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Abstract

Efficient Environment Perception based
on Adaptive ROI for Vehicle Safety of
Automated Driving Systems

Sungyoul Park
School of Mechanical and Aerospace Engineering

The Graduate School

Seoul National University

Since annually 1.2 million people die from car crashes worldwide,
discussions about fundamental preventive measures for traffic accidents are
taking place. According to the statistical survey, 94 percent of all traffic
accidents are caused by human error. From the perspective of securing road
safety, automated driving technology became interesting as a way to solve this
serious problem, and its commercialization was considered through a step-by-
step application through research and development. Major carmakers already
have developed and commercialized advanced driver assistance systems
(ADAS), such as lane keeping assistance system (LKAS), adaptive cruise
control (ACC), parking assistance system (PAS), automated emergency
braking (AEB), and so on. Furthermore, partially automated driving systems
are being installed in vehicles and released by carmakers. Audi Al Traffic Jam
Pilot (Audi), Autopilot (Tesla), Distronic Plus (Mercedes-Benz), Highway
Driving Assist (Hyundai Motor Company), and Driving Assistant Plus (BMW)
are typical released examples of the partially automated driving system. These
released partially automated driving systems are still must be accompanied by
driver attention. Nevertheless, it is proving to be effective in significantly
improving safety.



In recent years, several automated driving accidents have occurred, and the
frequency is rapidly increasing and attracting social attention. Since vehicle
accidents are directly related to human casualty, accidents of automated
vehicles cause social insecurity by causing a decrease in the reliability of
automated driving technology. Due to recent automated driving-related
accidents, the safety of the automated vehicle has been emphasized more.
Therefore, in this study, we propose an approach to secure vehicle safety in
terms of the entire system in consideration of the behavior control of the
automated driving vehicle.

In addition, the development of automated driving is not merely a
replacement technology for driving, but it is expected to have an industrial
assembly as integration of high technology. Currently, automated driving
systems have been extended from the conventional framework of the existing
automotive industry, and are being developed in various fields. Since
automated driving is composed of a complex combination of various
technologies, development is currently underway in various conditions and has
not been standardized yet. Most developments tend to pursue local performance
improvement in each module unit, and the overall system unit approaches
considering the relationship between component modules is insufficient. Local
research and development at the submodule level can be challenging to achieve
adequate performance from a system-level due to the effects of module
interaction in terms of system integration perspective. The one-way approach
that considers only the performance of each module has its limitations. To
overcome this problem, it is necessary to consider the characteristics of the
modules involved.

This dissertation focuses on developing an efficient environment perception
algorithm by considering the interaction between configured modules in terms
of entire system operation to secure the stable and high performance of an
automated driving system. In order to perform effective information processing
and secure vehicle safety from a practical perspective, we propose an adaptive
ROl based computational load management strategy. The motion
characteristics of the subject vehicle, road design standards, and driving tasks
of the surrounding vehicles, such as overtaking, and lane change, are reflected
in the design of adaptive ROI, and the expansion of the area according to the



driving task is considered. Additionally, motion planning results for automated
driving are considered in the ROI design in order to guarantee the practical
safety of the automated vehicle. In order to secure reasonable and appropriate
environment information for the wider areas, lidar sensor data is classified by
the designed ROI, and separated processing is conducted according to area
importance. Based on the driving data, the calculation time of each module
constituting the target system is statistically analyzed. In consideration of the
system performance constraint determined by using human reaction time and
industry standards, target hardware specification and the performance of sensor,
the appropriate sampling time for automated driving system is defined to
enhance safety. The data-based multiple linear regression is applied to predict
the computation time by each function constituting perception module, and the
computational load reduction is applied sequentially by selecting the data
essential for automated driving safety based on adaptive ROl to secure the
stable real-time execution performance of the system. In computational load
assessment, it evaluates whether the computational load of the environmental
perception module and entire system are appropriate and restricts the vehicle
behavior when there is a problem in the computational load management to
ensure vehicle safety by maintaining system stability.

The performance of the proposed strategy and algorithms is evaluated
through driving data-based simulation and actual vehicle tests. Test results
show that the proposed environment recognition algorithm, which considers the
interactions between the modules that make up the automated driving system,
guarantees the safety of automated vehicle and reliable performance of system
in an urban environment scenario.

Keywords: Automated driving system, Adaptive ROI, Lidar processing,
Environment perception, Vehicle safety, Computational load management

Student Number: 2014-22484
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Chapter 1 Introduction

1.1. Background and Motivation

Worldwide, 1.2 million people are killed in car accidents every year, with the
number of road traffic deaths rising steadily [WHO,'15]. There were 37,461
people killed in crashes on U.S. roadways during 2016, a 5.6% increase over
the previous year [NHTSA,'17]. Besides, road traffic injuries are the eighth
leading cause of death for all age groups. More people died from road traffic
injuries than from HIV/AIDS, tuberculosis, or diarrhoeal diseases [WHO,'18].
As the increase in traffic accidents on roads causes serious social problems,
then discussions about fundamental preventive measures for traffic accidents
are taking place.

According to the statistical survey from national highway traffic safety
administration (NHTSA) in the U.S., 94 percent of all traffic accidents are
caused by human error. Among the accidents caused by human error, the
recognition errors accounted for 41 percent (+2.1%), decision errors 33 percent
(£3.7%), and the performance errors 11 percent (£2.7%) of the crashes
[Singh,'15b]. Moreover, during many types of collision accidents, most drivers
do not attempt to avoid crashes due to unawareness of collision risks
[Tideman,'07]. Furthermore, it is estimated that 5~35 percent of all road deaths
are reported as alcohol-related [WHO,'18].

