5 research outputs found

    An Efficient Platform for the Automatic Extraction of Patterns in Native Code

    Get PDF
    Different software tools, such as decompilers, code quality analyzers, recognizers of packed executable files, authorship analyzers, and malware detectors, search for patterns in binary code. The use of machine learning algorithms, trained with programs taken from the huge number of applications in the existing open source code repositories, allows finding patterns not detected with the manual approach. To this end, we have created a versatile platform for the automatic extraction of patterns from native code, capable of processing big binary files. Its implementation has been parallelized, providing important runtime performance benefits for multicore architectures. Compared to the single-processor execution, the average performance improvement obtained with the best configuration is 3.5 factors over the maximum theoretical gain of 4 factors

    Garbage-Free Abstract Interpretation Through Abstract Reference Counting

    Get PDF
    Abstract garbage collection is the application of garbage collection to an abstract interpreter. Existing work has shown that abstract garbage collection can improve both the interpreter\u27s precision and performance. Current approaches rely on heuristics to decide when to apply abstract garbage collection. Garbage will build up and impact precision and performance when the collection is applied infrequently, while too frequent applications will bring about their own performance overhead. A balance between these tradeoffs is often difficult to strike. We propose a new approach to cope with the buildup of garbage in the results of an abstract interpreter. Our approach is able to eliminate all garbage, therefore obtaining the maximum precision and performance benefits of abstract garbage collection. At the same time, our approach does not require frequent heap traversals, and therefore adds little to the interpreters\u27s running time. The core of our approach uses reference counting to detect and eliminate garbage as soon as it arises. However, reference counting cannot deal with cycles, and we show that cycles are much more common in an abstract interpreter than in its concrete counterpart. To alleviate this problem, our approach detects cycles and employs reference counting at the level of strongly connected components. While this technique in general works for any system that uses reference counting, we argue that it works particularly well for an abstract interpreter. In fact, we show formally that for the continuation store, where most of the cycles occur, the cycle detection technique only requires O(1) amortized operations per continuation push. We present our approach formally, and provide a proof-of-concept implementation in the Scala-AM framework. We empirically show our approach achieves both the optimal precision and significantly better performance compared to existing approaches to abstract garbage collection

    Safety and Liveness of Quantitative Automata

    Full text link
    The safety-liveness dichotomy is a fundamental concept in formal languages which plays a key role in verification. Recently, this dichotomy has been lifted to quantitative properties, which are arbitrary functions from infinite words to partially-ordered domains. We look into harnessing the dichotomy for the specific classes of quantitative properties expressed by quantitative automata. These automata contain finitely many states and rational-valued transition weights, and their common value functions Inf, Sup, LimInf, LimSup, LimInfAvg, LimSupAvg, and DSum map infinite words into the totally-ordered domain of real numbers. In this automata-theoretic setting, we establish a connection between quantitative safety and topological continuity and provide an alternative characterization of quantitative safety and liveness in terms of their boolean counterparts. For all common value functions, we show how the safety closure of a quantitative automaton can be constructed in PTime, and we provide PSpace-complete checks of whether a given quantitative automaton is safe or live, with the exception of LimInfAvg and LimSupAvg automata, for which the safety check is in ExpSpace. Moreover, for deterministic Sup, LimInf, and LimSup automata, we give PTime decompositions into safe and live automata. These decompositions enable the separation of techniques for safety and liveness verification for quantitative specifications.Comment: Full version of the paper to appear in CONCUR 202

    Machine learning for function synthesis

    Get PDF
    Function synthesis is the process of automatically constructing functions that satisfy a given specification. The space of functions as well as the format of the specifications vary greatly with each area of application. In this thesis, we consider synthesis in the context of satisfiability modulo theories. Within this domain, the goal is to synthesise mathematical expressions that adhere to abstract logical formulas. These types of synthesis problems find many applications in the field of computer-aided verification. One of the main challenges of function synthesis arises from the combinatorial explosion in the number of potential candidates within a certain size. The hypothesis of this thesis is that machine learning methods can be applied to make function synthesis more tractable. The first contribution of this thesis is a Monte-Carlo based search method for function synthesis. The search algorithm uses machine learned heuristics to guide the search. This is part of a reinforcement learning loop that trains the machine learning models with data generated from previous search attempts. To increase the set of benchmark problems to train and test synthesis methods, we also present a technique for generating synthesis problems from pre-existing satisfiability modulo theories problems. We implement the Monte-Carlo based synthesis algorithm and evaluate it on standard synthesis benchmarks as well as our newly generated benchmarks. An experimental evaluation shows that the learned heuristics greatly improve on the baseline without trained models. Furthermore, the machine learned guidance demonstrates comparable performance to CVC5 and, in some experiments, even surpasses it. Next, this thesis explores the application of machine learning to more restricted function synthesis domains. We hypothesise that narrowing the scope enables the use of machine learning techniques that are not possible in the general setting. We test this hypothesis by considering the problem of ranking function synthesis. Ranking functions are used in program analysis to prove termination of programs by mapping consecutive program states to decreasing elements of a well-founded set. The second contribution of this dissertation is a novel technique for synthesising ranking functions, using neural networks. The key insight is that instead of synthesising a mathematical expression that represents a ranking function, we can train a neural network to act as a ranking function. Hence, the synthesis procedure is replaced by neural network training. We introduce Neural Termination Analysis as a framework that leverages this. We train neural networks from sampled execution traces of the program we want to prove terminating. We enforce the synthesis specifications of ranking functions using the loss function and network design. After training, we use symbolic reasoning to formally verify that the resulting function is indeed a correct ranking function for the target program. We demonstrate that our method succeeds in synthesising ranking functions for programs that are beyond the reach of state-of-the-art tools. This includes programs with disjunctions and non-linear expressions in the loop guards
    corecore