32,521 research outputs found

    Behavioral Modernity and the Cultural Transmission of Structured Information: The Semantic Axelrod Model

    Full text link
    Cultural transmission models are coming to the fore in explaining increases in the Paleolithic toolkit richness and diversity. During the later Paleolithic, technologies increase not only in terms of diversity but also in their complexity and interdependence. As Mesoudi and O'Brien (2008) have shown, selection broadly favors social learning of information that is hierarchical and structured, and multiple studies have demonstrated that teaching within a social learning environment can increase fitness. We believe that teaching also provides the scaffolding for transmission of more complex cultural traits. Here, we introduce an extension of the Axelrod (1997} model of cultural differentiation in which traits have prerequisite relationships, and where social learning is dependent upon the ordering of those prerequisites. We examine the resulting structure of cultural repertoires as learning environments range from largely unstructured imitation, to structured teaching of necessary prerequisites, and we find that in combination with individual learning and innovation, high probabilities of teaching prerequisites leads to richer cultural repertoires. Our results point to ways in which we can build more comprehensive explanations of the archaeological record of the Paleolithic as well as other cases of technological change.Comment: 24 pages, 7 figures. Submitted to "Learning Strategies and Cultural Evolution during the Paleolithic", edited by Kenichi Aoki and Alex Mesoudi, and presented at the 79th Annual Meeting of the Society for American Archaeology, Austin TX. Revised 5/14/1

    Towards the Formal Specification and Verification of Maple Programs

    Full text link
    In this paper, we present our ongoing work and initial results on the formal specification and verification of MiniMaple (a substantial subset of Maple with slight extensions) programs. The main goal of our work is to find behavioral errors in such programs w.r.t. their specifications by static analysis. This task is more complex for widely used computer algebra languages like Maple as these are fundamentally different from classical languages: they support non-standard types of objects such as symbols, unevaluated expressions and polynomials and require abstract computer algebraic concepts and objects such as rings and orderings etc. As a starting point we have defined and formalized a syntax, semantics, type system and specification language for MiniMaple

    Building a Science of Animal Minds: Lloyd Morgan, Experimentation, and Morgan’s Canon

    Get PDF
    Conwy Lloyd Morgan (1852–1936) is widely regarded as the father of modern comparative psychology. Yet, Morgan initially had significant doubts about whether a genuine science of comparative psychology was even possible, only later becoming more optimistic about our ability to make reliable inferences about the mental capacities of non-human animals. There has been a fair amount of disagreement amongst scholars of Morgan’s work about the nature, timing, and causes of this shift in Morgan’s thinking. We argue that Morgan underwent two quite different shifts of attitude towards the proper practice of comparative psychology. The first was a qualified acceptance of the Romanesian approach to comparative psychology that he had initially criticized. The second was a shift away from Romanes’ reliance on systematizing anecdotal evidence of animal intelligence towards an experimental approach, focused on studying the development of behaviour. We emphasize the role of Morgan’s evolving epistemological views in bringing about the first shift – in particular, his philosophy of science. We emphasize the role of an intriguing but overlooked figure in the history of comparative psychology in explaining the second shift, T. Mann Jones, whose correspondence with Morgan provided an important catalyst for Morgan’s experimental turn, particularly the special focus on development. We also shed light on the intended function of Morgan’s Canon, the methodological principle for which Morgan is now mostly known. The Canon can only be properly understood by seeing it in the context of Morgan’s own unique experimental vision for comparative psychology

    A conceptual framework for developing explorative e-learning strategy using ontology-based knowledge management

    Get PDF
    This paper presents a conceptual framework for developing explorative e-learning strategy using ontology-based knowledge management. It conducts a comprehensive analysis of the applicability of ontologies in management of knowledge, with a particular reference to the development of explorative e-learning environments for enhancing an efficient use and reuse of available information and knowledge in e-learning, leading to a better understanding of the main issues for developing effective explorative e-learning strategies in an e-learning environment

    Space exploration: The interstellar goal and Titan demonstration

    Get PDF
    Automated interstellar space exploration is reviewed. The Titan demonstration mission is discussed. Remote sensing and automated modeling are considered. Nuclear electric propulsion, main orbiting spacecraft, lander/rover, subsatellites, atmospheric probes, powered air vehicles, and a surface science network comprise mission component concepts. Machine, intelligence in space exploration is discussed

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie
    • …
    corecore