From the perspective of securing road safety, automated driving technology
1



became attractive as a way to solve this problem, and its commercialization was
considered through a step-by-step application through research and
development. Major carmakers already have developed and commercialized
advanced driver assistance systems (ADAS), such as lane keeping assistance
system (LKAS), lane change assistance (LCA), adaptive cruise control (ACC),
parking assistance system (PAS), automated emergency braking (AEB), vehicle
stability control (VSC), blind spot intervention (BSI) and so forth.
[Hoedemaeker,'98, Bishop,'00, Tingvall,'00, Kato,'02, Netto,'04, Tideman,'07,
Naranjo,'08, Moon,'09, Gordon,'10, Kastner,'11, Zhang,'11].

Furthermore, partially automated driving systems have been released by
carmakers. Audi Al Traffic Jam Pilot (Audi), Autopilot (Tesla), Distronic Plus
(Mercedes-Benz), and Highway Driving Assist (Hyundai Motor Company),
and Driving Assistant Plus (BMW) are typical released examples of the
partially automated driving system [Brenner,'18]. These released partially self-
driving systems are still must be accompanied by driver attention. Nevertheless,
it is proving to be effective in significantly improving safety.

The primary issue in terms of the advancement and commercialization of
automated driving is the accurate and rapid recognition performance of the
surrounding environment and rational decision based on it. Most of the self-
driving car accidents in recent years have proved to be cognitive performance
problems, which is the reason why they support them. To improve environment
perception performance, it may be the ultimate solution to mount many sensors
and to fuse much information quickly, but there are practical limitations in
terms of cost. In terms of the commercialization of automated vehicles, it is

2



necessary to consider the hardware capability and cost realistically. Therefore,
an effective and efficient approach is required in the process of applying the
sensor for providing high-precision environment information in addition to the
sensor already in mass production.

This study focuses on the lidar sensor, which is emerging as the core of
environment awareness for automated driving in the current sensor technology
level. Lidar is a product of high-level optical technology and can improve
recognition performance with higher accuracy and precision compared to
conventional environment sensors. Conventional cameras and radars have
sufficient sensing capabilities for the purpose of applying ADAS, but not
enough to be applied to automated driving systems of level 3 and above. Lidar
is currently less practical in terms of production cost because it is difficult to
mass-produce. It was assessed that lidar is challenging to commercialize
because it requires considerable computational resources. However, due to
advances in technology, the price of lidar has gradually dropped, and although
still classified as an expensive sensor, it can be installed in the Audi A8 2018
model [Zhao,'19]. Although it is currently used to provide environmental
sensing for partial front areas due to cost issues, the coverage and number of
applications are expected to increase gradually. Therefore, perception
technology using lidar is not only a medium-to-long-term prior technology but
also needs to be applied as a technology to be applied in the present and near
future.

As technology advances, more and more data can be obtained with sensors,
the amount of computation increases exponentially. Since point cloud

3



processing is performed in consideration of the correlation between each point,
as the number increases, the computational complexity can also be considered
proportional [Asvadi,'16]. Because the amount of data and the correlation
between the data vary depending on the sensing situation, there is a
considerable variation in the data size that must be processed every moment. It
causes a considerable variation in the computation. It can be solved simply by
securing high-performance hardware that can stably handle the most substantial
amount of data that can be acquired, but this is not a suitable solution due to the
high cost. Thus, a realistic approach is needed to solve this problem through
optimization in the system operating environment. For the perception algorithm
to run properly, the variation in the amount of data to be processed must be
reasonably selected and reduced, even with changes in the sensed environment.

In addition, the development of automated driving is not simply a
replacement technology for driving, but it is expected to have a industrial
assembly as an integration of high technology. Currently, automated driving
systems have been extended from the conventional framework of the existing
automotive industry, and are being developed in various fields. Since automated
driving is composed of a complex combination of various technologies,
development is currently underway in various different conditions and has not
been standardized yet. Most developments tend to pursue local performance
improvement in each module unit, and the overall system unit approach
considering the relationship between component modules is insufficient. Local
research and development at the submodule level can be difficult to achieve
adequate performance from a system level due to the effects of module

4



interaction in terms of system integration perspective. The one-way approach
that considers only the performance of each module has its limitations. To
overcome this problem, it is necessary to consider the characteristics of the
modules involved.

Therefore, this dissertation focuses on developing an efficient perception
algorithm to secure the stable performance and vehicle safety of an automated
driving system in terms of the practical point of view, which gradually develops
from partially automated driving to fully automated driving technology

development.



1.2. Previous Researches

A number of studies have been introduced for the development of an
automated driving algorithm. Zhu et al. designed control system for parking of
an automated vehicle and verified by implementing it on a truck to conduct
demonstration [Zhu,'06]. Kim et al. proposed a fully automated driving
algorithm on complex urban roads with lidar, vision, and GPS/map based
environment representation with guaranteed safety [Kim,'15a]. Jo et al. applies
distributed system architecture to the autonomous driving system, to obtain
reduction of the computational complexity of the entire system, fault-tolerant
characteristics, and modularity of the system [Jo,'14]. Bertha Benz proposed
vison and radar-based perception, digital road maps and video-based self-
localization, as well as motion planning in complex urban scenarios and
verified through vehicle test in fully autonomous manner equipped with close-
to-production sensor hardware [Ziegler,'14]

Comprehensive and precise environment perception is the basis for safe and
comfortable autonomous driving in urban complex situations [Vanholme,'13].
To improve environment recognition performance, various sensors such as
radar [Hutchison,'10, Ziegler,'14, Giese,'17], lidar [Borcs,'17, Magnier,'17,
Moras,'11, Salti,'14], monocular vision [Premebida,'07, Hadsell,'09,
Sivaraman,'13, Ren,'15], stereo vision [Bertozzi,'00, Kaempchen,'02, Oniga,'10,
Li,'18], ultrasonic sensor [Satonaka,'06, Adarsh,'16], around view monitoring

