5 research outputs found

    Mechatronic guidance of rail vehicles through switches and crossings to enable vehicle-based switching

    Get PDF
    The research presented in this thesis demonstrates the theory that a mechatronic rail vehicle could be used on conventional switches and crossings (S\&Cs) to reduce wear. Railway track switches withstand high vertical and lateral forces leading to wear and damage. This necessitates a disproportionately high level of maintenance of over 10 \% of total maintenance costs, despite accounting for less than 0.1 \% of the network length. Mechatronically-guided rail vehicles are of paramount importance in addressing the increasing interest in reducing wheel-rail wear across the network and improving guidance and steering. Conventional passively-guided rail vehicles are limited by the mechanical constraints of the suspension elements. Currently, a typical rail vehicle suspension needs to be sufficiently stiff to stabilize the wheelsets while being complaint enough to negotiate curved track profiles. The suspension is therefore a compromise for the contradictory requirements of curving and stability. In mechatronic vehicles, actuators are used with the conventional suspension components to provide pseudo stiffness or damping forces needed to optimise a vehicle for a wide variety of scenarios, which can be positive or negative. This means that the vehicle is not reliant on a sub-optimal combination of passive components. Previous research in the area of mechatronic rail vehicles has shown the performance improvement in different straight or curved track profiles compared to a conventional vehicle. In this thesis, three vehicle configurations discussed previously in the literature, are evaluated on several different track profiles. These are the secondary yaw control (SYC), actuated solid-axle wheelset (ASW) and driven independently-rotating wheelsets (DIRW) steering mechanisms. The vehicle models are implemented in a multi-body simulation software Simpack to obtain high fidelity simulations that are comparable to a real rail vehicle. The DIRW vehicle showed the best performance in terms of reduced wear and minimal flange contact and was therefore chosen for studying its performance on a conventional S\&C. The DIRW vehicle was simulated on a C switch which is the most common on the UK mainline and on a high speed H switch. The results show that the DIRW vehicle gives a significant reduction in wear and reduces flange contact on the through and diverging routes of both S\&Cs. This proves the theory that active vehicles could be used to reduce impact forces at conventional S\&Cs. This could be an intermediate step towards a longer term vision of having a track switch without any moving parts where the switching is vehicle-based instead of track-based. Ultimately, if active elements on the vehicle could fully control the route while the track switch was completely passive i.e. had no moving parts, the reliability of the railways as a transport system would increase significantly. The technology could be combined with electronically-coupled vehicles which could form longer trains on busier routes and decouple to serve intermediary routes

    Benefits of mechatronically guided vehicles on railway track switches

    Get PDF
    Conventional rail vehicles struggle to optimally satisfy the different suspension requirements for various track profiles, such as on a straight track with stochastic irregularities, curved track or switches and crossings (S&C), whereas mechatronically-guided railway vehicles promise a large advantage over conventional vehicles in terms of reduced wheel-rail wear, improved guidance and opening new possibilities in vehicle architecture. Previous research in this area has looked into guidance and steering using MBS models of mechatronic rail vehicles of three different mechanical configurations - secondary yaw control (SYC), actuated solid-axle wheelset (ASW) and driven independently-rotating wheelsets (DIRW). The DIRW vehicle showed the best performance in terms of reduced wear and minimal flange contact and is therefore chosen in this paper for studying the behaviour of mechatronically-guided rail vehicles on conventional S&Cs. In the work presented here, a mechatronic vehicle with the DIRW configuration is run on moderate and high speed track switches. The longer term motivation is to perform the switching function from on-board the vehicle as opposed to from the track as is done conventionally. As a first step towards this, the mechatronic vehicle model is compared against a conventional rail vehicle model on two track scenarios - a moderate speed C type switch and a high speed H switch. A multi-body simulation software is used to produce a high fidelity model of an active rail vehicle with independentlyrotating wheelsets (IRWs) where each wheel has an integrated ’wheelmotor’. This work demonstrates the theory that mechatronic rail vehicles could be used on conventional S&Cs. The results show that the mechatronic vehicle gives a significant reduction in wear, reduced flange contact and improved ride quality on the through-routes of both moderate and high speed switches. On the diverging routes, the controller can be tuned to achieve minimal flange contact and improved ride quality at the expense of higher creep forces and wear

