5,811 research outputs found

    On Offline Evaluation of Vision-based Driving Models

    Get PDF
    Autonomous driving models should ideally be evaluated by deploying them on a fleet of physical vehicles in the real world. Unfortunately, this approach is not practical for the vast majority of researchers. An attractive alternative is to evaluate models offline, on a pre-collected validation dataset with ground truth annotation. In this paper, we investigate the relation between various online and offline metrics for evaluation of autonomous driving models. We find that offline prediction error is not necessarily correlated with driving quality, and two models with identical prediction error can differ dramatically in their driving performance. We show that the correlation of offline evaluation with driving quality can be significantly improved by selecting an appropriate validation dataset and suitable offline metrics. The supplementary video can be viewed at https://www.youtube.com/watch?v=P8K8Z-iF0cYComment: Published at the ECCV 2018 conferenc

    Arguing Machines: Human Supervision of Black Box AI Systems That Make Life-Critical Decisions

    Full text link
    We consider the paradigm of a black box AI system that makes life-critical decisions. We propose an "arguing machines" framework that pairs the primary AI system with a secondary one that is independently trained to perform the same task. We show that disagreement between the two systems, without any knowledge of underlying system design or operation, is sufficient to arbitrarily improve the accuracy of the overall decision pipeline given human supervision over disagreements. We demonstrate this system in two applications: (1) an illustrative example of image classification and (2) on large-scale real-world semi-autonomous driving data. For the first application, we apply this framework to image classification achieving a reduction from 8.0% to 2.8% top-5 error on ImageNet. For the second application, we apply this framework to Tesla Autopilot and demonstrate the ability to predict 90.4% of system disengagements that were labeled by human annotators as challenging and needing human supervision

    WiseMove: A Framework for Safe Deep Reinforcement Learning for Autonomous Driving

    Full text link
    Machine learning can provide efficient solutions to the complex problems encountered in autonomous driving, but ensuring their safety remains a challenge. A number of authors have attempted to address this issue, but there are few publicly-available tools to adequately explore the trade-offs between functionality, scalability, and safety. We thus present WiseMove, a software framework to investigate safe deep reinforcement learning in the context of motion planning for autonomous driving. WiseMove adopts a modular learning architecture that suits our current research questions and can be adapted to new technologies and new questions. We present the details of WiseMove, demonstrate its use on a common traffic scenario, and describe how we use it in our ongoing safe learning research

    Evolving controllers for simulated car racing

    Get PDF
    This paper describes the evolution of controllers for racing a simulated radio-controlled car around a track, modelled on a real physical track. Five different controller architectures were compared, based on neural networks, force fields and action sequences. The controllers use either egocentric (first person), Newtonian (third person) or no information about the state of the car (open-loop controller). The only controller that is able to evolve good racing behaviour is based on a neural network acting on egocentric inputs
    • …
    corecore