(AVM) camera [Jo,'15, Kim,'16, Park,'16, Lee,'17] have been studied to



recognize the environment situation for ADAS or automated driving system.
Among the environment sensors for automated driving systems, lidar plays
the most crucial role in high-level automated driving due to the high resolution
and accuracy of distance. Also, lidar has been widely used for high-definition
map (HD Map) construction and map-based localization [Bosse,'09,
Wolcott,'14, Hata,'14a, Hata,'14b], simultaneous localization and mapping
(SLAM) [Hess,'16], detection and tracking of moving objects (DATMO) and
object recognition [Asvadi,'16, Wojke,'12, Feng,'18, Gao,'18]. Fuerstenberg et
al. proposed pedestrian detection algorithm to improve object tracking and
classification performance by considering the distance and reflectivity of lidar
[Fuerstenberg,'04]. A lot of studies of model based object tracking algorithms
using lidar sensor have been proposed [Mendes,'04, Ye,'16, Cho,'14, Zhang,'17].
The huge volumes and complexity of lidar data are to be significant
challenges for data processing as the limitation of the computing hardware.
With conventional sequence algorithms, massive point cloud processing is to
be time-consuming because the processing is computationally intensive and
iterative [Yang,'13, Wu,'11, Asvadi,'16]. Thus, the development of alternative
solutions is urgently needed in practical applications. Various optimization
techniques and algorithms have been proposed to improve the performance of
lidar point cloud processing [Elseberg,'l1, Isenburg,'06, Han,'09]. Some of
those, parallel processing, is to be a potential lidar processing solution [Liu,'12,
Bedkowski,'13]. Cao et al. proposed a data processing structure by integrating
parallel computing based on efficient network topology to improve the
processing efficiency [Cao,'15]. However, these approaches are typically
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designed about the parallel architecture of target systems such as multi-core
processors, GPU, etc. These approaches show better performance indicators
than the conventional processing approach, but it is not practical from the
commercialization point of view since it still requires high hardware
performance.

Due to the significant computational load for vision-processing algorithms
for high-resolution images, various studies have been conducted to simplify or
minimize computations. Benligiray et al. proposed a simple and video-based
lane detection algorithm that uses a fast-vanishing point estimation method in
order to obtain real-time performance. The angle-based elimination of the line
segment reduced the number of features to be processed afterward to make
execution time for each frame stable [Benligiray,'12]. Ding et al. proposed a
vision-based road ROI determination algorithm to detect efficiently road region
using the positional information of a vanishing point and line segment. Road
ROI was first detected, and processing was performed at such determined ROI,
which improved recognition accuracy and calculation efficiency [Ding,'13].
Baek et al. developed an efficient algorithm to set adaptive ROI for detecting
pedestrians in a moving vehicle in order to reduce computation time and
maintain the performance of the conventional method [Baek,'12]. Samejima et
al. proposed the autonomous adaptive ROI selection method with a risk
evaluation of the working condition by an autonomous monitoring robot.
Autonomous ROI selection is realized by the relationship evaluation based on
the gestalt factor. Experiment results confirmed that the reduction of working
time and the number of the concurrence of the error [Samejima,'16]. Grois et al.

8



proposed a method and system for the scalable video coding by presenting a
complexity-aware adaptive spatial ROI SVC pre-filtering scheme. The ROI
SVC visual presentation quality is significantly improved, which can be
especially useful for various resource-limited devices in real-time [Grois,'11].
In many vision-processing studies above, execution time was reduced by
performing a selective operation on variable ROI. This concept of the approach
is applicable to lidar processing for environment perception in a similar way:.
Computing huge amounts of data every cycle is very inefficient in terms of
overall system resource management, and is uneconomical because it requires
high-end hardware to ensure performance. In various research fields,
computational load problem has become an important issue from a practical
point of view. Among the various methods, the key-frame concept that selects
and applies the currently necessary data according to the conditions has been
studied on various topics. Mouragnon et al. presented a application of SFM
techniques to localization and mapping, for a moving car. Their model is built
in real-time with 3D points reconstructed from interest points extracted in
images and matched through the monocular video sequence [Mouragnon,'06].
Kim et al. proposed a robust loop detection method by matching image features
between the incoming image and key-frame images saved in SLAM [Kim,'07].
In text detection, a method has been proposed to efficiently extract the key
frames from the videos based on color moments and then text localization is
done only on the key frame [Singh,'15a]. In this way, the key frame approach
to increase the computational efficiency is effective from a practical point of
view. It is expected that the concept of key frames of images and maps can be

9



similarly applied as ROI concepts to point cloud data processing.

A prediction of the execution time of computer programs is an important but
challenging problem in the community of computer systems. Iverson et al.
proposed a statistical execution time estimation algorithm for use in a
heterogeneous distributed computing environment. This algorithm makes
predictions using past observations of the execution time. These estimates
compensate for the properties of the input data set and the machine type,
without requiring any direct knowledge of the internal operation of the task or
machine [Iverson,'99]. Huang et al. proposed Sparse POlynomial REgression
(SPORE) algorithms that use the automatically extracted features to predict a
computer program’s performance using feature data collected from program
execution on sample inputs [Huang,'00]. Yamamoto et al. propose an execution
time prediction method that combines measurement-based execution time
analysis and simulation-based memory access analysis. They used a
measurement of basic block execution times on a real machine [ Yamamoto,'06].
Regarding these studies, the predicting execution time method through
structural algorithm analysis and actual execution result data can be applied to
lidar processing.