    Rethinking rail track switches for fault tolerance and enhanced performance

    Get PDF
    Railway track switches, commonly referred to as ‘turnouts’ or ‘points,’ are a necessary element of any rail network. However, they often prove to be performance-limiting elements of networks. A novel concept for rail track switching has been developed as part of a UK research project with substantial industrial input. The concept is currently at the demonstrator phase, with a scale (384 mm) gauge unit currently operational in a laboratory. Details of the novel arrangement and concept are provided herein. This concept is considered as an advance on the state of the art. This paper also presents the work that took place to develop the concept. Novel contributions include the establishment of a formal set of functional requirements for railway track switching solutions, and a demonstration that the current solutions do not fully meet these requirements. The novel design meets the set of functional requirements for track switching solutions, in addition to offering several features that the current designs are unable to offer, in particular to enable multi-channel actuation and rail locking, and provide a degree of fault tolerance. This paper describes the design and operation of this switching concept, from requirements capture and solution generation through to the construction of the laboratory demonstrator. The novel concept is contrasted with the design and operation of the ‘traditional’ switch design. Conclusions to the work show that the novel concept meets all the functional requirements whilst exceeding the capabilities of the existing designs in most non-functional requirement areas

    Rethinking rail track switches for fault tolerance and enhanced performance

    Get PDF
    © 2016, © IMechE 2016. Railway track switches, commonly referred to as ‘turnouts’ or ‘points,’ are a necessary element of any rail network. However, they often prove to be performance-limiting elements of networks. A novel concept for rail track switching has been developed as part of a UK research project with substantial industrial input. The concept is currently at the demonstrator phase, with a scale (384 mm) gauge unit operational in a laboratory. Details of the novel arrangement and concept are provided herein. This concept is considered as an advance on the state of the art. This paper also presents the work that took place to develop the concept. Novel contributions include the establishment of a formal set of functional requirements for railway track switching solutions, and a demonstration that the current solutions do not fully meet these requirements. The novel design meets the set of functional requirements for track switching solutions, in addition to offering several features that the current designs are unable to offer, in particular to enable multi-channel actuation and rail locking, and provide a degree of fault tolerance. This paper describes the design and operation of this switching concept, from requirements capture and solution generation through to the construction of the laboratory demonstrator. The novel concept is contrasted with the design and operation of the ‘traditional’ switch design. Conclusions to the work show that the novel concept meets all the functional requirements whilst exceeding the capabilities of the existing designs in most non-functional requirement areas

    Improving the performance of railway track-switching through the introduction of fault tolerance

    Get PDF
    In the future, the performance of the railway system must be improved to accommodate increasing passenger volumes and service quality demands. Track switches are a vital part of the rail infrastructure, enabling traffic to take different routes. All modern switch designs have evolved from a design first patented in 1832. However, switches present single points of failure, require frequent and costly maintenance interventions, and restrict network capacity. Fault tolerance is the practice of preventing subsystem faults propagating to whole-system failures. Existing switches are not considered fault tolerant. This thesis describes the development and potential performance of fault-tolerant railway track switching solutions. The work first presents a requirements definition and evaluation framework which can be used to select candidate designs from a range of novel switching solutions. A candidate design with the potential to exceed the performance of existing designs is selected. This design is then modelled to ascertain its practical feasibility alongside potential reliability, availability, maintainability and capacity performance. The design and construction of a laboratory scale demonstrator of the design is described. The modelling results show that the performance of the fault tolerant design may exceed that of traditional switches. Reliability and availability performance increases significantly, whilst capacity gains are present but more marginal without the associated relaxation of rules regarding junction control. However, the work also identifies significant areas of future work before such an approach could be adopted in practice
    corecore