition of which is

recalled in Def. 3.3.1 below), we present explicit solutions to these two recursions. To

illustrate the efficiency, the method was implemented for a number of models in this class,

and the numerical outcomes are reported in Section 3.4. We observed that the outcomes

of the recursion, based on a small number (about ten) of recursive steps, already yielded

highly accurate approximations, when combined with the Richardson extrapolation.

Markov-bridge method. Subsequently, we combine these approximations with a

continuous EM scheme to estimate the conditional expectations F̃ corresponding to the

first-passage times and expected occupation times of the Bates-type model (Eqns. (3.5.1)—

(3.5.2)). We numerically investigate the rate of convergence corresponding to the contin-

uous EM scheme and find that the error estimates established in Gobet [68], for the case
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Figure 3.1: The figure displays two realisations of a Lévy bridge X(0,0)→(1,0) starting and ending

at 0, where the process X is a hyper-exponential jump-diffusion with parameters given in Table 3.1.

A barrier level is drawn at −0.15 and the range from 0 to 0.15 is shaded.

of killed diffusion processes, appear to also hold in the current setting. The study of

theoretical rates of convergence and error bounds is left for future research. To illustrate

the effectiveness of the method, we evaluated a barrier option and a range note under the

Heston model and Bates-type models.

Contents. The remainder of this chapter is organised as follows. In Section 3.1 the

error expansion of the randomisation method is derived. Sections 3.2 is devoted to the

derivation of recursive formulas for the first-passage probabilities and expected occupation

times of Lévy bridges. Section 3.3 considers the special case of mixed-exponential jump-

diffusions. The continuous Euler-Maruyama scheme used to evaluate the path-functionals

in the class of stochastic volatility models with jumps is described in Section 3.5. Numerical

illustrations are presented in Sections 3.4 and 3.6, and summarising remarks are given in

Section 3.7.

3.1 The randomisation method

In general, option pricing formulas for randomised maturities are simpler than those for

fixed maturities. The simplest expressions arise when the option matures at the first jump
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time of a Poisson process, in which case the maturity date is exponentially distributed.

The randomisation method is based on the fact that by the strong law of large numbers,

the sum of n i.i.d. exponential random variables with mean t/n, which we denote Γn,n/t,

converges to t almost surely as n tends to infinity. The method therefore consists in

approximating the value f(t) of a function f at time t > 0 by the expectation E[f(Γn,n/t)]

evaluated at a random time Γn,n/t that follows a Gamma(n, n/t) distribution. Since Γn,n/t

converges in distribution to t as n tends to infinity, the error E[f(Γn,n/t)]− f(t) converges

to zero for any bounded and continuous function f . The error can be expanded in terms

of powers of 1/n provided that f is sufficiently smooth, as shown in the following result

(which we label as theorem because of its importance in the sequel):

Theorem 3.1.1. Let k be a given non-negative integer and consider f ∈ C2k+2(R+).

There exist functions b1, . . . , bk+1 : R+ → R such that we have, for any t ∈ R+,

nk+1

[
E[f(Γn,n/t)]− f(t)−

k∑
m=1

bm(t)

(
1

n

)m]
= bk+1(t) + o(1) as n→∞. (3.1.1)

In particular, denoting by f (m) the mth derivative of f , we have

b1(t) =
t2

2
f (2)(t), b2(t) =

t4

8
f (4)(t) +

t3

3
f (3)(t),

b3(t) =
t6

48
f (6)(t) +

t5

6
f (5)(t) +

t4

4
f (4)(t),

b4(t) =
t8

384
f (8)(t) +

t7

24
f (7)(t) +

13t6

72
f (6)(t) +

t5

5
f (5)(t).

Remark 3.1.1. (i) Thm. 3.1.1 implies that for f ∈ C2(R+) the error of the approximation

of f(t) by E[f(Γn,n/t)] decays linearly in 1/n, that is, E[f(Γn,n/t)] − f(t) = b1(t)
n + o

(
1
n

)
as n tends to infinity.

(ii) Thm. 3.1.1 also provides a justification of the use of the Richardson extrapolation

to increase the rate of convergence if the function f is sufficiently smooth. Since the error

of the approximation is given in terms of positive integer powers of 1/n, the Richardson

extrapolation that utilises the first N values E[f(Γ1,1/t)], . . . ,E[f(ΓN,N/t)] is explicitly

given by

P1:N :=
N∑
k=1

(−1)N−kkN

k!(N − k)!
E[f(Γk,k/t)], (3.1.2)

(see Marchuk and Shaidurov [102] for a derivation of this formula). In the case f ∈

C2k+2(R+), k < N , Theorem 3.1.1 implies that the error P1:N − f(t) of the extrapolation
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P1:N is given by o(N−k−1). In particular, if f is C∞ then the error P1:N−f(t) is o(N−k−1)

for every k, as N tends to infinity. We refer to Sidi [126] for background on the theory of

extra- and interpolation.

Proof of Theorem 3.1.1. Taylor’s theorem and the fact that f ∈ C2k+2 implies that we

have

f(s)− f(t) =
2k+1∑
m=1

(s− t)m

m!
f (m)(t) +Rk(s, t),

where the remainder term is given by Rk(s, t) = (s−t)2k+2

(2k+2)! f
(2k+2)(ξ) for some ξ between s

and t. Replacing s by the independent Gamma random variable Γn,n/t we get

E[f(Γn,n/t)− f(t)] =

2k+1∑
m=2

am,n
m!

f (m)(t) + E[Rk(Γn,n/t, t)]

with am,n = E[(Γn,n/t − t)m], where we have a1,n = 0 as the expectation E[Γn,n/t] is

equal to t. The numbers am,n are equal to am,n = dm

dum

∣∣
u=0

M(u) where M denotes the

moment-generating function of the random variable Γn,n/t − t which is given by

M(u) =

(
1− ut

n

)−n
exp{−ut}, u ≤ n

t
.

In particular, it follows from the form of M that the am,n are linear combinations of

positive integer powers of 1/n. Reordering of terms results in the identity in Eqn (3.1.1),

where the formulas of the functions b1(t), . . . , b4(t) can be derived by straightforward

calculations.

3.2 Supremum and occupation time of a Lévy bridge

A Lévy bridge process is a time-inhomogeneous Markov process defined on a finite time-

interval [s, t] with transition probabilities that are equal to those of a Lévy process condi-

tioned on its values at times s and t (see Bertoin [18]). While the standard Lévy process

X = {Xt, t ∈ [0, T ]} is normalised to start from zero, X0 = 0, we also consider the family

of Lévy processes starting from z ∈ R, and denote the corresponding probability measures

by {Pz, z ∈ R}, with P = P0. We refer to Bertoin [18], Kyprianou [83] and Sato [121] for

general treatments of the theory of Lévy processes. To avoid degeneracies we exclude the

case that |X| is a subordinator in the sequel.
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For any given non-negative numbers s and t with s ≤ t and any real numbers z and

y, we will denote by X(s,z)→(t,y) = {X(s,z)→(t,y)
u , u ∈ [s, t]} the Lévy bridge process that is

defined as follows:

Definition 3.2.1. The Lévy bridge process X(s,z)→(t,y) = {X(s,z)→(t,y)
u , u ∈ [s, t]} associ-

ated to X is a time-inhomogeneous Markov process with transition probabilities that are

equal to those of a Lévy process X conditioned on {Xs = z,Xt = y}.

In this section we consider the problem of identifying the distribution of the supremum

X
(0,0)→(t,y)

= sup
u∈[0,t]

X(0,0)→(t,y)
u of the Lévy bridge process,

~dt(x, y) := P
(
X

(0,0)→(t,y) ≤ x
)
, (3.2.1)

and the expected occupation time of the set (−∞, x],

~ωt(x, y) := E
[∫ t

0
I{
X

(0,0)→(t,y)
u ≤x

}du

]
. (3.2.2)

We note that there is no loss of generality in restricting to Lévy bridges starting from

the point (0, 0). By the spatial and temporal homogeneity of the Lévy process X, the

corresponding quantities in the case of a general starting point (s, z) are explicitly given

in terms of the functions ~d and ~ω by ~dt−s(x− z, y − z) and ~ωt−s(x− z, y − z).

Deploying the randomisation method described in Section 3.1, we construct approx-

imations of the first-passage time probabilities and expected occupation times of Lévy

bridge processes in terms of randomised Lévy bridge processes that are defined as follows:

Definition 3.2.2. For any two random times τ1 and τ2 with τ1 < τ2 that are independent

of X, the randomised Lévy bridge X(τ1,z)→(τ2,y) is the stochastic process that, conditional

on {τ1 = s, τ2 = t}, has the same law as the Lévy bridge X(s,z)→(t,y).

To ensure that the random variable XΓ1,q admits a continuous density u1 we adopt the

following assumption:

Assumption 3.2.1. The Lévy process X satisfies the integrability condition∫
R

ds

|φ(s)|
<∞, (3.2.3)

where φ is the characteristic exponent of X.
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Lemma 3.2.1. Under the condition in Eqn. (3.2.3), the density u1,q exists and is contin-

uous and bounded.

Proof. Since the Fourier-transform of the measure µ on (R,B(R)) given by µ(dx) =

P({XΓ1,q ∈ dx}) satisfies the bound
∫
|µ̂(s)|ds ≤

∫ ∣∣∣E[e
isXΓ1,q ]

∣∣∣ ds and the characteris-

tic function of the random variable XΓ1,q is given in terms of the characteristic exponent

φ by

E[exp(iθXΓ1,q)] =
q

q + φ(θ)
, (3.2.4)

it follows, in view of Assumption 3.2.1 (e.g., Sato [121]) that the measure µ has a continuous

bounded density.

Specifying the random times τ1 to be equal to zero and τ2 to be equal to the independent

random time Γn,n/t, we can define the analogues of the functions ~d and ~ω in terms of the

randomised bridge X(0,0)→(Γn,n/t,y), as follows:

~D
(n)
t (x, y) := P

(
X

(0,0)→(Γn,n/t,y) ≤ x
)
,

~Ω
(n)
t (x, y) := E

[∫ Γn,n/t

0
I{

X
(0,0)→(Γn,n/t,y)

u ≤x
}du

]
.

Below, we derive semi-analytical formulas for the functions ~D
(1)
t (x, y) and ~Ω

(1)
t (x, y). We

show that for any real x and y, the values ~dt(x, y) and ~ωt(x, y) are equal to the limits of

~D
(n)
t (x, y) and ~Ω

(n)
t (x, y) as n tends to infinity, which in turn are given by the solutions

of n-step recursions that are explicitly given in terms of the functions ~D
(1)
t and ~Ω

(1)
t (see

Theorem 3.2.1 below). The decay of the error of this approximation procedure is linear as

a function of 1/n, provided that the functions ~dt(x, y) and ~ωt(x, y) are sufficiently regular.

Proposition 3.2.1. Let x, y and t be given real numbers with t > 0, and assume that the

distribution of Xt has a continuous density pt. If the functions s 7→ ~ds(x, y), s 7→ ~ωs(x, y)

(as defined in Eqns. (3.2.1) and (3.2.2)) and s 7→ ps(y) are C2 at s = t with pt(y) > 0,

then constants Cd and Cω exist such that we have, for all positive integers n,∣∣∣ ~D(n)
t (x, y)− ~dt(x, y)

∣∣∣ ≤ Cd

n
,

∣∣∣~Ω(n)
t (x, y)− ~ωt(x, y)

∣∣∣ ≤ Cω

n
. (3.2.5)

Proof. The estimates in Eqn. (3.2.5) follow directly by applying Theorem 3.1.1 to the

functions t 7→ ~dt(x, y)pt(y), t 7→ ~ωt(x, y)pt(y) and t 7→ pt(y).
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The derivation of the expressions for the functions ~D
(1)
t (x, y) and ~Ω

(1)
t (x, y) is based

on the following auxiliary result concerning the differentiability of two related functions

under the condition in Eqn. (3.2.3).

Lemma 3.2.2. Let q be any strictly positive number.

(i) For any fixed x, the map y 7→ P(XΓ1,q ≤ x,XΓ1,q ≤ y) is continuously differentiable

and its derivative D1(x, y) is bounded.

(ii) The map (x, y) 7→ E
[∫ Γ1,q

0 I{Xu≤x}du I{XΓ1,q
≤y}

]
is continuously differentiable with

respect to x and y. The mixed derivative Ω1(x, y) with respect to x and y is given by

Ω1(x, y) =
1

q
u1(y − x) u1(x), (3.2.6)

for arbitrary real x and y, where un denotes the continuous density of random vari-

able XΓn,q .

Proof of Lemma 3.2.2. (i) Note that∫ ∣∣∣E [eisXΓ1,q

]∣∣∣ ds = q

∫
ds

|φ(s) + q|
<∞

in view of Assumption 3.2.1. Hence it follows (e.g. Sato [121]) that P
(
XΓ1,q ∈ dx

)
has

a continuous bounded density. Define τ+
x = inf{t : Xt > x} and note that the following

holds:

P(XΓ1,q ≤ x,XΓ1,q ≤ y) = P(XΓ1,q ≤ y)− P(XΓ1,q > x,XΓ1,q ≤ y)

= P(XΓ1,q ≤ y)−
∫ ∞
x

Pz(XΓ1,q ≤ y)P(Xτ+
x
∈ dz, τ+

x < Γ1,q).

So it follows by Lebesgue’s dominated convergence theorem and the fact that P
(
XΓ1,q ∈ dx

)
has a continuous bounded density, that P(XΓ1,q ≤ x,XΓ1,q ≤ y) has a continuous bounded

density with respect to y.

(ii) Denote the joint distribution of Xs and Xt by Pt,s. To see that the identity in

Eqn. (3.2.6) holds true, note first that for any s < t the joint distribution of Xs and Xt

satisfies

Pt,s = P [Xs ∈ da,Xt ∈ dy] = P [Xs ∈ da]Pa [Xt−s ∈ dy]
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by the Markov property and stationarity of increments. An application of Fubini’s theorem

then yields

q

∫ ∞
0

e−qt
∫ t

0
Pt,sdsdt

= q

∫ ∞
0

e−qsP [Xs ∈ da]

∫ ∞
s

e−q(t−s)Pa [Xt−s ∈ dy] dtds

= q

∫ ∞
0

e−qsP [Xs ∈ da] ds

∫ ∞
0

e−quPa [Xu ∈ dy] du,

which is equal to q−1u1(y − a) u1(a)dady.

Notation. In the sequel, if a measure µ on (R, B(R)) given by µ(A) = E[BI{Z∈A}],

where B and Z denote integrable random variables, admits a density, then we denote this

density by E[BI{Z=z}].

It therefore follows that

D1(x, y) = P(XΓ1,q ≤ x,XΓ1,q = y) and Ω1(x, y) = E
[∫ Γ1,q

0
I{Xu=x}du I{XΓ1,q

=y}

]
.

The functions D1 and Ω1 admit semi-analytical expressions, which can be derived

using the Markov property and the Wiener-Hopf factorisation of X (see Section 1.4.3

for more details on the Wiener-Hopf factorisation). Denoting by Xt = sups≤tXs and

Xt = infs≤tXs the running supremum and infimum of X at time t > 0, we recall (see

e.g. Bertoin [18, Ch. VI]) that the probabilistic form of the Wiener-Hopf factorisation

of X states that (a) the running supremum XΓ1,q and the drawdown XΓ1,q −XΓ1,q of X

at the random time Γ1,q are independent, and (b) the drawdown XΓ1,q − XΓ1,q has the

same law as the negative of the running infimum −XΓ1,q
. The probabilistic form of the

Wiener-Hopf factorisation implies that the characteristic function of the random variable

XΓ1,q given in Eqn. (3.2.4) is equal to the product of the characteristic functions φ+
q and

φ−q of the random variables XΓ1,q and XΓ1,q
,

φ+
q (θ) = E[exp(iθXΓ1,q)], φ−q (θ) = E[exp(iθXΓ1,q

)].

Proposition 3.2.2. For any strictly positive real q, we have

D1(x, y) = L−1
u,v

[
1

u
φ−q (iu)φ+

q (i(u+ v))

]
(x, y), x ≥ y, (3.2.7)

Ω1(x, y) = F−1
ξ

[
1

q + φ(ξ)

]
(y − x) · F−1

ξ

[
q

q + φ(ξ)

]
(x), x, y ∈ R, (3.2.8)

un(x) = F−1
ξ

[
qn

(q + φ(ξ))n

]
(x), x ∈ R, (3.2.9)
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where L−1
u,v and F−1

ξ denote the inverses of the two-dimensional Laplace transform and the

Fourier transform, respectively.

Proof. The probabilistic form of the Wiener-Hopf factorisation of X implies that the joint

distribution of XΓ1,q and XΓ1,q is given by

P
[
XΓ1,q ∈ dx,XΓ1,q ∈ dy

]
= P

[
XΓ1,q ∈ dx,XΓ1,q −XΓ1,q ∈ d(x− y)

]
(3.2.10)

= P
[
XΓ1,q ∈ dx

]
P
[
−XΓ1,q

∈ d(x− y)
]

for x ≥ y.

As a consequence, it follows that the joint Laplace transform of the random variables XΓ1,q

and XΓ1,q is given by 1
uφ
−
q (iu)φ+

q (i(u+v)), from which Eqn. (3.2.7) follows. By combining

Eqns. (3.2.4) and (3.2.6), we arrive at Eqn. (3.2.8). The final equation, Eqn. (3.2.9), follows

in view of Eqn. (3.2.4) and the fact that the Fourier transform of a convolution is equal

to a product of Fourier transforms.

In view of the fact that the process X(s,z)→(t,y) is equal in law to the process {Xu, u ∈

[s, t]} conditioned on {Xs = z,Xt = y}, it follows that the functions ~D
(n)
t (x, y) and

~Ω
(n)
t (x, y) are equal to the ratio of the solutions Dn and Ωn (of certain recursions given

below), and un(y). That is,

Dn(x, y) = ~D
(n)
t (x, y)un(y) = P(XΓn,q ≤ x,XΓn,q = y), (3.2.11)

Ωn(x, y) = d
dx
~Ω

(n)
t (x, y)un(y) = E

[∫ Γn,q

0
I{Xu=x,XΓn,q=y}du

]
. (3.2.12)

The form of the three recursions is given as follows:

Theorem 3.2.1. Let q be a strictly positive real number. The maps Dn and Ωn : R2 → R+,

and the map un : R→ R+ n ∈ N, satisfy the recursions

Dn+1(x, y) =

∫ x

−∞
Dn(x− w, y − w)D1(x,w)dw, x ∈ R+, y ∈ R, y ≤ x, (3.2.13)

Ωn+1(x, y) =

∫
R

[Ω1(x,w)un(y − w) + Ωn(x− w, y − w)u1(w)] dw, x, y ∈ R, (3.2.14)

un+1(x) =

∫
R
u1(w)un(x− w)dw, x ∈ R, (3.2.15)

where un is the probability density function of the random variable XΓn,q .

Proof of Theorem 3.2.1. Let q and n be strictly positive numbers, real and integer respec-

tively. Since we may write

Xt = max

{
Xs + sup

0≤u≤t−s
(Xu+s −Xs), Xs

}
, for any s, t with 0 ≤ s ≤ t,
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it follows as a consequence of the stationarity and independence of increments of X, and

the fact that a Γn,q random variable is equal in distribution to the sum of independent

Γn−1,q and Γ1,q random variables, that we have

P
(
XΓn,q ≤ x,XΓn,q ∈ dy

)
= P

(
max

{
XΓ1,q +X

′
Γn−1,q

, XΓ1,q

}
≤ x,XΓ1,q +X ′Γn−1,q

∈ dy
)

(3.2.16)

=

∫ x

−∞
P(XΓ1,q ≤ x,XΓ1,q ∈ dz)Pz(XΓn−1,q ≤ x,XΓn−1,q ∈ dy),

where the random variables X
′
Γn−1,q

and X ′Γn−1,q
are independent of X. We arrive at the

identity in Eqn. (3.2.13) since the Lévy process X is spatially homogeneous.

To show that the second recursion holds true, we note that another application of the

Markov property yields that, for any real x,

E
[∫ t+u

0
I{Xs≤x}ds I{Xt+u∈db}

]
=

∫ ∞
−∞

E
[∫ t

0
I{Xs≤x}ds I{Xt∈dy}

]
Py [Xu ∈ db]

+

∫ ∞
−∞

Ey
[∫ u

0
I{Xs≤x}ds I{Xu∈db}

]
P [Xt ∈ dy] .