From a considerable amount of literature above, it is possible that various
methods and concepts can be effectively introduced to develop the proposed

environment perception algorithm.
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1.3. Thesis Objectives

This dissertation focuses on developing an efficient environment perception
algorithm by considering the interaction between configured modules in terms
of entire system operation to secure the stable and high performance of an
automated driving system. In order to perform effective information processing
and secure vehicle safety from a practical perspective, we propose an adaptive
ROl based computational load management strategy. The motion
characteristics of the subject vehicle, road design standards, and driving tasks
of the surrounding vehicles, such as overtaking, and lane change, are reflected
in the design of adaptive ROI, and the expansion of the area according to the
driving task of the vehicle is considered. Additionally, motion planning results
for automated driving are considered in the ROI design in order to guarantee
the safety of the automated vehicle. To secure reasonable and appropriate
environment information for the broader areas, point cloud data is classified by
the designed ROI, and separated processing is conducted according to area
importance. Based on the driving data, the calculation time of each module of
the target system is statistically analyzed. In consideration of the system
performance constraint determined by using human reaction time and industry
standards, target hardware specification and the performance of sensor, the
appropriate sampling time for automated driving system is determined to
enhance safety. The data-based multiple linear regression is applied to the

perception module in order to predict the computation time by each function,
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and utilize it to secure the reliable real-time performance of the system by
applying computational load reduction in stages. In addition, it evaluates
whether the computational load of the environmental perception module is
appropriate and restricts the vehicle behavior when there is a problem in the
computational load management to ensure vehicle safety by maintaining
system safety.

Mainly three research issues are considered: processing based on adaptive
ROI, environment perception, and computational load management. In the
remainder of this thesis, we will provide an overview of the overall architecture
of the proposed perception algorithm for automated driving and the
performance evaluation based on experimental results, which show the
effectiveness of the proposed algorithm. The proposed environment perception
algorithm is evaluated through data-based simulation and actual vehicle tests.
Test results show that the proposed environment awareness algorithm, which
considers the interactions between the modules that make up the system,
guarantees the safety of automated vehicle and reliable performance of system

in an urban environment scenario.
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1.4. Thesis Outline

This dissertation is structured in the following manner. The overall
architectures of automated driving and the proposed perception strategy are
described in Chapter 2. Chapter 3 presents the design of adaptive ROI and
separated processing algorithms by ROI. The primary purpose of adaptive ROI
is to properly define the necessary detection areas based on vehicle status and
result of motion planning to ensure driving safety by importance and process
the categorized data by area to achieve both computational efficiency and
accuracy. In Chapter 4, the environment perception algorithms are introduced.
The perception algorithms consist of a sensor delay analysis and compensation,
static obstacle map construction, detection of road facilities, and moving object
tracking and estimation. In Chapter 5, the adaptive ROI based computational
load management in order to prevent the execution timeout of the environment
perception module is described. The processing time estimation of significant
environment recognition functions is designed based on multiple linear
regression by using driving data. Then the processing computational load
management strategy including processing time reduction by applying
sequential processing and restriction of driving condition to achieve real-time
computational reliability has also been proposed and validated. Chapter 6
presents the vehicle experiment results to evaluate the performance. Then the
conclusion which consists the summary and contribution of the proposed

algorithm and future works is presented in Chapter 7.
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Chapter 2 Overall Architecture

2.1. Automated Driving Architecture

The overall architecture of our automated driving system is outlined in
Figure 2.1. For an automated driving system, mainly three research issues are
considered: an environment representation, motion planning, and vehicle
control. Environment representation consists of environment perception and
localization. The environment perception computes boundary and state
information of surrounding objects by processing data obtained from the sensor,
and the localization module conducts global positioning of ego vehicle using
GPS, inertial sensor, and environment information. The results of environment
recognition and vehicle positioning have a direct impact on the performance of
motion planning for appropriate driving. The objective of the motion planning
modules is to derive an optimal path as a function of time by utilizing the
environment representation results. Based on the environment representation
results from the perception module, the moving objects are classified, and
behavior prediction is performed according to the characteristics of the
classified objects. All environment information is represented on the same
plane and is used to redefine the drivable corridor from the initial guess. The
desired longitudinal acceleration and desired path are determined using the

Model Predictive Control (MPC) approach. Safety, dynamics, and actuator
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constraints are simultaneously considered to optimize the desired motion of the
vehicle. The vehicle control module feeds back the pose estimate of the
localization module to guide the vehicle along the planned trajectory.

This study focuses on the environment perception algorithm. The developed
algorithm in this study is implemented in the automated driving system of
Figure 2.1 to perform its role. Figure 2.1 summarizes the main functions, such
as adaptive ROl based processing, computation load management, and
environment representation proposed in this study. The detailed structure of

adaptive ROI based perception can be seen in Figure 2.2.

Restrict Driving Behavior
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Ar Adaptive ROI Environment Motion Vehicle Control Vehicle
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Figure 2.1. Overall architecture of automated driving system.

The proposed algorithm consists of the following three stages: regional
processing, computation load management, and environment perception, as
described in Figure 2.2 by colored blocks. The algorithm proposed in this study
aims at maximizing recognition ability and execution stability by strategically
performing massive data processing through rational ROI design in terms of

entire system perspective.
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In the first stage, the adaptive ROI definition designs an adaptive ROI for
normal driving, lane change, and intersection passing situations. By using lane
geometry obtained from vehicle status information, road design standards, and
vision, the ROl is designed to be flexible and adapt to every situation. Adaptive
ROI-based separated data processing is then performed. Point cloud
classification is the most basic classification process for classifying data by
region. The point clouds classified by ROI are downsizing and clustering
according to ROI importance. Unlike conventional methods that apply
uniformly to the entire data, parameter settings are applied differently for each
important area. As a result, processing performance is maximized while
minimizing distortion or loss of data.

Nevertheless, depending on the operating conditions of the system and the
surrounding environment, there is still a possibility of exceeding the time limit
due to the computational load. Thus, we propose a computational load
assessment method to prevent such a failure. The computational load
management consists of processing time prediction, sequential processing, and
restriction of driving conditions. In processing time prediction, multiple linear
regression is applied to estimate the computation time using real driving data.
We select a model that properly reflects algorithm computation characteristics
and system operating environment characteristics. Using the determined
processing time prediction model for each function, the algorithm determines
whether the algorithm timeout before processing and applies a strategy to

prevent it. Also, to ensure the minimum driving safety of the automated driving
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system, a restriction function that partially limits the driving task or reduces the
top speed is applied.

