1 research outputs found

    ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ์œ„ํ•œ ์ ์‘ํ˜• ๊ด€์‹ฌ ์˜์—ญ ๊ธฐ๋ฐ˜ ํšจ์œจ์  ํ™˜๊ฒฝ ์ธ์ง€

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์ด๊ฒฝ์ˆ˜.์ „ ์„ธ๊ณ„์ ์œผ๋กœ ์ž๋™์ฐจ ์‚ฌ๊ณ ๋กœ 120 ๋งŒ ๋ช…์ด ์‚ฌ๋งํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ตํ†ต ์‚ฌ๊ณ ์— ๋Œ€ํ•œ ๊ธฐ๋ณธ์ ์ธ ์˜ˆ๋ฐฉ ์กฐ์น˜์— ๋Œ€ํ•œ ๋…ผ์˜๊ฐ€ ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ํ†ต๊ณ„ ์ž๋ฃŒ์— ๋”ฐ๋ฅด๋ฉด ๊ตํ†ต ์‚ฌ๊ณ ์˜ 94 %๊ฐ€ ์ธ์  ์˜ค๋ฅ˜์— ๊ธฐ์ธํ•œ๋‹ค. ๋„๋กœ ์•ˆ์ „ ํ™•๋ณด์˜ ๊ด€์ ์—์„œ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ ์€ ์ด๋Ÿฌํ•œ ์‹ฌ๊ฐํ•œ ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๋Š” ๋ฐฉ๋ฒ•์œผ๋กœ์จ ๊ด€์‹ฌ์ด ๋†’์•„์กŒ์œผ๋ฉฐ, ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์„ ํ†ตํ•ด ๋‹จ๊ณ„์  ์ƒ์šฉํ™”๊ฐ€ ์ด๋ฃจ์–ด์ง€๊ณ  ์žˆ๋‹ค. ์ฃผ์š” ์ž๋™์ฐจ ์ œ์กฐ์—…์ฒด๋Š” ์ด๋ฏธ ์ฐจ์„  ์œ ์ง€ ๋ณด์กฐ์žฅ์น˜ (LKAS: Lane Keeping Assistant System), ์ ์‘ํ˜• ์ˆœํ•ญ ์ œ์–ด ์‹œ์Šคํ…œ(ACC: Adaptive Cruise Control), ์ฃผ์ฐจ ๋ณด์กฐ ์‹œ์Šคํ…œ (PAS: Parking Assistance System), ์ž๋™ ๊ธด๊ธ‰ ์ œ๋™์žฅ์น˜ (AEB: Automated Emergency Braking) ๋“ฑ์˜ ์ฒจ๋‹จ ์šด์ „์ž ๋ณด์กฐ ์‹œ์Šคํ…œ (ADAS)์„ ๊ฐœ๋ฐœํ•˜๊ณ  ์ƒ์šฉํ™”ํ•˜์˜€๋‹ค. ๋˜ํ•œ Audi์˜ Audi AI Traffic Jam Pilot, Tesla์˜ Autopilot, Mercedes-Benz์˜ Distronic Plus, ํ˜„๋Œ€์ž๋™์ฐจ์˜ Highway Driving Assist ๋ฐ BMW์˜ Driving Assistant Plus ์™€ ๊ฐ™์€ ๋ถ€๋ถ„ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์ด ์ถœ์‹œ๋˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๋ถ€๋ถ„ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ์—ฌ์ „ํžˆ ์šด์ „์ž์˜ ์ฃผ์˜๊ฐ€ ์ˆ˜๋ฐ˜๋˜์–ด์•ผ ํ•จ์—๋„ ๋ถˆ๊ตฌํ•˜๊ณ , ์•ˆ์ „์„ฑ์„ ํฌ๊ฒŒ ํ–ฅ์ƒ์‹œํ‚ค๋Š” ๋ฐ ํšจ๊ณผ์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ง€์†์ ์œผ๋กœ ๊ทธ ์ˆ˜์š”๊ฐ€ ์ฆ๊ฐ€ํ•˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ ๋ช‡ ๋…„๊ฐ„ ๋งŽ์€ ์ˆ˜์˜ ์ž์œจ์ฃผํ–‰ ์‚ฌ๊ณ ๊ฐ€ ๋ฐœ์ƒํ•˜์˜€์œผ๋ฉฐ, ๊ทธ ๋นˆ๋„์ˆ˜๊ฐ€ ๋น ๋ฅด๊ฒŒ ์ฆ๊ฐ€ํ•˜์—ฌ ์‚ฌํšŒ์ ์œผ๋กœ ์ฃผ๋ชฉ๋ฐ›๊ณ  ์žˆ๋‹ค. ์ฐจ๋Ÿ‰ ์‚ฌ๊ณ ๋Š” ์ธ๋ช… ์‚ฌ๊ณ ์™€ ์ง์ ‘์ ์œผ๋กœ ์—ฐ๊ด€๋˜๊ธฐ ๋•Œ๋ฌธ์— ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‚ฌ๊ณ ๋“ค์€ ์ž์œจ ์ฃผํ–‰ ๊ธฐ์ˆ  ์‹ ๋ขฐ์„ฑ์˜ ์ €ํ•˜๋ฅผ ์•ผ๊ธฐํ•˜์—ฌ ์‚ฌํšŒ์ ์ธ ๋ถˆ์•ˆ๊ฐ์„ ํ‚ค์šด๋‹ค. ์ตœ๊ทผ ์ž์œจ ์ฃผํ–‰ ๊ด€๋ จ ์‚ฌ๊ณ ๋“ค๋กœ ์ธํ•ด, ์ž์œจ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ์˜ ๋ณด์žฅ์ด ๋”์šฑ ๊ฐ•์กฐ๋˜๊ณ  ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™ ์ œ์–ด๋ฅผ ๊ณ ๋ คํ•˜์—ฌ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ ๊ด€์ ์—์„œ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ์„ ์šฐ์„ ์ ์œผ๋กœ ํ™•๋ณดํ•˜๋Š” ์ ‘๊ทผ ๋ฐฉ์‹์„ ์ œ์•ˆํ•œ๋‹ค. ๋˜ํ•œ ์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ  ๊ฐœ๋ฐœ์€ ๋‹จ์ˆœํ•˜๊ฒŒ ์šด์ „์„ ๋Œ€์ฒดํ•˜๋Š” ๊ธฐ์ˆ ์ด ์•„๋‹ˆ๋ผ, ์ฒจ๋‹จ๊ธฐ์ˆ ์˜ ์ง‘์•ฝ ์ฒด๋กœ์จ ์‚ฐ์—…์ ์œผ๋กœ ๋งค์šฐ ํฐ ํŒŒ๊ธ‰๋ ฅ์„ ๊ฐ€์ง„๋‹ค๊ณ  ์ „๋ง๋œ๋‹ค. ํ˜„์žฌ ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ๊ธฐ์กด ์ž๋™์ฐจ ์‚ฐ์—…์˜ ๊ณ ์ „์ ์ธ ํ‹€์—์„œ ํ™•์žฅ๋˜์–ด, ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์˜ ๊ด€์ ์—์„œ ์ฃผ๋„์ ์œผ๋กœ ๊ฐœ๋ฐœ์ด ์ง„ํ–‰๋˜๊ณ  ์žˆ๋‹ค. ์ž์œจ ์ฃผํ–‰์€ ๋‹ค์–‘ํ•œ ๊ธฐ์ˆ ์˜ ๋ณตํ•ฉ์ ์ธ ๊ฒฐํ•ฉ์œผ๋กœ ๊ตฌ์„ฑ๋˜๊ธฐ ๋•Œ๋ฌธ์—, ํ˜„์žฌ ๊ฐ๊ธฐ ๋‹ค๋ฅธ ๋‹ค์–‘ํ•œ ํ™˜๊ฒฝ์—์„œ ๊ฐœ๋ฐœ์ด ์ง„ํ–‰ ์ค‘์ด๋ฉฐ, ์•„์ง ํ‘œ์ค€ํ™”๋˜์–ด ์žˆ์ง€ ์•Š์€ ์‹ค์ •์ด๋‹ค. ๋Œ€๋ถ€๋ถ„ ๊ฐ ๋ชจ๋“ˆ ๋‹จ์œ„์˜ ์ง€์—ฝ์ ์ธ ์„ฑ๋Šฅํ–ฅ์ƒ์„ ์ถ”๊ตฌํ•˜๋Š” ๊ฒฝํ–ฅ์ด ์žˆ์œผ๋ฉฐ, ๊ตฌ์„ฑ ๋ชจ๋“ˆ ๊ฐ„ ๊ด€๊ณ„๊ฐ€ ๊ณ ๋ ค๋œ ์ „์ฒด ์‹œ์Šคํ…œ ๋‹จ์œ„์˜ ์ ‘๊ทผ๋ฐฉ์‹์€ ๋ฏธํกํ•œ ์‹ค์ •์ด๋‹ค. ์„ธ๋ถ€ ๋ชจ๋“ˆ ๋‹จ์œ„์˜ ์ง€์—ฝ์ ์ธ ์—ฐ๊ตฌ ๊ฐœ๋ฐœ์€ ํ†ตํ•ฉ ์‹œ, ๋ชจ๋“ˆ ๊ฐ„ ์ƒํ˜ธ์ž‘์šฉ์œผ๋กœ ์ธํ•œ ์˜ํ–ฅ์œผ๋กœ ์‹œ์Šคํ…œ ๊ด€์ ์—์„œ ์ ์ ˆํ•œ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์–ด๋ ค์šธ ์ˆ˜ ์žˆ๋‹ค. ๊ฐ ๋ชจ๋“ˆ์˜ ์„ฑ๋Šฅ๋งŒ์„ ๊ณ ๋ คํ•œ ์ผ๋ฐฉ์ ์ธ ๋ฐฉํ–ฅ์˜ ์—ฐ๊ตฌ๋Š” ํ•œ๊ณ„๊ฐ€ ๋ช…ํ™•ํ•˜๋ฉฐ, ์—ฐ๊ด€๋œ ๋ชจ๋“ˆ๋“ค์˜ ํŠน์„ฑ์„ ๊ณ ๋ คํ•˜์—ฌ ๋ฐ˜์˜ํ•  ํ•„์š”๊ฐ€ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ž์œจ์ฃผํ–‰ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ๊ด€์ ์—์„œ, ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ์šฐ์„ ์ ์œผ๋กœ ํ™•๋ณดํ•˜๊ณ  ์ „์ฒด ์„ฑ๋Šฅ์„ ๊ทน๋Œ€ํ™”ํ•˜๋Š” ํšจ๊ณผ์ ์ธ ์ ‘๊ทผ ๋ฐฉ์‹์„ ๋ณธ ์—ฐ๊ตฌ์—์„œ ์ œ์•ˆํ•˜๊ณ ์ž ํ•œ๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์ ์ด๊ณ  ๋†’์€ ์„ฑ๋Šฅ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์ „์ฒด ์‹œ์Šคํ…œ ์ž‘๋™ ์ธก๋ฉด์—์„œ ๊ตฌ์„ฑ๋œ ๋ชจ๋“ˆ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ํšจ์œจ์ ์ธ ํ™˜๊ฒฝ ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š”๋ฐ ์ค‘์ ์„ ๋‘”๋‹ค. ์‹ค์งˆ์ ์ธ ๊ด€์ ์—์„œ ํšจ๊ณผ์ ์ธ ์ •๋ณด ์ฒ˜๋ฆฌ๋ฅผ ์ˆ˜ํ–‰ํ•˜๊ณ  ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ์ ์‘ํ˜• ๊ด€์‹ฌ ์˜์—ญ (ROI) ๊ธฐ๋ฐ˜ ๊ณ„์‚ฐ ๋ถ€ํ•˜ ๊ด€๋ฆฌ ์ „๋žต์„ ์ œ์•ˆํ•œ๋‹ค. ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™ ํŠน์„ฑ, ๋„๋กœ ์„ค๊ณ„ ํ‘œ์ค€, ์ถ”์›” ๋ฐ ์ฐจ์„  ๋ณ€๊ฒฝ๊ณผ ๊ฐ™์€ ์ฃผ๋ณ€ ์ฐจ๋Ÿ‰์˜ ์ฃผํ–‰ ํŠน์„ฑ์ด ์ ์‘ํ˜• ROI ์„ค๊ณ„ ๋ฐ ์ฃผํ–‰ ์ƒํ™ฉ์— ๋”ฐ๋ฅธ ์˜์—ญ ํ™•์žฅ์— ๋ฐ˜์˜๋œ๋‹ค. ๋˜ํ•œ, ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์‹ค์งˆ์ ์ธ ์•ˆ์ „์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ROI ์„ค๊ณ„์—์„œ ์ž์œจ ์ฃผํ–‰ ์ œ์–ด๋ฅผ ์œ„ํ•œ ๊ฑฐ๋™ ๊ณ„ํš ๊ฒฐ๊ณผ๊ฐ€ ๊ณ ๋ ค๋œ๋‹ค. ๋ณด๋‹ค ๋„“์€ ์ฃผ๋ณ€ ์˜์—ญ์— ๋Œ€ํ•œ ํ™˜๊ฒฝ ์ •๋ณด๋ฅผ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•ด ๋ผ์ด๋‹ค ๋ฐ์ดํ„ฐ๋Š” ์„ค๊ณ„๋œ ROI๋ณ„๋กœ ๋ถ„๋ฅ˜๋˜๋ฉฐ, ์˜์—ญ๋ณ„ ์ค‘์š”๋„์— ๋”ฐ๋ผ ์—ฐ์‚ฐ ๊ณผ์ •์ด ๋ถ„๋ฆฌ๋˜์–ด ์ˆ˜ํ–‰๋œ๋‹ค. ๋ชฉํ‘œ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ชจ๋“ˆ ๋ณ„ ์—ฐ์‚ฐ ์‹œ๊ฐ„์ด ์ธก์ •๋œ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜์œผ๋กœ ํ†ต๊ณ„์ ์œผ๋กœ ๋ถ„์„๋œ๋‹ค. ์šด์ „์ž์˜ ๋ฐ˜์‘ ์‹œ๊ฐ„, ์‚ฐ์—… ํ‘œ์ค€, ๋Œ€์ƒ ํ•˜๋“œ์›จ์–ด ์‚ฌ์–‘ ๋ฐ ์„ผ์„œ ์„ฑ๋Šฅ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฒฐ์ •๋œ ์‹œ์Šคํ…œ ์„ฑ๋Šฅ ์กฐ๊ฑด์„ ๊ณ ๋ คํ•˜์—ฌ, ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•˜๊ธฐ ์œ„ํ•œ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์˜ ์ ์ ˆํ•œ ์ƒ˜ํ”Œ๋ง ์ฃผ๊ธฐ๊ฐ€ ์ •์˜๋œ๋‹ค. ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ๋‹ค์ค‘ ์„ ํ˜• ํšŒ๊ท€ ๋ถ„์„์€ ์ธ์‹ ๋ชจ๋“ˆ์„ ๊ตฌ์„ฑํ•˜๋Š” ํ•จ์ˆ˜ ๋ณ„ ์‹คํ–‰ ์‹œ๊ฐ„์„ ์˜ˆ์ธกํ•˜๊ธฐ ์œ„ํ•ด ์ ์šฉ๋˜๋ฉฐ, ์•ˆ์ •์ ์ธ ์‹ค์‹œ๊ฐ„ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•˜๊ธฐ ์œ„ํ•ด ์ ์‘ํ˜• ROI๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ์ž์œจ ์ฃผํ–‰ ์•ˆ์ „์— ํ•„์š”ํ•œ ๋ฐ์ดํ„ฐ๋ฅผ ์„ ํƒ์ ์œผ๋กœ ๋ถ„๋ฅ˜ํ•˜์—ฌ ์—ฐ์‚ฐ ๋ถ€ํ•˜๊ฐ€ ๊ฐ์ถ•๋œ๋‹ค. ์—ฐ์‚ฐ ๋ถ€ํ•˜ ํ‰๊ฐ€ ๊ด€๋ฆฌ์—์„œ ํ™˜๊ฒฝ ์ธ์ง€ ๋ชจ๋“ˆ๊ณผ ์ „์ฒด ์‹œ์Šคํ…œ์˜ ์—ฐ์‚ฐ ๋ถ€ํ•˜๊ฐ€ ๋Œ€์ƒ ํ™˜๊ฒฝ์—์„œ์˜ ์ ์ ˆ์„ฑ์„ ํ‰๊ฐ€ํ•˜๊ณ , ์—ฐ์‚ฐ ๋ถ€ํ•˜ ๊ด€๋ฆฌ์— ๋ฌธ์ œ๊ฐ€ ์žˆ์„ ๋•Œ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ๊ฑฐ๋™์„ ์ œํ•œํ•˜์—ฌ ์‹œ์Šคํ…œ ์•ˆ์ •์„ฑ์„ ์œ ์ง€ํ•จ์œผ๋กœ์จ ์ฐจ๋Ÿ‰ ์•ˆ์ „์„ฑ์„ ํ™•๋ณดํ•œ๋‹ค. ์ œ์•ˆ๋œ ์ž์œจ์ฃผํ–‰ ์ธ์ง€ ์ „๋žต ๋ฐ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ์„ฑ๋Šฅ์€ ๋ฐ์ดํ„ฐ ๊ธฐ๋ฐ˜ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๋ฐ ์‹ค์ฐจ ์‹คํ—˜์„ ํ†ตํ•ด ๊ฒ€์ฆ๋˜์—ˆ๋‹ค. ์‹คํ—˜ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์ œ์•ˆ๋œ ํ™˜๊ฒฝ ์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ž์œจ ์ฃผํ–‰ ์‹œ์Šคํ…œ์„ ๊ตฌ์„ฑํ•˜๋Š” ๋ชจ๋“ˆ ๊ฐ„์˜ ์ƒํ˜ธ ์ž‘์šฉ์„ ๊ณ ๋ คํ•˜์—ฌ ๋„์‹ฌ ๋„๋กœ ํ™˜๊ฒฝ์—์„œ ์ž์œจ ์ฃผํ–‰ ์ฐจ๋Ÿ‰์˜ ์•ˆ์ „์„ฑ๊ณผ ์‹œ์Šคํ…œ์˜ ์•ˆ์ •์ ์ธ ์„ฑ๋Šฅ์„ ๋ณด์žฅํ•  ์ˆ˜ ์žˆ์Œ์„ ํ™•์ธํ•˜์˜€๋‹ค.Since annually 1.2 million people die from car crashes worldwide, discussions about fundamental preventive measures for traffic accidents are taking place. According to the statistical survey, 94 percent of all traffic accidents are caused by human error. From the perspective of securing road safety, automated driving technology became interesting as a way to solve this serious