Replacing t and u by the independent random times Γ1,q and Γn−1,q, again using the fact

that their sum follows a Γn,q random variable, and using that the random variables XΓn,q

and XΓ1,q have continuous densities denoted by un and u1, completes the proof of the

identity.

Using the same properties as above, the third recursion holds true since we have,

P
(
XΓn,q ∈ dx

)
=

∫
R
P
(
XΓ1,q ∈ dz

)
Pz
(
XΓn−1,q ∈ dx

)
.

3.3 Special case: mixed-exponential jump-diffusions

We show in this section that the recursions in Eqns. (3.2.13) and (3.2.14) admit explicit

solutions in the case that the Lévy process X is from the class of mixed-exponential

jump-diffusions as defined in Section 1.2.3. We recall the definition here for convenience.

Definition 3.3.1. (i) A random variable has a mixed-exponential density if it has PDF f
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given by

f(x) =
m+∑
i=1

p+
i α

+
i e−α

+
i xI(0,∞)(x) +

m−∑
j=1

p−j α
−
j e−α

−
j |x|I(−∞,0)(x), where (3.3.1)

m±∑
k=1

p±k = q±, q+ + q− = 1 and − α−
m− < · · · < −α

−
1 < 0 < α+

1 < · · · < α+
m+ .

(ii) A Lévy process X = {Xt, t ∈ R+} is a mixed-exponential jump-diffusion (MEJD)

if it is of the form

Xt = µt+ σWt +

Nt∑
i=1

Ui, (3.3.2)

where µ is a real number, σ is strictly positive, W is a standard Brownian motion, N

is a Poisson process with intensity λ, and the jump-sizes {Ui, i ∈ N} are distributed

according to a mixed-exponential density. Here, the collections W = {Wt, t ∈ R+},

N = {Nt, t ∈ R+} and {Ui, i ∈ N} are independent.

Remark 3.3.1. (i) If one adds in Definition 3.3.1 the restriction that the weights p±k

are non-negative, the jump-size distribution is a hyper-exponential distribution, and the

corresponding Lévy process is a hyper-exponential jump-diffusion (HEJD). It reduces to

Kou’s double-exponential jump-diffusion process if in addition we restrict to m+ = m− =

1. While hyper-exponential jump diffusions are dense in the class of all Lévy processes with

a completely monotone Lévy density, the collection of mixed-exponential jump-diffusions

is dense in the class of all Lévy processes, in the sense of weak convergence of probability

measures (see Botta & Harris [19]). That is, any Lévy process can be approximated

arbitrarily closely by MEJD processes.

(ii) The parameters {p±k , k = 1, . . . ,m±} cannot be chosen arbitrarily but need to

satisfy a restriction to guarantee that f is a PDF. A necessary condition for f to be a

PDF is

p±1 > 0,

m±∑
k=1

p±k α
±
k ≥ 0,

while a sufficient condition is

l∑
k=1

p±k α
±
k ≥ 0 ∀l = 1, ...,m±,

which are both easily verified. For a proof of these results and alternative conditions see

Bartholomew [16]. In Section 3.5 we will impose the additional condition α+
1 > 1, which
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ensures that the expectation E[St] of the exponential Lévy process St = exp{Xt} is finite

for any non-negative t.

(iii) Samples can be drawn from the mixed-exponential distribution by using the

acceptance-rejection method (see Section 1.3.1) and taking as the instrumental distribution

the hyper-exponential distribution that is obtained by setting equal to 0 all the weights

p+
i and p−i in the mixed-exponential distribution that are negative, and renormalising the

remaining weights for the density to have total mass equal to 1. The described hyper-

exponential density multiplied by a constant will dominate the original mixed-exponential

density.

From the definition of the MEJD process X, it is straightforward to verify that the

characteristic exponent φ(s) = − logE[eisX1 ] is a rational function of the form

φ(s) = −iµs+
σ2s2

2
− λ

m+∑
i=1

p+
i

α+
i

α+
i − is

+
m−∑
j=1

p−j
α−j

α−j + is
− 1

 , s ∈ R.

The distributions of X, the running supremum X and the running infimum X at the

random time Γ1,q, and also the functions D1 and Ω1 can be expressed, as we shall see

below, in terms of the roots {ρ+
k , k = 1, . . . ,m+ + 1} and {ρ−k , k = 1, . . . ,m− + 1} with

positive and negative real parts of the Cramér-Lundberg equation

φ(−is) = −q, q > 0. (3.3.3)

The Wiener-Hopf factors φ+
q and φ−q of a mixed-exponential jump-diffusion can be

shown to be equal to certain rational functions:

Lemma 3.3.1. Let q > 0 be given and suppose that the roots of Eqn. (3.3.3) are distinct.

The functions φ+
q and φ−q are given explicitly by

φ+
q (s) :=

m+∏
i=1

(
1− is/α+

i

)m++1∏
i=1

(
1− is/ρ+

i (q)
)−1

, (3.3.4)

φ−q (s) :=
m−∏
j=1

(
1 + is/α−j

)m−+1∏
j=1

(
1− is/ρ−j (q)

)−1
. (3.3.5)

Proof. The assertion holds by following the line of reasoning presented in Asmussen et

al. [10] for the case of a phase-type Lévy process.
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The fact that the Wiener-Hopf factors φ+
q and φ−q are rational functions implies that,

when the roots of the Cramér-Lundberg equation are distinct, the running supremum

XΓ1,q and the running infimum XΓ1,q
also follow mixed-exponential distributions.

Lemma 3.3.2. Let q > 0 be given and suppose that the roots of Eqn. (3.3.3) are distinct.

The random variables XΓ1,q , −XΓ1,q
and XΓ1,q have mixed-exponential distributions with

densities u1, u1 and u1 given by

u1(x) =

m++1∑
i=1

A+
i (q)ρ+

i (q)e−ρ
+
i (q)x, x > 0, (3.3.6)

u1(x) =

m−+1∑
j=1

A−j (q)(−ρ−j (q))eρ
−
j (q)x, x > 0, (3.3.7)

u1(x) =

m++1∑
i=1

Bi(q)e
−ρ+

i (q)xI(0,∞)(x) +

m−+1∑
j=1

Cj(q)e
−ρ−j (q)xI(−∞,0)(x), x ∈ R, (3.3.8)

with

A+
i (q) :=

∏m+

k=1(1− ρ+
i (q)/α+

k )∏
k 6=i(1− ρ

+
i (q)/ρ+

k (q))
, A−j (q) :=

∏m−

k=1(1 + ρ−j (q)/α−k )∏
k 6=j(1− ρ

−
j (q)/ρ−k (q))

, (3.3.9)

Bi(q) := A+
i (q)φ−q (ρ+

i (q))ρ+
i (q), Cj(q) := A−j (q)φ+

q (ρ−j (q))(−ρ−j (q)), (3.3.10)

for i = 1, . . . ,m+ + 1 and j = 1, . . . ,m− + 1, where we define A±k ≡ 1 in the case m± = 0

(i.e. if there are no positive and/or negative jumps).

Proof. Note that the coefficients of the function (1 − is/ρ+
i (q))−1 in the partial-fraction

decompositions of the functions q/(q − φ(s)) and φ+
q (s) are given by Ci(q) and A+

i (q),

respectively, while the coefficients of the function (1− is/ρ−j (q))−1 in the partial-fraction

decompositions of the functions q/(q − φ(s)) and φ−q (s) are given by Bj(q) and A−j (q)

respectively. Subsequently inverting the Fourier transforms (1 − is/ρ+
i (q))−1 and (1 −

is/ρ−j (q))−1 yields the stated expressions for the densities of XΓ1,q , −XΓ1,q
and XΓ1,q .

Remark 3.3.2. In case that there are multiple roots to Equation (3.3.3), analogous ex-

pressions as in Lemmas 3.3.1 and 3.3.2 can be derived using the corresponding form of

the partial fraction decomposition.

By combining Lemma 3.3.2 with the identity in Eqn. (3.2.10) and performing a one-

dimensional integration, we identify an explicit expression for the function D1. The form

of the function Ω1 follows directly by combining the identity in Eqn. (3.2.6) with the form

of the potential density in Eqn. (3.3.8).
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Proposition 3.3.1. Let q > 0 be given and suppose that the roots of Eqn. (3.3.3) are

distinct. For any real x and y, it holds that

D1(x, y) = u1(y)−
m++1∑
i=1

m−+1∑
j=1

Eij(q)
(

e−ρ
−
j (q)y+(ρ−j (q)−ρ+

i (q))x
)
, (3.3.11)

with y ≤ x, x ≥ 0, and

Ω1(x, y) =
1

q



m++1∑
i=1

m−+1∑
j=1

Bi(q)Cj(q)
(

e(ρ−j (q)−ρ+
i (q))x−ρ−j (q)y

)
,

m++1∑
i=1

m−+1∑
j=1

Bi(q)Cj(q)
(

e(ρ+
i (q)−ρ−j (q))x−ρ+

i (q)y
)
,

m++1∑
i=1

m++1∑
j=1

Bi(q)Bj(q)
(

e(ρ+
i (q)−ρ+

j (q))x−ρ+
i (q)y

)
,

m−+1∑
i=1

m−+1∑
j=1

Ci(q)Cj(q)
(

e(ρ−i (q)−ρ−j (q))x−ρ−i (q)y
)
,

(3.3.12)

for the cases {x > 0, x > y}, {y > x, 0 > x}, {y > x > 0} and {0 > x > y} respec-

tively, where the coefficients Bi(q) and Cj(q) are given in Lemma 3.3.2 and Eij(q) :=

(A+
i (q)A−j (q)ρ+

i (q)ρ−j (q))/(ρ−j (q)− ρ+
i (q)).

3.3.1 Solutions to the recursions

The functions Ωn and Dn, and the density un can be explicitly identified by combining the

forms of the functions Ω1 and D1 given in Proposition 3.3.1 and the form of the function u1

given in Lemma 3.3.2, with the recursive relations in Eqns. (3.2.13), (3.2.14) and (3.2.15).