In Figure 2.3, the process flow of the computational load management
strategy is classified into three colored states. First, it is not necessary to reduce
the computational load because it is determined that the normal operating state
shown in green is sufficient to process all the data obtained through adaptive
ROI-based processing. The computation load reducing state in the blue line
indicates a process in which computational load reduction through stepwise
ROl is applied because the computational load exceeds the allocated resources.
Finally, the restricting driving behavior state, which is marked in red, represents
an extreme situation in which the function is restricted by controlling the
vehicle behavior in order to secure system stability by reducing the system
computational load. In most cases, the system operates with the first and second
states, and the third state is activated when there is not enough computational
load reduction intermittently.

The proposed environment perception stages consist of an analysis of the
characteristics of external environment sensors that are widely used in
automated driving systems, the environment perception algorithms needed for
the motion planning and control process by processing signals, and the
computational load management to ensure real-time reliability of environment
recognition systems for automated driving control.

The stages outlined in this section are described in detail in Chapter 3,

Chapter 4, and Chapter 5, respectively.
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2.2. Test Vehicle Configuration

Automated driving in complex situations, such as urban environments,
requires very accurate, precise, and rapid environment perception ability. In a
motorway environment, it is considered a relatively simple environment
because only vehicles that drive in the same direction as the subject vehicle and
road facilities are considered. On the other hand, in the urban environment,
various types of roads such as intersections, crosswalks, and roundabouts are
constructed in various forms and various objects such as pedestrians,
motorcycles, bicycles, and other road facilities must be recognized. Therefore,
it is considered to be relatively complicated and challenging from a technical
point of view. The development of fully autonomous driving technology is the
ultimate goal, but if you make up your system with high-performance, high-
performance sensors to achieve this, the gap between reality becomes quite
large. For this reason, we aim to develop systems that realistically consider both
mass production and high performance. Therefore, we focus on solving the
main issues in the process of developing from the already commercialized
ADAS, partially automated driving system to the future fully autonomous
driving system.

The complete sensor setup for automated driving is shown in Figure 2.4. Six
multilayer lidar for environment detection are depicted in red and monocular
front vision is marked in yellow. A low-cost GPS is shown in green color and

around view monitoring (AVM) cameras are depicted in blue. Computers,
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controllers and other major equipment are also briefly described. In order to

ensure high perception performance and to realize a high level of autonomous

driving with safe and comfort, various sensors and equipment are installed on

the test vehicle.
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Figure 2.4. The experimental vehicle and its sensor-setup.



Chapter 3 Design of Adaptive ROI and

Processing

In order to improve the performance of the environment perception algorithm
and ensure the safety of automated vehicle from a practical point of view, we
propose an adaptive ROI method considering interaction of configured modules
for automated driving using the differential operation method according to the
real-time ROI concept. To define the necessary detection area that must be
guaranteed for safe driving, the subject vehicle's driving status information,
recognized lane information, road design criteria, and vehicle's situational
characteristics are used. In addition, motion planning and control results of
previous step are considered for the ROI design that can guarantee the safety of
the automated vehicle. Moreover, the voxelization and clustering process,
which is essential for estimating the state variables of surrounding objects, has
been improved to be performed according to the designed adaptive ROI.

Before designing ROI, this chapter defines the self-driving mode that
considers the active function and environment of an automated driving system
and reflects it in the design. The level of automated driving considering
functions and the environment was classified in the previous Chapter 2. Figure
3.1 shows typical driving situations for each level. In addition, the concept is
shown in Figure 3.2 by dividing the essential cognitive areas by importance in
consideration of the main factors of the typical driving situation of each mode

in Figure 3.1. This type of ROI design will be discussed in detail in Section 3.1.
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First, at the basic level, the vehicle is determined to travel, and motion
planning and control are required to avoid collisions in the driving path. The
vehicle generally performs the road keeping function and the ACC function for
the front object under the assumption that the vehicle is traveling on the road to
which the road traffic law is applied. Second, for motorways, the action of
changing lanes in the aforementioned Basic level is added. Lane change
requires a more significant amount of steering control than steering control for
lane keeping, and additional deceleration and acceleration control is also
required depending on the decision and strategy to change lanes. Therefore,
these factors are considered in expanding the required recognition range when
changing lanes. Finally, urban environments not only need to detect non-vehicle
objects such as pedestrians and bikes but also require cognitive performance in
geometrically complex environments such as intersections. The urban mode
requires coping with various objects and situations in spite of the relatively low
speed compared to the motorway mode. Therefore, this study aims to secure
perception performance through additional ROI design, and this study deals

with a representative intersection environment in an urban environment.
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Figure 3.1. Characteristics of typical driving environment.
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Figure 3.2. Perception ROI scheme on typical driving environment and

classified ROI by importance.
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Based on the premise that self-driving cars drive on roads that are designed
to meet standards, they can define areas that need recognition by using road
design standards and information on driving conditions of automated driving
vehicles. The behavior of surrounding vehicles in each area is taken into
account in the ROI definition. Besides, forward lane information obtained from
the front vision sensor is used in the region of interest design. To guarantee
safety for automated vehicle, motion planning and control results are highly
considered in ROI design. Since the ROl is constructed and applied in real-time
in consideration of various information and the result of automated driving
control, the designed area is called an adaptive ROIL. Depending on the
importance, it is designed into three levels. The computational load
management proposed in Chapter 5 also uses this ROI of importance. Based on
the designed ROI for each level, the point cloud is categorized, voxelized, and
clustered to improve computational efficiency and perceptive accuracy.