problem, and its commercialization was considered through a step-by-step application through research and development. Major carmakers already have developed and commercialized advanced driver assistance systems (ADAS), such as lane keeping assistance system (LKAS), adaptive cruise control (ACC), parking assistance system (PAS), automated emergency braking (AEB), and so on. Furthermore, partially automated driving systems are being installed in vehicles and released by carmakers. Audi AI Traffic Jam Pilot (Audi), Autopilot (Tesla), Distronic Plus (Mercedes-Benz), Highway Driving Assist (Hyundai Motor Company), and Driving Assistant Plus (BMW) are typical released examples of the partially automated driving system. These released partially automated driving systems are still must be accompanied by driver attention. Nevertheless, it is proving to be effective in significantly improving safety. In recent years, several automated driving accidents have occurred, and the frequency is rapidly increasing and attracting social attention. Since vehicle accidents are directly related to human casualty, accidents of automated vehicles cause social insecurity by causing a decrease in the reliability of automated driving technology. Due to recent automated driving-related accidents, the safety of the automated vehicle has been emphasized more. Therefore, in this study, we propose an approach to secure vehicle safety in terms of the entire system in consideration of the behavior control of the automated driving vehicle. In addition, the development of automated driving is not merely a replacement technology for driving, but it is expected to have an industrial assembly as integration of high technology. Currently, automated driving systems have been extended from the conventional framework of the existing automotive industry, and are being developed in various fields. Since automated driving is composed of a complex combination of various technologies, development is currently underway in various conditions and has not been standardized yet. Most developments tend to pursue local performance improvement in each module unit, and the overall system unit approaches considering the relationship between component modules is insufficient. Local research and development at the submodule level can be challenging to achieve adequate performance from a system-level due to the effects of module interaction in terms of system integration