From the form of these recursive relations it follows that the functions Ωn, Dn and un can

be expressed as linear combinations of exponentials with the weights given by polynomials

P±i,n(x) and Pi,j,n(x, y) for i = 1, . . . ,m+ + 1 and j = 1, . . . ,m− + 1. Associated to these

polynomials are other polynomials P̃±k,i,n, P̃±i,j,k,n and real numbers c̃±i,j,n defined by∫ x

0
P+
k,n(y)e−ρ

+
k y−ρ

+
i (x−y)dy = e−ρ

+
k xP̃+

k,i,n(x)− e−ρ
+
i xc̃+

k,i,n,∫ 0

x
P−k,n(y)e−ρ

−
k y−ρ

−
i (x−y)dy = e−ρ

−
k xP̃−k,i,n(x)− e−ρ

−
i xc̃−k,i,n,∫ x

0
eρ

+
i (z−x)Pi,j,n(x− z, y − z)u1(z)dz =

m++1∑
k=1

P̃+
i,j,k,n(x, y)e−ρ

+
k x,

∫ x

0
eρ
−
j (z−x)Pi,j,1(x− z, y − z)un(z)dz =

m−+1∑
k=1

P̃−i,j,k,n(x)e−ρ
−
k x.
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The fact that there are polynomials and constants satisfying the above relations follows

by repeated integration by parts. By induction, the following expressions for the functions

un, Dn and Ωn can be derived:

Proposition 3.3.2. For any n ∈ N ∪ {0} we have

un+1(x) =
m++1∑
k=1

P+
k,n+1(x)e−ρ

+
k xI(0,∞)(x) +

m−+1∑
k=1

P−k,n+1(x)e−ρ
−
k xI(−∞,0)(x), x ∈ R,

Dn+1(x, y) = un+1(y)−
m++1∑
i=1

m−+1∑
j=1

Pi,j,n+1(x, y)e−ρ
−
j (y−x)−ρ+

i x, x ∈ R+, x ≥ y,

Ωn+1(x, y) = q−(n+1) ·
n+1∑
k=1

un+2−k(x)uk(y − x), x, y ∈ R,

with P+
k,1 = Bk(q), P

−
k,1 = Ck(q) and Pi,j,1 = Eij(q) (as defined in Proposition 3.3.11),

and where P±k,n+1 and Pi,j,n+1 are polynomials, and c±k,i,n are real numbers that are defined

recursively for n ∈ N, as follows:

P+
k,n+1(x) =

m−+1∑
r=1

(
Cr(q)

∫ ∞
0

e(ρ−r −ρ+
k )zP+

k,n(x+ z)dz +Bk(q)c
−
k,r,n

)

+

m++1∑
r=1

Br(q)
(
P̃+
k,r,n(x)− c̃+

r,k,n

)
,

P−k,n+1(x) =
m++1∑
r=1

(
Br(q)

∫ 0

−∞
e(ρ+

r −ρ−k )zP−k,n(x+ z)dz + Ck(q)c
+
k,r,n

)

+

m−+1∑
r=1

Cr(q)
(
P̃−k,r,n(x)− c̃−r,k,n

)
,

and

Pi,j,n+1(x, y) =

∫ 0

−∞
Pi,j,n(x− z, y − z)eρ

+
i zu1(z)dz −

m−+1∑
k=1

P̃−i,k,j,n(y − x)

+ Bi(q)

∫ ∞
0

P−j,n(y − x− z)e(ρ−j −ρ
+
i )zdz +

Ei,j(q)

ρ−j − ρ
+
i

∫ ∞
0

un(z)eρ
−
j zdz

+

m++1∑
k=1

P̃+
k,j,i,n(x, y)

−
m++1∑
k=1

m−+1∑
l=1

Ek,l(q)

ρ−l − ρ
+
k

∫ 0

−∞
Pi,j,n(−z, y − x− z)eρ

+
i z−ρ

−
l zdz,

c−k,r,n =

∫ 0

−∞
e(ρ+

k −ρ
−
r )zP−r,n(z)dz, c+

k,r,n =

∫ ∞
0

e(ρ−k −ρ
+
r )zP+

r,n(z)dz.
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Proof. The expressions for un+1, Dn+1 and Ωn+1 follow by induction with respect to

n, utilising (i) the fact that un+1 is equal to the convolution of un and u1, as a conse-

quence of the independence and stationarity of the increments of X, (ii) the form of D1

in Eqn. (3.3.11) and the recursive relation in Eqn. (3.2.13), and (iii) the form of Ω1 in

Eqn. (3.2.6) and the recursive relation in Eqn. (3.2.14).

Remark 3.3.3. In view of the fact that the CDF of the running maximum up to time t

and the expected occupation time up to time t below a fixed level of a Brownian motion is

C∞ as function of t, it follows by conditioning on jump-times and -sizes that the functions

t 7→ ~dt(x, y) and t 7→ ~ωt(x, y) corresponding to a mixed-exponential jump-diffusion X are

C∞ for any fixed x and y. In particular, the error estimates in Thm. 3.1.1 hold true for

the quantities Dn(x, y) and Ωn(x, y) (identified in Prop. 3.3.2).

3.4 Numerical illustration: first-passage probabilities and

occupation times

To provide a numerical illustration of the randomisation method, we implemented the

recursive formulas (given in Prop. 3.3.2). We report numerical results in the cases that

the underlying Lévy process is equal to a linear Brownian motion, a Kou process, a HEJD

process and a MEJD process with typical parameters, which are detailed in Table 3.1.

The parameters used for the HEJD (taken from Jeannin & Pistorius [77]) approximate

the Lévy density of the NIG model with α = 8.858, β = −5.808, and δ = 0.174. The

parameters used for the MEJD (taken from Cai & Kou [34]) approximate the Merton

model with jump size distribution N (0, 0.012), the normal distribution with mean 0 and

standard deviation 0.01 (for an analysis on the approximation of Lévy processes by HEJD

processes, we refer to Crosby et al. [48]).

Example: Brownian motion Consider a Brownian bridge process with starting

point 1.0, end point 1.1 and barrier level 1.2, and assume a constant risk-free interest rate

of 5% and a dividend yield of 0%. The bridge process is assumed to start at time 0 and

end at time 1. To compute the first-passage probability of a Brownian bridge over the

barrier level with σ = 0.2 using the procedure developed here, one needs to first find the
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roots of the corresponding Cramér-Lundberg equation (3.3.3). The equation simplifies to

0.05s+ 0.02s2 − q = 0,

which leads to two roots: ρ±1 (q) = −0.05±
√

0.0025+0.08q
0.04 , where q = T/n = n−1 and n is the

number of recursive steps. Since for this example y > 0 and m± = 0, the joint probability

Dn(x, y) = P(XΓn,q ≤ x,XΓn,q = y) in Proposition 3.3.2 can be simplified to:

Dn(x, y) = P+
1,n(y)e−ρ

+
1 y − P1,1,n(x, y)e−ρ

−
1 (y−x)−ρ+

1 x.

For n = 1, 2, 3 this leads to

D1(x, y) =

(
ρ+

1 ρ
−
1

α

)[
e−ρ

−
1 (y−x)−ρ+

1 x − e−ρ
+
1 y
]

D2(x, y) =

(
ρ+

1 ρ
−
1

α

)2 [
(y − 2x− 2α−1)e−ρ

−
1 (y−x)−ρ+

1 x + (2α−1 + y)e−ρ
+
1 y
]

D3(x, y) =

(
ρ+

1 ρ
−
1

α

)3 [
(0.5y2 − 2xy + 2x2 − (3y − 6x)α−1 + 6α−2)e−ρ

−
1 (y−x)−ρ+

1 x

− (0.5y2 + 3yα−1 + 6α−2)e−ρ
+
1 y
]
,

for x ∈ R+, x ≥ y, where α = ρ+
1 − ρ

−
1 > 0. To obtain the first passage probabilities, one

still needs to divide by un (see Equation (3.2.11)), which yields 0.2367, 0.2801 and 0.3016

for n = 1, 2, 3. Note that these are the first three values listed in Table 3.2.

�

The outcomes of the randomisation method applied to the parameters in Table 3.1 are

reported in Table 3.2, Table 3.3 and Figure 3.2. Table 3.2 lists the values of the first-passage

probabilities of the randomised Lévy bridge corresponding to a Γn,n/T -randomisation of the

fixed time T = 1 for a number of values of n. Table 3.3 lists the corresponding values of the

expected occupation times. These values are denoted Pn for the four Lévy processes under

consideration. We also report the results obtained by applying a Richardson extrapolation

P1:n (see Section 1.4.2) of order n, using the first n outcomes (as defined in Eqn. (3.1.2)).

The results given in Tables 3.2 and Table 3.3 were subsequently used to compute the

logarithms of the absolute errors in the cases of the first-passage probabilities (in subfigures

(a), (b) and (c)) and the expected occupation times (in subfigures (d), (e) and (f)) that are

plotted in Figure 3.2. In the case of the linear Brownian motion the errors were computed

with respect to the exact values, which are given in the bottom row of Tables 3.2 and 3.3.
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BS KOU HEJD† MEJD†

σ 0.2 0.2
√

0.042 0.2

λ 3.0 11.5 1.0

α+ 50 (5,10,15,25,30,60,80) (213.0215,236.0406,237.1139,939.7441,939.8021)

α− 25 (5,10,15,25,30,60,80) (213.0215,236.0406,237.1139,939.7441,939.8021)

p+ 0.3 (0.05, 0.05, 0.1, 0.6, 1.2, 1.9, 6.1) ∗ 0.51/λ (4.36515,1.0833,-5,0.0311,0.02045)

p− 0.7 (0.5, 0.3, 1.1, 0.8, 1, 4, 2.3) ∗ 0.64/λ (4.36515,1.0833,-5,0.0311,0.02045)

Table 3.1: Chosen model parameters found in the literature and used throughout this chapter.

The parameters for the Kou model are taken from Kou & Wang [80], the ones for the HEJD model

from Jeannin & Pistorius [77] and the ones for the MEJD model from Cai & Kou [34]. †These

parameters have been re-expressed using our notation.