The performance of the proposed adaptive ROI based regional processing is
verified via data-based simulation by comparison with the conventional
processing approach. The comparison of performance is conducted under the
same hardware environment using driving logs, including vehicle status, data
of environment sensors, and so forth. It is proven that the proposed approach
reduced computation load against typical approaches to ensure efficiency and

effectively increase environment recognition performance.
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3.1. ROI Definition

In this section, the region of interest for differential processing for each region
is defined to efficiently process a large amount of raw data acquired from lidar.
The ROI proposed in this section is not fixed and is designed flexibly by
considering every situation based on driving condition information, road design
standards, and detected lane information. In addition, the motion planning
results calculated by the automated driving system are used in the ROI design,
thereby increasing the practical safety of the automated vehicle. The motion
planning of automated driving system to which this study is applied calculates
the desired path based on drivable corridor as depicted in Figure 3.3(a). The
driving corridor is determined using the environment representation result and
lane information. The optimal desired route is calculated to drive safely inside
the driving corridor. In this study, we apply them to ROI design to give priority
to the areas that must be recognized for safe automated driving control.
Moreover, in order to effectively detect objects that are likely to be considered
in motion planning, the previous recognition results are also utilized in the ROI

construction. This structure can be seen in Figure 3.3(b).
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ADS.

Although the world's specifications are not the same in every country in the
world, this does not significantly affect the way people drive in other countries.
Similarly, road design standards in each country are not very different in that
respect. The highway design criteria for major countries around the world is

shown in Table 1.
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Although detailed criteria are not consistent among countries, overall, design
speed, a width of roadway, and width of lane painting are similar. In this study,
we design an adaptive region of interest based on detailed specifications related
to road design standards in Korea. Table 2 shows the design speed according to
the functional classification of roads announced by the Ministry of Land,
Infrastructure, and Transport. Most road infrastructures officially established
by the government reasonably design ROI using design parameters such as road
width, curvature, and intersection angle. The details related to the road
standards used in this study are described in the subsections that describe the

specific ROI design process.
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Table 1. Road design standards by global country [Ministry of Land,'15].

C°:;gg;‘f“d Design Speed  Width of Width of Width of
guidelines or or Reference Traffic Lane Traffic Lane Carriageway
other source Speed [km/h] [m] Marking [m] [m]
Austria RVS
0232 80-100 3.50 0.15 7.00
Denmark 90 - 120 3.60 0.10 7.20
(practice)
France CETU 80-100 3.50 - 7.00
Germany 100 3.50 0.15 7.00
RAS-Q 1996 / 70 (26t) 3.50 0.15 7.00
RABT 94 110 (29.5T) 3.75 0.15 7.50
Japan
Road Structure 80&%)20 ggg - 2(5)8
Ordnance ’ ’
the Netherlands 120 3.50 0.15 7.00
ROA 90 3.25 0.15 6.50
Norway Design
Guide Road 80-100 3.45 0.10 6.90
Tunnels
Spain 90-120 3.50 0.10 7.00
Instruccion 3.1
Sweden 70 3.50 0.10 or 0.15 7.00
Tunnel 99 90 3.75 0.15 7.50
110 3.75 0.15 7.50
Switzerland
(SN 640201) 80-120 3.50-3.75 0.20 7.75
UK TD27
(DMRB 6.1.2) 110 3.65 0.10 7.30
USA AASHTO - 3.60 n.s. 7.20

Table 2. Design speed by functional road classification on road design

standards of Korea.

Design Speed [km/h]
Functional Road
Local Area Urban
Classification
Flatland Hill Mountain Area
Freeway/Expressway 120 110 100 100

Major Arterial 80 70 60 80

City Minor Arterial 70 60 50 60

Street Collector 60 50 40 50

Local 50 40 40 40

28



In this section, the design of the adaptive ROI is divided into three
subsections: normal driving, lane change driving, and intersection driving.
Figure 3.4 shows the process of selecting each ROI in consideration of driving
status information, driving environment, and the activation function of the
subject vehicle. As defined in Chapter 2, the automated driving level can be
determined according to the function and environment applied to the current
system. The basic level is always applied as primary mode because the only
lane-keeping function is active. In the case of the motorway Level, if the vehicle
maintains without changing lanes, the primary mode of setting the detection
importance toward the front is applied like the basic level. In the case of
performing lane change, the ROI for a lane change in which the front, rear, and
lateral ROIs are extended is applied. Urban Level includes all of the functions
of the lower levels and applies additionally designed areas when driving at
intersections. The previously designed ROI has limitations when driving in an
environment where roads intersect or diverge, such as intersections, because
the vehicle takes into account general driving conditions (roads with moderate
curvature). When driving at the intersection, it is necessary to perceive the front
side and the rear side area at the time of entry, and additionally design an
intersection ROI to cope with the road crossing situation and activate it in the
relevant situation. The process of determining this mode is depicted in flow

chart form in Figure 3.4.

29



ADS Level ?
C

Inter-
section?

LK+ACC LC+ACC LK+ACC+Intersection

Figure 3.4. Flow chart of driving mode determination according to driving task

by automated driving system level.

3.1.1. ROI Design for Normal Driving Condition

In this subsection, the ROI of the Basic Level is designed to represent the
most primary driving situation of the three levels. At this level, autonomous
vehicles keep in the lane along the path or lane and avoid collisions with
forward obstacles through proper longitudinal control. It can be classified as
the most basic and essential driving situation. Reasonable cognitive ROI is
designed based on vehicle state, road design criteria (RDS), international
standards (ACC: Adaptive Cruise Control, FVCMS: Forward Vehicle Collision
Mitigation System), lane information (if reliable), and wvehicle driving
characteristics studies. Lane information may not be used in an environment
where lanes are lost, failure to recognize due to the performance limitation of
lane-detecting sensors, or where there are no lanes such as intersections,
crosswalks, and parking lots. Thus, for realistic and reasonable design, ROl is
designed based on road design standards without lane information, and it is

reflected when reliable lane information exists.
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To analyze and reflect the driving conditions and characteristics of each area,
the ROI design is divided into three area elements, front, rear, and around the
vehicle. It is defined as the 1st, 2nd, and 3rd level of ROI according to the
importance of each region. Since ROI designed in this subsection is the
minimum required perception area in the most normal driving situation, it
becomes a basic structure that should be monitored at all times for the normal

operation of the automated driving system.