perspective. The one-way approach that considers only the performance of each module has its limitations. To overcome this problem, it is necessary to consider the characteristics of the modules involved. This dissertation focuses on developing an efficient environment perception algorithm by considering the interaction between configured modules in terms of entire system operation to secure the stable and high performance of an automated driving system. In order to perform effective information processing and secure vehicle safety from a practical perspective, we propose an adaptive ROI based computational load management strategy. The motion characteristics of the subject vehicle, road design standards, and driving tasks of the surrounding vehicles, such as overtaking, and lane change, are reflected in the design of adaptive ROI, and the expansion of the area according to the driving task is considered. Additionally, motion planning results for automated driving are considered in the ROI design in order to guarantee the practical safety of the automated vehicle. In order to secure reasonable and appropriate environment information for the wider areas, lidar sensor data is classified by the designed ROI, and separated processing is conducted according to area importance. Based on the driving data, the calculation time of each module constituting the target system is statistically analyzed. In consideration of the system performance constraint determined by using human reaction time and industry standards, target hardware specification and the performance of sensor, the appropriate sampling time for automated driving system is defined to enhance safety. The data-based multiple linear regression is applied to predict the computation time by each function constituting perception module, and the computational load reduction is applied sequentially by selecting the data essential for automated driving safety based on adaptive ROI to secure the stable real-time execution performance of the system. In computational load assessment, it evaluates whether the computational load of the environmental perception module and entire system are appropriate and restricts the vehicle behavior when there is a problem in the computational load management to ensure vehicle safety by maintaining system stability. The performance of the proposed strategy and algorithms is evaluated through driving data-based simulation and actual vehicle tests. Test