The first-passage density is known in closed form (see Eqn. (3.A.1) in Appendix 3.A), while

the expected occupation time is given in terms of a double integral of a Gaussian density

(see Eqn. (3.B.1) in Appendix 3.B), which we evaluated with the help of an adaptive

quadrature method. In the case of the other three processes the errors were computed

with respect to the value P1:11 that was obtained after Richardson extrapolation with

n = 11 stages. In the case of the BM model, we see from Tables 3.2 and 3.3 that the

extrapolated values for n = 11 are highly accurate: these coincide with the exact values

for the first five and seven decimal digits in the case of the first-passage time probability

and the expected occupation time, respectively.

From Figure 3.2 a number of observations can be made. Each subfigure displays

the errors of the recursive values (in black) and the Richardson extrapolated values (in

grey). Empirically we observe that the rate of decay of the error of the un-extrapolated

outcomes appears to be (approximately) linear across the two different functionals and the

three considered models, in line with the theoretical error bound given in Proposition 3.2.1.

Indeed, the ordinary least squares (OLS) regression lines (in black) in the log-log plots have

slopes equal to −0.94 (−0.98), −0.95 (−0.99) and −0.98 (−0.99) in the case of the first-

passage probabilities (and expected occupation times) of the Lévy bridges corresponding to

the BM, Kou and HEJD processes, respectively. In line with the theoretical error estimates

given in Section 3.1, we observe that the application of the Richardson extrapolation leads

to a significantly faster decay of the error.
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(a) Brownian motion (b) Kou process

(c) HEJD process (d) Brownian motion

(e) Kou process (f) HEJD process

Figure 3.2: Displayed is the logarithm of the absolute errors of the outcomes generated by the

recursive algorithm for (1) the one-sided first-passage probabilities under the (a) BM, (b) Kou and

(c) HEJD process, and (2) the occupation time under the (d) BM, (e) Kou and (f) HEJD process

as a function of log(n), where n is the number of recursion steps. Ordinary least square estimations

of each series are plotted (in the case of the un-extrapolated values the OLS line was estimated

using the last six values only). The starting point of the bridge is 1.0, the end point is 1.1, the

barrier level is 1.2 and the range is (1.05, 1.25). We assumed a constant risk-free interest rate of

5% and a dividend yield of 0%. In all cases the Lévy bridge process is assumed to start at time 0

and to end at time 1. The model parameters that were used are given in Table 3.1.
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n Pn BM P1:n BM Pn Kou P1:n Kou Pn HEJD P1:n HEJD Pn MEJD P1:n MEJD

1 0.2366952 0.2366952 0.2610700 0.2610700 0.3006853 0.3006853 0.2416393 0.2416393

2 0.2801451 0.3235950 0.3088900 0.3567186 0.3617512 0.4228170 0.2699507 0.2982620

3 0.3016241 0.3550757 0.3324100 0.3908162 0.3911554 0.4635372 0.2903759 0.3477084

4 0.3146973 0.3659765 0.3466200 0.4017172 0.4084846 0.4734619 0.3044856 0.3673021

5 0.3235182 0.3685654 0.3561300 0.4037245 0.4198448 0.4735378 0.3145421 0.3701236

6 0.3298679 0.3685139 0.3629300 0.4032856 0.4278257 0.4720958 0.3219877 0.3693867

7 0.3346518 0.3681077 0.3680200 0.4027494 0.4337174 0.4713210 0.3276902 0.3689724

8 0.3383814 0.3679032 0.3719800 0.4025372 0.4382332 0.4711443 0.3321834 0.3688065

9 0.3413680 0.3678600 0.3751300 0.4025104 0.4417979 0.4711707 0.3358082 0.3689589

10 0.3438118 0.3678680 0.3777000 0.4025274 0.4446794 0.4712065 0.3387906 0.3687423

11 0.3458473 0.3678773 0.3798400 0.4025384 0.4470546 0.4712177 0.3412854 0.3696835

Exact 0.3678794 - - -

Table 3.2: Displayed are the one-sided first-passage probabilities obtained recursively (Pn) and

with Richardson extrapolation (P1:n) for the BM, Kou, HEJD and MEJD process as a function of

n, where n is the number of recursions. The starting point of the bridge is assumed to be 1.0, the

end point is 1.1 and the barrier level is 1.2. We assumed a constant risk-free interest rate of 5%

and a dividend yield of 0%. In all cases the Lévy bridge is assumed to start at time 0 and to end

at time 1. The model parameters are as given in Table 3.1.

For the Brownian motion we observe the error plot also for larger n (see Figure 3.3 for

n = 1, ..., 25). The slopes of the shown OLS regression lines, obtained using the final ten

outcomes, are −0.97 and −0.99 for the first-passage probabilities and expected occupation

times respectively. This indicates that the slopes are indeed approaching −1 for larger n.

By comparing the error plots across models, we note that the rate of decay of the

error is very similar across the three models under consideration. By comparing the error

plots of the first-passage probabilities and the expected occupation time, we note that

the logarithmic errors for the expected occupation times (for a given n) are smaller than

the corresponding errors in the case of the first-passage probability, suggesting that the

randomisation method converges faster in the case of the expected occupation times. This

feature is likely to be related to the higher degree of smoothness in the case of the expected

occupation time.
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n Pn BM P1:n BM Pn Kou P1:n Kou Pn HEJD P1:n HEJD Pn MEJD P1:n MEJD

1 0.3865063 0.3865063 0.3875916 0.3875916 0.3680801 0.3680801 0.3789600 0.3789600

2 0.4307253 0.4749444 0.4298457 0.4720999 0.4142655 0.4604509 0.4201725 0.4613850

3 0.4483632 0.4879860 0.4465221 0.4837622 0.4322124 0.4719338 0.4366033 0.4735048

4 0.4577436 0.4881793 0.4553273 0.4835609 0.4415893 0.4711338 0.4453382 0.4736600

5 0.4635418 0.4878660 0.4607453 0.4832435 0.4473202 0.4707490 0.4507360 0.4733648

6 0.4674753 0.4879019 0.4644099 0.4833092 0.4511786 0.4708328 0.4543970 0.4733951

7 0.4703175 0.4879423 0.4670525 0.4833526 0.4539517 0.4708704 0.4570412 0.4733295

8 0.4724668 0.4879448 0.4690480 0.4833517 0.4560403 0.4708630 0.4590410 0.4733286

9 0.4741489 0.4879420 0.4706080 0.4833478 0.4576699 0.4708578 0.4606062 0.4733246

10 0.4755011 0.4879415 0.4718610 0.4833473 0.4589767 0.4708575 0.4618607 0.4733241

11 0.4766119 0.4879416 0.4728896 0.4833474 0.4600480 0.4708575 0.4628994 0.4733241

Exact 0.4879416 - - -

Table 3.3: Displayed are the occupation times obtained recursively (Pn) and with Richardson

extrapolation (P1:n) for the BM, Kou, HEJD and MEJD process as a function of n, where n is the

number of recursions. The starting point of the bridge is assumed to be 1.0, the end point is 1.1

and the range is 1.05 − 1.25. We assumed a constant risk-free interest rate of 5% and a dividend

yield of 0%. In all cases the Lévy bridge is assumed to start at time 0 and to end at time 1. The

model parameters are as given in Table 3.1.

Figure 3.4 displays the run times of the recursive method. Again the first three subfig-

ures relate to the one-sided first-passage probabilities and the last three subfigures relate

to the occupation time. From all six subfigures it seems evident that the computational

effort is growing exponentially in n, the number of recursive steps. Note that the scaling

of the y-axis is different in all subfigures, so that the BS case is about ten times faster than

the Kou case, which is 150−200 times faster than the HEJD case - analysing this in more

detail shows that the computational effort also grows rapidly with the number of roots of

the Cramér-Lundberg equation, where BS has 2, Kou has 4 and the HEJD used here has

16 roots. It can be seen that the one-sided first-passage probabilities are obtained 3 − 7

times faster than the occupation times.



3.5. Continuous Euler scheme for stochastic volatility models with jumps 110

(a) First-passage probability (b) Occupation time

Figure 3.3: Displayed is the logarithm of the absolute error of the recursive algorithm for (a) the

one-sided first-passage probabilities and (b) the expected occupation time applied to the Brownian

motion as a function of n, where n is the number of recursions. The starting point of the bridge

is 1.0, end point is 1.1, barrier level is 1.2, range is 1.05− 1.35 and maturity is 1 year. We assume

a constant risk-free interest rate of 5%, a dividend yield of 0% and a volatility of 20%. The slopes

of the OLS lines are given by −0.97 and −0.99, respectively.

Remark 3.4.1. The numerical evaluation of the recursions in Eqns. (3.2.13) and (3.2.14)

requires the computation of the roots of the Cramér-Lundberg equation, which, except in

the cases of the linear Brownian motion and the Kou model, are not available in closed

form. We used a High Precision Arithmetic Library to investigate the roundoff error

resulting from the computation of the roots and found that, in the case of the HEJD and

MEJD model, the computed roots were accurate up to an error of 1.0e−11 without using

higher order precision arithmetic.

3.5 Continuous Euler scheme for stochastic volatility mod-

els with jumps

We assume that the stock price process S = {St, t ∈ R+} evolves according to a Bates-type

stochastic volatility model with mixed-exponential jumps1. The process S is thus specified

1We consider a modification of the Bates model, replacing the distribution of the jumps in the log-

price process to be a mixed-exponential jump-diffusion distribution rather than the original log-normal

distribution.
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(a) Brownian motion (b) Kou process (c) HEJD process

(d) Brownian motion (e) Kou process (f) HEJD process

Figure 3.4: Displayed are the run times in seconds of the recursive algorithm for (1) the one-

sided first-passage probabilities applied to the (a) BM, (b) Kou and (c) HEJD process, and (2) the

occupation time applied to the (d) BM, (e) Kou and (f) HEJD process as a function of log(n), where

n is the number of recursions. Note that the scaling of the y-axis is different in each subfigure.