3.1.1.1. Front ROI Design

In order to define the area of forwarding interest when driving, two typical
situations of driving conditions could be considered. The conditions of normal
driving, avoiding collisions with other vehicles and obstacles, and the
conditions of braking and stopping due to road facilities, traffic regulations, or
obstacles shall be included in the design of the ROI as described in Figure 3.5.

The most important thing from the point of view of securing the driving safety
of the vehicle is to avoid collisions with objects along with the path of the
vehicle. In general, there are two situations in which objects exist within the
path where the vehicle is driven on the road, affecting the behavioral plan. The
ACC mode of driving along the preceding vehicle as shown in Figure 3.5(a),
and the braking mode of stopping the target object as depicted in Figure 3.5(b),

should be considered.
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@ Normal Driving @ Braking to Stop

(a) ACC Mode (b) Braking Mode
Figure 3.5. Major representative driving conditions to ensure forward safety

and avoid rear-end accident.

To design the required perception area for the front, the radius of curvature
of the road according to the longitudinal distance, the lateral distance, and the
present speed with respect to the front is determined. Depending on the
longitudinal and lateral distances, the forward ROI can be determined in a
rectangular shape. Considering the curvature along the curve radius of the road,
the region of interest is defined by the concept shown in Figure 3.6. Also, the
three typical parameters required for the design of the front ROI are shown in

Figure 3.7.
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Figure 3.6. Design scheme of front ROL
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Figure 3.7. Detailed design parameter of front ROI.

Using three parameters in Figure 3.7, the detailed ROI according to
importance with or without lane information is defined as shown in Figure 3.8.
If the lane on the front road can be detected through the front vision sensor,
the lane area in which the own vehicle is driving can be precisely identified. If

lanes are detected, the forward lanes can be specified to focus on a narrower
33



range than the Road Design Standards. Even if the higher ROI decreased due
to lane information, the overall perception ROl is not reduced because the lower
ROT acts as a backup zone by covering it. In Figure 3.8, the right lane is detected,
and the upper-level area of the right is reduced compared to the left, but the

lower-ROl is substituted to ensure that no ROI loss occurs.

\' Rcurvature

Road Standard based

Lane data based Tl f

Figure 3.8. Designed ROI by important level under reliable right lane detection.

When braking by a forward object, the braking distance is shorter with the
AEB because the braking command is higher in the AEB than in the ACC.
However, in this study, the longest braking distance is reflected in the
calculation of the forward minimum recognition distance because the aim is to

secure the minimum recognition area to ensure safety. In the case of ACC mode,
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the limit of acceleration and jerk (2.5m/s3) is limited in ISO-ACC. To cope
with the extreme ACC situation to avoid accidents, the longitudinal safety
distance that can be secured by considering various factors under the ACC

mode condition when the vehicle ahead is suddenly stopped is calculated as

follows.
1. 2 Vi
L|ongi,front,Braking =V tdetect +V - tdelay - g Jerk . tdelay + 2 + Cfront,min (3 1)
ade(:eI,ACC

is the actuator

delay

where, v, is current velocity of subject vehicle and t
delay time of the subject vehicle. ¢ .. means minimum clearance to the

front, and t is the required minimum detection time of object detection

detect

algorithm. &g, ,oc 1s maximum deceleration limit of ACC function.

Besides, the recommended time gap, TG___ , for vehicle driving is usually 2

safe ?
seconds. For safety purposes, a wider range of longitudinal cognitive distances

is calculated by reflecting more as much as this time gap in L qonsraing  ©F

Equation (3.1).

V2

1 H C
5 jerk -t Fo— e

decel, ACC

I‘Iongi, front,safe — Ve ° (tdetect +TGsafe) TV tdelay - front, min

(3.2)

The ty, means the actuator delay time of the subject vehicle and takes up

a great deal of weight in calculating the braking distance. By performing system
identification on the longitudinal control characteristics of the test vehicle, the

actual delay time can be calculated. Although actuator delay time analysis is
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required for both acceleration and deceleration situations, only deceleration was
considered in this case as it is necessary to calculate the clear braking distance
for collision prevention. In the deceleration situation, system identification is
performed by acquiring the actual measured longitudinal acceleration data
according to the deceleration command of the actuator through actual
experiments. The results are calculated for two types of inputs, referring to the
use of step and ramp inputs in general when performing system identification,
as shown in Figure 3.9. In order to fit the model for the step input, the data was
obtained by adjusting the final speed before the start of deceleration input, A in
Figure 3.9(a), and the target acceleration after inputting the deceleration
command, B in Figure 3.9(a). The slope C in Figure 3.9(b) with respect to the

target acceleration was variously set for the ramp input.
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(a) Step input (deceleration)
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Figure 3.9. Example driving log of acceleration and velocity of test vehicle.

Since we do not know the actual longitudinal control system model of the
vehicle, we perform the system identification on three models: Simple time
delay model (STD), first-order plus time delay model (FOPTD), and second-
order plus time delay model (SOPTD). The System Identification Toolbox of
the MATLAB was used to fit the data log into each model, and as a result the
FOPTD model was found to match the most. The equation for the FOPTD

model is:

T8
FopTD: Y (5) _Ke (3.3)
U(s) 1+T,s
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where T  is process time constant, T, is process time delay, and K is

process gain set to 1 in this study.
The model fitting results for each input are shown in Table 3, Table 4, and

Table 5.

Table 3. System identification result of longitudinal control by applying
FOPTD model with step input at 10kph driving.

Speed before Desired Process time ~ Min. actual Process time
deceleration deceleration ~ constant, T = deceleration delay, T,
[km/h] [m/s?] [s] [m/s?] [s]
-1 0.5 -0.96
-2 0.6 -1.8
10 -3 0.7 2.2 10
-4 - 2.4
-5 1.0 2.4
-6 1.7 2.4

Table 4. System identification result of longitudinal control by applying
FOPTD model with step input at 30kph driving.