results show that the proposed environment recognition algorithm, which considers the interactions between the modules that make up the automated driving system, guarantees the safety of automated vehicle and reliable performance of system in an urban environment scenario.Chapter 1 Introduction 1 1.1. Background and Motivation 1 1.2. Previous Researches 6 1.3. Thesis Objectives 11 1.4. Thesis Outline 13 Chapter 2 Overall Architecture 14 2.1. Automated Driving Architecture 14 2.2. Test Vehicle Configuration 19 Chapter 3 Design of Adaptive ROI and Processing 21 3.1. ROI Definition 25 3.1.1. ROI Design for Normal Driving Condition 30 3.1.2. ROI Design for Lane Change 50 3.1.3. ROI Design for Intersection 56 3.2. Data Processing based on Adaptive ROI 62 3.2.1. Point Cloud Categorization by Adaptive ROI 63 3.2.2. Separated Voxelization 66 3.2.3. Separated Clustering 70 Chapter 4 Environment Perception Algorithm for Automated Driving 75 4.1. Time Delay Compensation of Environment Sensor 77 4.1.1. Algorithm Structure of Time Delay Estimation and Compensation 78 4.1.2. Time Delay Compensation Algorithm 79 4.1.3. Analysis of Processing Delay 84 4.1.4. Test Data based Open-loop Simulation 91 4.2. Environment Representation 96 4.2.1. Static Obstacle Map Construction 98 4.2.2. Lane and Road Boundary Detection 100 4.3. Multiple Object State Estimation and Tracking based on Geometric Model-Free Approach 107 4.3.1. Prediction of Geometric Model-Free Approach 109 4.3.2. Track Management 111 4.3.3. Measurement Update 112 4.3.4. Performance Evaluation via vehicle test 114 Chapter 5 Computational Load Management 117 5.1. Processing Time Analysis of Driving Data 121 5.2. Processing Time Estimation based on Multiple Linear Regression 128 5.2.1. Clustering Processing Time Estimation 129 5.2.2. Multi Object Tracking (MOT) Processing Time Estimation 138 5.2.3. Validation through Data-based Simulation 146 5.3. Computational Load Management 149 5.3.1. Sequential Processing to Computation Load Reduction 151 5.3.2. Restriction of Driving Control 154 5.3.3. Validation through Data-based Simulation 159 Chapter 6 Vehicle Tests based Performance Evaluation 163 6.1. Test-data based Simulation 164 6.2. Vehicle Tests: Urban Automated Driving 171 6.2.1. Test Configuration 171 6.2.2. Motion Planning and Vehicle Control 172 6.2.3. Vehicle Tests Results 174 Chapter 7 Conclusions and Future Works 184 Bibliography 188 Abstract in Korean 200Docto
    corecore