Bridge and model parameters are as in Figure 3.2.

by the exponential model

St = exp{Yt}, t ∈ R+,

where the log-price process Y = {Yt, t ∈ R+} satisfies the stochastic differential equation

dYt =

(
µ− Zt

2

)
dt+

√
ZtdBt + dJt, (3.5.1)

dZt = κ(δ − Zt)dt+ ξ
√
ZtdWt, t ∈ R+, (3.5.2)

Y0 = x = logS0 and Z0 = v,

where x and v are strictly positive, and (B,W ) is a two-dimensional Brownian motion with

correlation parameter ρ. Process Jt is an independent compound Poisson process with

intensity λ and jump-sizes are distributed according to a mixed-exponential distribution

F with mean m. The parameters κ, δ, and ξ of the model are positive and represent the

speed of mean-reversion of the volatility, the long term volatility level and the volatility
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of volatility parameter. The parameter µ is set equal to µ = r − q − λm which ensures

that the moment condition E[exp{Yt}] = exp{(r−q)t+Y0} is satisfied for all non-negative

t, where the constants r and q are, as before, non-negative constants representing the

risk-free rate of return and the dividend yield. Under this moment condition it holds that

the process {e−(r−q)tSt, t ∈ R+} is a martingale. Note that by choosing κ and ξ equal to

zero we find back the mixed-exponential jump-diffusion process. For background on the

application of jump processes and stochastic volatility processes in quantitative finance,

we refer to Cont & Tankov [43] and Gatheral [62], respectively.

The first step is to approximate the log-price process Y by a process that has piecewise

constant drift and volatility. To define such an approximation, observe that the Euler-

Maruyama approximation of the process (Y,Z) on the equidistant partition TN can be

expressed as

Y ′τn+1
= Y ′τn +

(
µ−

Z ′τn
2

)
∆n +

√
|Z ′τn |∆Wn + ∆Jn, (3.5.3)

Z ′τn+1
= Z ′τn + κ(δ − Z ′τn)∆n + ξ

√
|Z ′τn |∆Bn, n ∈ N, (3.5.4)

with ∆Wn = Wτn+1−Wτn , ∆Bn = Bτn+1−Bτn , ∆Jn = Jτn+1−Jτn and ∆n = (τn+1−τn) =

T/N . For a proof of convergence we refer to Higham & Mao [73]. We consider the contin-

uous Euler scheme that is obtained by defining the values of Y ′t for t not contained in the

grid by evolving the SDE with frozen coefficients, leaving the (piecewise constant) approx-

imation (Z ′τn)n∈N for Z ′ given in Eqn. (3.5.4) unchanged. We arrive at the approximation

Y ′t = Y ′τn +

(
µ−

Z ′τn
2

)
(t− τn) +

√
|Z ′τn |(Wt −Wτn) + (Jt − Jτn),

for t ∈ [τn, τn+1]. Observe that with this choice of interpolation it holds that, conditional on

the values of the random variable Z ′τn , the process {Y ′t−τn , t ∈ [τn, τn+1]} is a Lévy process,

for each n = 0, . . . , N − 1. The described bridge sampling algorithm is summarised in

Table 3.4.

Remark 3.5.1. The choice N = 1 in the above algorithm corresponds to the case of a

single large step bridge sampling, which is the version of the algorithm that was imple-

mented to produce the results reported in Section 3.4 in the cases where the underlying

is a Lévy process.

Next we focus on the application of the bridge sampling method to the approximation

of the expectation of two path-functionals that are given in terms of the running maximum
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Table 3.4: Bridge sampling algorithm for approximating E[F (T, Y, Z)].

1 . Fix M, N ∈ N s u f f i c i e n t l y l a r g e .

2 . Sample M IID c o p i e s ξ(1), . . . , ξ(M) from the law o f
(
Y ′τ1 , Z

′
τ1 , . . . , Y

′
τN , Z

′
τN

)
,

3 . Evaluate the e s t imator 1
M

M∑
i=1

F̃ (N)
(
ξ(i)
)
,

with F̃ (N)(y0, z0, . . . , yN , zN ) = E
[
F (T, Y ′, Z ′)

∣∣∣∣Y ′τ0 = y0, Z
′
τ0 = z0, . . . , Y

′
τN = yN , Z

′
τN = zN

]
.

and the occupation time of Y as follows:

FS(T, Y, Z) := g(YT )I{Y T≤a}, a > 0, with Y t := sup{Ys : s ≤ t},

FO(T, Y, Z) :=

∫ T

0
g(Ys)ds,

for some function g : R+ → R. The functionals FS and FO admit the following multi-

plicative and additive decompositions into parts that only involve the processes Y i−1,i :=

{Yt+τi−1 , t ∈ [0, τi − τi−1]}, for i = 1, . . . , N :

FS(T, Y, Z) = g(YT )
N∏
i=1

F
(i)
S (Y,Z), F

(i)
S (Y,Z) = I{

sups∈[τi−1,τi]
Ys≤a

},

FO(T, Y, Z) =

N∑
i=1

F
(i)
O (Y, Z), F

(i)
O (Y, Z) =

∫ τi

τi−1

g(Ys)ds.

These decompositions in turn imply that the conditional expectations

F̃
(N)
S (y0, z0, . . . , yN , zN ) =

E
[
FS(T, Y ′, Z ′)

∣∣∣∣Y ′τ0 = y0, Z
′
τ0 = z0, . . . , Y

′
τN

= yN , Z
′
τN

= zN

]
, (3.5.5)

F̃
(N)
O (y0, z0, . . . , yN , zN ) =

E
[
FO(T, Y ′, Z ′)

∣∣∣∣Y ′τ0 = y0, Z
′
τ0 = z0, . . . , Y

′
τN

= yN , Z
′
τN

= zN

]
, (3.5.6)

can be expressed in terms of Lévy bridge processes.

Utilising the fact that the process X(s,z)→(t,y) is equal in law to the process {Xu, u ∈

[s, t]} conditioned on {Xs = z,Xt = y}, we express below the laws of the two path-

functionals of the Lévy bridge in terms of the law of the Lévy process X.
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Proposition 3.5.1. For any N ∈ N the following decompositions hold true:

F̃
(N)
S ((y0, z0), . . . , (yN , zN )) = g(yN )

N∏
i=1

F̃
(i)
S (yi−1, yi, zi−1), (3.5.7)

F̃
(N)
O ((y0, z0), . . . , (yN , zN )) =

N∑
i=1

F̃
(i)
O (yi−1, yi, zi−1), (3.5.8)

where the functions x 7→ F̃
(i)
S (x, y, z) and x 7→ F̃

(i)
O (x, y, z) are given by

F̃
(i)
S (x, y, z) = E

[
I(
L

(0,x)→(∆,y)≤a
)] , F̃

(i)
O (x, y, z) = E

[∫ ∆

0
g
(
L(0,x)→(∆,y)
s

)
ds

]
,

with ∆ = T/N , where L(0,x)→(∆,y) denotes the Lévy bridge process corresponding to the

Lévy process L = L(i) that is equal in law to Y i−1,i − Y ′τi conditional on Z ′τi−1
= z.

Proof. The decompositions hold as a consequence of the harness property of a Lévy pro-

cess, the definition of a Lévy bridge and the fact that a Lévy process is spatially homoge-

neous.

The first-passage time probability and expected occupation time of the process Y ′ can

then be calculated using the recursive algorithm that was presented in Section 3.2.

Remark 3.5.2. (i) In order to increase the accuracy of the approximation we will use

in the implementation the values obtained in the previous section combined with

Richardson extrapolation.

(ii) In order to efficiently approximate the first-passage time probability and the expected

occupation time of the Lévy bridge process, seen as function of the endpoint of

the bridge, one could combine the procedure described in (i) with interpolation:

One would then compute these quantities for a number of points and construct

subsequently functions on the real line R by using (linear) interpolation.

(iii) Samples from the mixed-exponential distribution can be drawn by using the acceptance-

rejection method described in Section 1.3.1. Since the MEJD distribution considered

here is symmetric, we have chosen a symmetric double-exponential distribution with

only one positive and negative exponent. The corresponding PDF is:

g(x) = 0.5× α1e−α1|x|,
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Figure 3.5: The figure displays the PDF of three different jump size distributions. Firstly, it gives

the PDF of N (0, 0.012), the normal distribution with mean 0 and standard deviation 0.01, which

could be used in the Merton model. Secondly, it gives the distribution of the MEJD model with

parameters as detailed in Table 3.1, which tries to approximate the normal distribution. Lastly, it

plots the distribution of a HEJD model multiplied with 1.4, which we sample from and use in the

acceptance-rejection method.

where α1 was chosen to be 100. With this choice, the constant c for the acceptance-

rejection method can be set to 1.4 and c× g(x) still strictly dominates f(x) for any

x. Figure 3.5 plots f(x) for the MEJD model of Table 3.1 together with 1.4× g(x)

and the PDF of N (0, 0.012), the distribution the MEJD tries to approximate. It can

be seen that the MEJD approximates the normal distribution reasonably well, and

that the double-exponential distribution multiplied by the constant strictly domi-

nates the MEJD distribution, which is a prerequisite for the acceptance-rejection

method. Note that it should always be straight forward to find a HEJD distribution

dominating the MEJD distribution with a relatively small constant, which makes

the acceptance-rejection method very efficient to use (see Remark 3.3.1 (iii)).

(iv) Note that other variance reduction techniques (reviewed in Section 1.3.1) such as

stratified sampling, importance sampling and quasi Monte-Carlo, could be used to

further improve the efficiency of the bridge sampling Monte Carlo method. To focus

on the newly developed method however, we have omitted use of these techniques

here.
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3.6 Numerical results: pricing barrier options and range

accruals

By way of illustration we next present the numerical results that were obtained by valuing

an up-and-in (UIC) barrier call option and a range note (RN) under a number of models

by using the bridge algorithm described in Table 3.4. See Section 1.1 for a definition of

these two derivatives. To do so, we use the recursive method for the approximation of

first-passage time probabilities and expected occupation times that was described in the

previous section.

By arbitrage pricing theory, the UIC option and the RN have values at time 0 given

by

UIC0(K,H) = E
[
e−rT (ST −K)+I{sup0≤t≤T St>H}

]
,

RN0(a1, a2) = E
[
e−rT · C

T

∫ T

0
I{a1≤Su≤a2}du

]
,

where K is the strike price, H is the barrier level, C is the nominal, and a1 and a2 are the

lower and upper bound of the range respectively.

We consider Lévy jump-diffusion models in Section 3.6.1 and Bates-type stochastic

volatility models with jumps in Section 3.6.2.

