3,152 research outputs found

    Parameterized Model-Checking for Timed-Systems with Conjunctive Guards (Extended Version)

    Full text link
    In this work we extend the Emerson and Kahlon's cutoff theorems for process skeletons with conjunctive guards to Parameterized Networks of Timed Automata, i.e. systems obtained by an \emph{apriori} unknown number of Timed Automata instantiated from a finite set U1,ā€¦,UnU_1, \dots, U_n of Timed Automata templates. In this way we aim at giving a tool to universally verify software systems where an unknown number of software components (i.e. processes) interact with continuous time temporal constraints. It is often the case, indeed, that distributed algorithms show an heterogeneous nature, combining dynamic aspects with real-time aspects. In the paper we will also show how to model check a protocol that uses special variables storing identifiers of the participating processes (i.e. PIDs) in Timed Automata with conjunctive guards. This is non-trivial, since solutions to the parameterized verification problem often relies on the processes to be symmetric, i.e. indistinguishable. On the other side, many popular distributed algorithms make use of PIDs and thus cannot directly apply those solutions

    Robust Model-Checking of Linear-Time Properties in Timed Automata

    No full text
    International audienceFormal verification of timed systems is well understood, but their \emphimplementation is still challenging. Recent works by Raskin \emphet al. have brought out a model of parameterized timed automata that can be used to prove \emphimplementability of timed systems for safety properties. We define here a more general notion of robust model-checking for linear-time properties, which consists in verifying whether a property still holds even if the transitions are slightly delayed or expedited. We provide PSPACE algorithms for the robust model-checking of BĆ¼chi-like and LTL properties. We also verify bounded-response-time properties

    A test generation framework for quiescent real-time systems

    Get PDF
    We present an extension of Tretmans theory and algorithm for test generation for input-output transition systems to real-time systems. Our treatment is based on an operational interpretation of the notion of quiescence in the context of real-time behaviour. This gives rise to a family of implementation relations parameterized by observation durations for quiescence. We define a nondeterministic (parameterized) test generation algorithm that generates test cases that are sound with respect to the corresponding implementation relation. Also, the test generation is exhaustive in the sense that for each non-conforming implementation a test case can be generated that detects the non-conformance

    Testing real-time multi input-output systems

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tioco-M theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtioco^M relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtioco^

    Testing multi input-output real-time systems (Extended version)

    Get PDF
    In formal testing, the assumption of input enabling is typically made. This assumption requires all inputs to be enabled anytime. In addition, the useful concept of quiescence is sometimes applied. Briefly, a system is in a quiescent state when it cannot produce outputs. In this paper, we relax the input enabling assumption, and allow some input sets to be enabled while others remain disabled. Moreover, we also relax the general bound M used in timed systems to detect quiescence, and allow different bounds for different sets of outputs. By considering the tiocoM theory, an enriched theory for timed testing with repetitive quiescence, and allowing the partition of input sets and output sets, we introduce the mtiocoM relation. A test derivation procedure which is nondeterministic and parameterized is further developed, and shown to be sound and complete wrt mtiocoM

    MTL-Model Checking of One-Clock Parametric Timed Automata is Undecidable

    Full text link
    Parametric timed automata extend timed automata (Alur and Dill, 1991) in that they allow the specification of parametric bounds on the clock values. Since their introduction in 1993 by Alur, Henzinger, and Vardi, it is known that the emptiness problem for parametric timed automata with one clock is decidable, whereas it is undecidable if the automaton uses three or more parametric clocks. The problem is open for parametric timed automata with two parametric clocks. Metric temporal logic, MTL for short, is a widely used specification language for real-time systems. MTL-model checking of timed automata is decidable, no matter how many clocks are used in the timed automaton. In this paper, we prove that MTL-model checking for parametric timed automata is undecidable, even if the automaton uses only one clock and one parameter and is deterministic.Comment: In Proceedings SynCoP 2014, arXiv:1403.784
    • ā€¦
    corecore