3.6.1 Lévy jump-diffusion models

Under the Black-Scholes, Kou, HEJD and MEJD models, we compute the values of up-

and-in call options and range notes for typical values of the option parameters using the

single-step bridge algorithm described in Table 3.4 (with N = 1) and evaluating the bridge

probabilities by the recursive procedure that was described in the previous section. To

provide a comparison, we also report the results that were obtained by running the discrete

Euler-Maruyama (EM) scheme. Table 3.5 and Table 3.6 contain approximations of the

values of the UIC option and the range note together with the run times, respectively. The

option prices are stated as the Monte Carlo midpoint followed by the error at the 95%

confidence level (as defined in Equation (1.3.1)) while computational times are given in

seconds (all computations in this chapter were obtained in C++ on an Intel(R) Core(TM)

i5 CPU M450 @ 2.40 GHz and 4GB RAM).

In Table 3.5 we report the value of an up-and-in call option with maturity 1 year, a
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barrier level of 120, and strike and spot prices of 100 (only in the case of the MEJD, the

barrier level was assumed to be 115 and the strike price 101, in order to compare to the

prices reported in Cai & Kou [34]). The values of the range note presented in Table 3.6

correspond to a maturity of 1 year, lower and upper barrier levels of 1.15 and 1.35, a

nominal of 100, and a spot price of 1.00. At maturity, the range note pays the ratio of

time spent within the range (of upper and lower barrier) and total time to maturity. The

range note defined as such is equivalent to the corridor option with K = 0 defined in

Fusai [60] and Cai & Kou [34]. The UIC option and range note were considered under the

Black-Scholes (BS), Kou, HEJD and MEJD models with parameters as given in Table 3.1

assuming a constant risk-free interest rate of 5% and a dividend yield of 0%. In Table 3.5

we also report the values of the UIC option in those cases that could be extracted from the

literature. In particular, the value under the Black-Scholes model is given by an analytical

formula (see, e.g., Haug [71]), while Kou & Wang [80] and Cai & Kou [34] report the values

under the Kou and MEJD model, which were obtained by different methods. In Table 3.6

the only reference value stated is the value under the Black-Scholes model, which follows

by a triple integration (see Appendix 3.B).

The parameters of the discrete EM scheme and the bridge method are collected in

Tables 3.5 and 3.6. The outcomes of the Lévy bridge method were obtained using the

method described in Section 3.3 with Richardson extrapolation. We varied the number

of interpolation points as stated in the caption of the tables (see also Remark 3.5.2 (ii)).

We have chosen 50 or 100 interpolation points for the evaluation of the barrier option

in Table 3.5, and 100 or 200 interpolation points for the evaluation of the range note in

Table 3.6. The reason for choosing fewer points for the barrier option is that one only need

to consider endpoints between the strike and the barrier level in this case. In particular,

note that the option is worthless below and the probability that the barrier was hit is

1.0 above this region. For the range note the region of endpoints is not as restricted and

we therefore pre-calculate a larger number of endpoints (equally spaced between 40% and

200% of spot). We checked that at least 99.9% of the paths end up within this region

(for paths that end up below/above the range, we use the lowest/highest pre-calculated

value). Making this region slightly smaller/larger or increasing/decreasing the number of

pre-calculated points, does not change the option prices notably. To obtain the outcomes

of the discrete Euler-Maruyama scheme, each of the M sample paths was generated at
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Black-Scholes Kou

Method Steps N Midpoint (Error) Time Midpoint (Error) Time

Discrete EM 100 9.044 (±0.0297) 3.3 9.851 (±0.0318) 4.5

Discrete EM 1,000 9.189 (±0.0297) 32.0 10.019 (±0.0318) 42.9

Discrete EM 10,000 9.254 (±0.0297) 313.7 10.021 (±0.0317) 453.6

Bridge method 1 9.270 (±0.0292) 0.1 10.071 (±0.0313) 0.2

Bridge method 1 9.276 (±0.0053) 2.5 10.054 (±0.0057) 7.2

Reference value 9.275∗ 0.0 10.053† 169.3

HEJD MEJD

Method Steps N Midpoint (Error) Time Midpoint (Error) Time

Discrete EM 100 12.581 (±0.0407) 4.8 9.418 (±0.0287) 5.8

Discrete EM 1,000 12.724 (±0.0405) 42.4 9.519 (±0.0287) 53.0

Discrete EM 10,000 12.727 (±0.0404) 417.8 9.533 (±0.0287) 523.0

Bridge method 1 12.764 (±0.0403) 1.1 9.557 (±0.0285) 0.9

Bridge method 1 12.755 (±0.0073) 24.9 9.546 (±0.0052) 9.4

Reference value 9.546‡ 6.0

Table 3.5: A comparison of different Monte Carlo methods (all ran with antithetic variate reduc-

tion) for an up-and-in call option with a barrier level of 120, a strike price of 100, a spot price of

100 and a maturity of 1 year (only the MEJD methods were run with a barrier level of 115 and a

strike price of 101 to match prices reported in Cai & Kou [34]). We assumed a constant risk-free

interest rate of 5% and a dividend yield of 0%. The results for the Euler-Maruyama scheme and

the bridge scheme (first lines) were obtained using M = 1 million runs. The enhanced results for

the bridge scheme (reported in the second lines) were obtained with M = 30 million runs and using

twice the number of interpolation points (100 instead of the 50 that were used in the corresponding

first line). We used the model parameters listed in Table 3.1 and n = 7 for the bridge sampling

method with Richardson extrapolation. Run-times of the various schemes are reported in seconds

in the columns ‘Time’. ∗Exact value (see Appendix 3.A). †As reported in Kou & Wang [80]. ‡As

reported in Cai & Kou [34].

N time steps, where M and N vary for the outcomes that are reported in Tables 3.5

and 3.6. For the results obtained using the Monte Carlo bridge method the number of

recursive steps n and the number of runs is reported. All simulations were performed



3.6. Numerical results: pricing barrier options and range accruals 119

Black-Scholes Kou

Method Steps N Midpoint (Error) Time Midpoint (Error) Time

Discrete EM 100 13.222 (±0.0375) 3.5 13.803 (±0.0376) 4.4

Discrete EM 1,000 13.119 (±0.0373) 32.2 13.739 (±0.0374) 44.0

Discrete EM 10,000 13.111 (±0.0372) 321.0 13.699 (±0.0373) 443.1

Bridge method 1 13.113 (±0.0273) 0.2 13.700 (±0.0264) 0.3

Bridge method 1 13.113 (±0.0050) 2.5 13.696 (±0.0049) 7.6

Reference value 13.116∗ 3.5

HEJD MEJD

Method Steps N Midpoint (Error) Time Midpoint (Error) Time

Discrete EM 100 14.858 (±0.0371) 4.9 13.206 (±0.0374) 4.7

Discrete EM 1,000 14.816 (±0.0370) 44.1 13.138 (±0.0373) 43.7

Discrete EM 10,000 14.784 (±0.0369) 435.6 13.124 (±0.0373) 431.4

Bridge method 1 14.787 (±0.0251) 3.8 13.129 (±0.0273) 7.0

Bridge method 1 14.789 (±0.0046) 32.5 13.121 (±0.0050) 20.62

Table 3.6: A comparison of different Monte Carlo methods (all ran with antithetic variate reduc-

tion) for a range note with a nominal of 100, an upper barrier level of 1.35, a lower barrier level of

1.15, a spot price of 1.00 and a maturity of 1 year. We assumed a constant risk-free interest rate of

5% and a dividend yield of 0%. The results for the Euler-Maruyama scheme and the bridge scheme

(first lines) were obtained using M = 1 million runs. The enhanced results for the bridge scheme

(reported in the second lines) were obtained with M = 30 million runs and using twice the number

of interpolation points (200 instead of the 100 that were used in the corresponding first line). We

used the model parameters listed in Table 3.1 and n = 5 for the bridge sampling method with

Richardson extrapolation. ∗Exact value obtained by numerical integration of Equation (3.B.2).

on the logarithm of the underlying, and the antithetic variance reduction technique was

utilised in all cases (see Section 1.3.1 for background on Monte Carlo simulations and

variance reduction techniques).

From the results in Table 3.5 and Table 3.6, we see that using the discrete Euler-

Maruyama scheme, a large number of time steps and runs is required for the outcome to

converge to the true value (the slow convergence, especially for values of path-dependent

options, was also observed in Boyle et al. [28], for example). The outcomes generated by
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κ δ ξ ρ V0 K H (a1, a2) S0 r d T

1.0 0.1 0.2 -0.5 0.07 100 120 (1.15,1.35) 100 0.05 0.0 1.0

Table 3.7: Market parameters (spot level, interest rate, dividend yield), option parameters (matu-

rity, strike, barrier, range) and the model parameters of the Bates-type model used for the valuation

of the up-and-in call option and the range note in Figure 3.6 and Table 3.8 (with jump-parameters

as given in Table 3.1).

the bridge sampling Monte Carlo method however converge more rapidly. In contrast to

the discrete EM scheme, only the value at the final time needs to be generated for the

bridge sampling algorithm. As a consequence, many more runs can be performed per unit

computational time in the bridge algorithm in comparison with the discrete EM scheme,

resulting in a smaller statistical error.

3.6.2 Bates-type stochastic volatility model with jumps

We computed the approximate values of an up-and-in call option and a range note under

the Heston model, and Bates-type models with double-exponential and hyper-exponential

jumps, by running the algorithm described in Table 3.4 with 10 million paths (M = 106),

on the grid TN with N = 2i steps for i = 0, 1, 2, ..., 10. We used the Richardson extrapo-

lated value with n = 7 steps and approximated the functions F̃
(i)
(S,O)(x, y, z) by evaluating

these on a grid of points. We use (double) interpolation to obtain approximations of the

values of the function outside the grid. For a comparison, we also report the results ob-

tained by a standard (discrete) Euler-Maruyama approximation with 10 million paths and

a varying number of (equidistant) time-steps. For both methods, if the variance process

becomes negative in the discretisation method, we reflect the value at 0.

For the results displayed in Figure 3.6 we take the value corresponding to N = 1024 as

true value and compute the logarithm of the absolute errors for all other outcomes with

respect to this value. To estimate the rate of decay of the error as the number of time

steps tends to infinity, we performed an ordinary least-square regression on the generated

values for each of the models. For the OLS regression, we use the values corresponding

to the six largest numbers of steps (only the three largest numbers were used for the

continuous Euler scheme in case of the range note). The slopes of the OLS lines of the

continuous Euler scheme for the Heston model, and the Bates-type model with double-
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(a) Up-and-in call option (b) Range note

Figure 3.6: The absolute error of the values of an up-and-in barrier option and range note under

the Heston and Bates-type models plotted on a log-log scale against the number of time-steps N .

Parameters are as given in Tables 3.7 and 3.1.

exponential and hyper-exponential jumps that we found are −1.03, −1.02 and −1.04 in

the case of the up-and-in call option, and −1.36, −0.96 and −1.02 in the case of the

range note. This suggests a rate of decay of the error that is linear in the reciprocal of

the number of steps. By way of comparison we also implemented the standard (discrete)

Euler-Maruyama scheme for each of the three models, and found the corresponding slopes

of the OLS lines to be equal to −0.485, −0.482 and −0.485 in the case of the up-and-in call

option values, and −0.996, −1.005 and −1.005 in the case of range notes. These results

suggest that, in the case of an UIC option, a square-root rate rather than a linear rate

holds for the decay of the error as function of the reciprocal of the number of time-steps.

This is in line with the well-known fact that the strong order of the discrete EM scheme is

0.5. Furthermore, for killed diffusion models, the weak error of the discrete EM scheme has

been shown to be bounded by a constant multiplied by N−1/2 in the number of time-steps

N under suitable regularity assumptions on the coefficients and the pay-off function (see

Gobet [68, Thms. 2.3, 2.4]).

To increase computational efficiency we used a non-uniform grid for the interpolation

of the variance levels and the stock values based on an algorithm from Tavella & Ran-
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Heston Bates (Kou) Bates (HEJD)

Steps Midpoint (Error) Time Midpoint (Error) Time Midpoint (Error) Time

Barrier option

Discrete EM 100 12.755 (±0.0389) 7.9 13.333 (±0.0407) 9.1 15.358 (±0.0483) 9.8

Discrete EM 1,000 12.866 (±0.0388) 79.8 13.432 (±0.0406) 88.4 15.387 (±0.0481) 93.9

Discrete EM 10,000 12.935 (±0.0387) 789.3 13.467 (±0.0406) 887.7 15.413 (±0.0482) 958.4

Continuous EM 100 12.948 (±0.0387) 18.2 13.468 (±0.0406) 20.0 15.457 (±0.0482) 82.0

Continuous EM 1,000 12.956 (±0.0388) 162.7 13.534 (±0.0408) 165.1 15.478 (±0.0482) 233.3

Continuous EM† 1,000 12.951 (±0.0388) 125.1

Range note

Discrete EM 100 15.352 (±0.0373) 8.4 15.374 (±0.0367) 9.1 15.387 (±0.0354) 10.2

Discrete EM 1,000 15.288 (±0.0371) 80.8 15.315 (±0.0365) 93.1 15.309 (±0.0352) 97.7

Discrete EM 10,000 15.288 (±0.0371) 792.9 15.304 (±0.0365) 928.0 15.286 (±0.0351) 1079.1

Continuous EM 10 15.177 (±0.0367) 54.3 15.237 (±0.0362) 67.7 15.255 (±0.0350) 132.0

Continuous EM 100 15.288 (±0.0371) 113.7 15.294 (±0.0365) 126.3 15.327 (±0.0352) 364.3

Continuous EM∗ 100 15.288 (±0.0371) 1490.5

Table 3.8: A comparison of different Monte Carlo methods (all ran with antithetic variate reduc-

tion and 1 million paths) for (i) an up-and-in call barrier option and (ii) a range note. The market

and option parameters are as given in Table 3.7, and the jump parameters as given in Table 3.1.

In the column ‘Time’ the run times are reported in seconds. The continuous EM schemes were

run using n = 7 recursive steps (for the first-passage time probabilities) and using n = 5 recursive

steps (for the expected occupation time). †To obtain this value we used the exact Brownian bridge

probability. ∗To obtain this value we used numerical integration of Equation (3.B.1).
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dall [129]: Define c1 = arcsinh
(
a−s
g1

)
and c2 = arcsinh

(
b−s
g2

)
. Then the lower part of

the grid is given by xk = s + g1 sinh(c1(1 − (k − 1)/(A/2 − 1))) and the upper part is

given by xk+A/2 = s + g2 sinh(c22k/A) both for k ∈ {1, ..., A/2}. Constants a and b are

the minimum and maximum variance levels, which we have set to 0.001 and 0.3 for the

variance grid. The midpoint is denoted s, which we have set to V0, and A is the total

number of grid points. Finally, g1 and g2 are the uniformity parameters for the lower

and upper part of the grid. We have set these to 0.01 and 0.005 respectively in case of

the variance grid. These values and the truncation levels of the variance were selected

after a rigorous analysis of the distribution function. Less than 0.1% of the paths leave

the interval [0.001, 0.3], with most paths staying close to the mean reversion activity rate

level (δ = 0.1). Since the upper part of the grid is larger and few variance paths ever get

close to the upper bound, we choose a smaller uniformity parameter for this part. For the

endpoint, we set s = log(S0), a = log(0.3 ∗S0) and b = log(H). We choose the upper part

of the grid to be uniform (i.e. g2 = 1) and the lower part to be non-uniform with more

spacing close to S0 (i.e. g1 = 0.01).

In Table 3.8 we report the midpoint of the Monte Carlo method and an error based

on a 95% confidence interval. To speed up the procedure, we pre-calcuated the path-

functionals at 100 endpoints, and 50 variance levels. We use double interpolation during

the Monte Carlo simulation. To confirm that this procedure does not introduce noticeable

errors, we also evaluate both derivatives without interpolation and using the exact values

in case of the Heston model. That is, we used the Brownian bridge probability and the

exact value for the occupation time obtained by adaptive quadrature. We report these

results in the bottom line for the barrier option and the range note. Note that this also

confirms again, that the recursive procedure for the bridges is very accurate. Also here, it

can be seen that the bridge based methods are far superior to the discrete EM methods:

the values seem to converge much quicker and can be performed more efficiently.

3.7 Summary

We propose a variance reduction technique for a Monte Carlo based bridge sampling

method to estimate the expectations of first-passage times and occupation times, un-

der a class of stochastic volatility models with jumps. We utilise Carr’s randomisation
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method and develop a recursive algorithm for these two path-dependent functionals. For

the class of mixed-exponential jump-diffusion models, which is dense in the class of all

Lévy processes, we determine the explicit form of these recursions. We determine the

rate of convergence of the randomisation method and confirm it numerically. By way of

illustration it was shown that the recursive algorithm can be evaluated rapidly and that

the convergence can be speeded up by Richardson extrapolation. Having a fast algorithm

to calculate these bridge quantities efficiently enables us to use these in a Monte Carlo

method with only one time step (in the case of a Lévy process). When pre-calculating

the bridge quantities to interpolate between these during the Monte Carlo method, exotic

derivatives can be evaluated rapidly with small confidence errors. Run times are far su-

perior to the Euler-Maruyama methods with the same confidence errors. In addition, we

develop a continuous Euler-Maruyama scheme for a class of stochastic volatility models

with jumps. We illustrate numerically the efficiency of the method for pricing barrier

options and range accruals in this class of models and investigate its rate of convergence.
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Appendix

3.A First-passage time distribution of Brownian motion

For a Brownian motion W , the distributions of the maximum and drawdown at the inde-

pendent random time Γ1,q are given by

P
[
WΓ1,q ∈ dx

]
= P

[
WΓ1,q −WΓ1,q ∈ dx

]
=
√

2qe−x
√

2qdx,

and the Laplace transform of the joint PDF ft of Wt and W t takes the form∫ ∞
0

e−qtft(x, y)dt = 2e(y−2x)
√

2q and hence ft(x, y) =
2(2x− y)√

2πt3
e−(2x−y)2/(2t).

Therefore, we obtain the expression

P
[
W t ≥ H,Wt ∈ dy

]
=

1√
2πt

e−(2H−y)2/(2t)dy,

which yields the well-known identity for the first-passage of a Brownian bridgeW (t1,x)→(t2,y):

P
[
sup{W (t1,x)→(t2,y)

s : t1 ≤ s ≤ t2} ≥ H
]

= exp

(
−2(x−H)(y −H)

Σ2(t1, t2)

)
, Σ2(t1, t2) = t2 − t1, (3.A.1)

for H > x, y. More generally, for Xt = σWt + µt, a linear Brownian motion with drift µ

and volatility σ > 0, Eqn. (3.A.1) remains valid if W (t1,x)→(t2,y) is replaced by X(t1,x)→(t2,y)

and Σ2(t1, t2) by Σ2(t1, t2) = σ2(t2 − t1).
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3.B Expected occupation time of Brownian motion

Let

La1,a2 =

∫ T

0
I{
W

(0,x)→(T,y)
t ∈(a1,a2)

}dt

denote the time in the interval [0, T ] spent by a Brownian bridge W (0,x)→(T,y) in the range

(a1, a2). Note that it holds that

P(Wt ∈ dz|W0 = x,WT = y) = φ(z;α, β2)dz

with φ denoting the Gaussian distribution φ(x;µ, σ2) = 1√
2πσ2

e−(x−µ)2/(2σ2),

α = x+
t

T
(y − x) =

(T − t)x+ ty

T
, β2 =

t(T − t)
T

.

We have, by interchanging the order of integration, that

E [La1,a2 ] =

∫ T

0

∫ a2

a1

φ(z;α, β2)dzdt, (3.B.1)

where α depends on x and y, the start and end point of the Brownian bridge, and both α

and β2 depend on t and T .

For the bridge process corresponding to a linear Brownian motion Xt = σWt+µt with

drift µ and volatility σ, the above formulas remain valid when W (0,x)→(T,y) is replaced by

X(0,x)→(T,y) and β2 by β2 = σ2t(T−t)
T .

Remark: When considering Xt = σWt + µt, a linear Brownian motion with drift µ

and volatility σ > 0, rather than a bridge, it follows that

E
[∫ T

0
1{Xt∈(a1,a2)}dt

]
=

∫ ∞
−∞

∫ T

0

∫ a2

a1

1

σ
√

2π
φ(z;α, β2)e

−(y−µ)2

2σ2 dzdtdy. (3.B.2)
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