Speed before Desired Process time ~ Min. actual Process time
deceleration deceleration ~ constant, T~ deceleration delay, T,
[km/h] [m/s?] [s] [m/s?] [s]
-1 0.5 -0.95
-2 0.6 -1.9
30 -3 0.6 -2.9 L0
-4 0.6 -3.6
-5 0.8 -4.4
-6 1.1 -4.4
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Table 5. System identification result of longitudinal control by applying
FOPTD model with step input at S0kph driving.

Speed before Desired Process time ~ Min. actual Process time
deceleration deceleration ~ constant, T~ deceleration delay, T,
[km/h] [m/s?] [s] [m/s?] [s]
-1 0.5 -0.95
-2 0.5 -1.9
50 -3 0.5 2.8 10
-4 0.7 -3.5
-5 0.8 4.2
-6 1.1 -4.6

Table 6. System identification result of longitudinal control by applying
FOPTD model with ramp input.

. ' Min. actual ~ Process time
Slope of deceleration Process time constant,

[m/s%] T, Is] deceleration delay, T,
[m/s?] [s]
-0.25 22
-0.5 30
0.9 0.7
-0.75 36
-1.0 39

From the system identification result above, the time delay of the test vehicle
was determined to be 1.0 sec and 0.7 sec for the step input and ramp input,
respectively. Since this analysis is used to determine the braking distance, a
larger value of 1.0 seconds is used to design ROL

Harwood suggested that a sufficient Acceptance Time Gap, TG, , needed

turn >

for a vehicle to turn left or right at an intersection, is 7.5 seconds [Harwood,'99].
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It may be determined as a driving safety distance according to the speed of the
ego vehicle in a road environment in which the other vehicle is not in a straight

line where interference with the progress path of the own vehicle may occur.

Therefore, we can define Ly ronum 28

v.-TG

I—|0ngi, front,Turn = c turn

(3.4)

Since these forward ranges are dependent on the speed of the subject vehicle,
the driving speed is reduced, and the value becomes considerably smaller when
it is close to a standstill. The minimum safety distance for the overtaking

vehicle is determined by referring to the statistical data of the driving data

coming in front of the overtaking vehicle and the lower limit of Ly o min -

I-OT ,after headway = mOT,after headway + 2 . O-OT,after headway (3 5)

Using this defined longitudinal safety distance, Ly fontmin  and
Liongi, from,mex  are defined as follows.

L|ongi,front,min = maX(Llongi,front,Extend 1 L|ongi,front,Tum) (36)

L|ongi,front,max = maX(LOT,afterheadway’ Liongi, front,Braking) (3'7)

The determination of parameters for designing the transverse safety range is

made as follows. In the case of the basic level, lane-keeping is carried out, and
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deceleration and acceleration control are performed based on the relative speed
and the relative distance to the object in the own lane. It is necessary to monitor
strictly for safety since the vehicle can be driven into the lane from the adjacent

lane on either side of the lane. The L therefore, means the width from the

lat,min >
lane center to the lane outside the adjacent lane. The Lane width is basically
determined by referring to lane width limit value by the design speed of Road
Design Standards in Table 7. If valid lane information is detected by the front

vision, the obtained lane information is used.

Table 7. Minimum road width by road classification and design speed in

road design standards of Korea.

Minimum Road Width [m]
Road Classification Compact
Local Area  Urban Area
Car Road
Freeway/Expressway 3.50 3.50 3.25
>80 3.50 3.25 3.25
Design
City =170 3.25 3.25 3.00
Speed
Street =60 3.25 3.00 3.00
[km/h]
<60 3.00 3.00 3.00

The lane width based on RDS, w,.. . and the minimum lateral range,

L are determined as follows.

lat,min »
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3.50 (v, >80)

B (60<v, <80) (3.8)
3
E ’ W[i],visionlane (Ianeconfid[i] > 1)
L, . =
lat,min 3 (39)

E ' W[i],RDS lane (Vc )

where, i ={Left,Right}

where Ianeconﬁd[i] represents the confidence level of lane obtained from

front vision which means reliability of lane detection. It has a integer value from
0 to 3, and the larger the number, the more reliable.

Occasionally, there are vehicles that drive outside of both sides of the lane

that cross more than one lane, so it is possible to setup L, ..., that extends by
the width of the lane to monitor it.
5
E : W[i],visionlane (Ianeconfid[i] > 1)
L -
lat, max 5 (3 1 0)

E ’ W[i],RDS lane (Vc )

where, i ={Left, Right}

In most well-organized cities, roads are designed in a straight line, but in
general, roads are usually curved. Road curvature can be calculated with the
approach of RDS and ISO-ACC, respectively. In road design criteria, the
curvature of a road is determined by the driving design speed of the road. The

automated vehicle can estimate the maximum radius of curvature of the
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currently running road under the premise that the driving control is optimized
for road design. According to the Table 8, the minimum plane curve radius,
lunaureros » according to the maximum slope can be obtained through

interpolation by the design speed of the road. The maximum slope of the road

was assumed to be 8% in this study.

Table 8. Minimum plane curve radius per design speed of road design

standard of Korea.

Minimum Radius Curvature [m]

Design Speed
[km/h] Maximum Superelevation Slope
6% 7% 8%
120 710 670 630
110 600 560 530
100 460 440 420
90 380 360 340
80 280 265 550
70 200 190 120
60 140 135 130
50 90 25 %0
40 60 55 50
30 30 30 0
20 5 s s

In addition, ISO-ACC restricts lateral acceleration of vehicles to 3m/s?.
Velocity according to lateral acceleration and curvature limitation is presented

as follows.
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v R (3.11)

circle — a1ateral_curve " Rmin

where, V_ . is a steady-state speed for the curve driving, R_.  is curve

circle min

radius, and 8.5 wne 1S the design lateral acceleration for curves on highways

which is derived from average driver behavior in curves (95% drivers) in
Mitschke ('91).
Using the relationship between the vehicle speed and the maximum lateral
acceleration, the road curve radius is derived as follows.
ve

rcurvature,lSO—ACC (Vc ) S — (3 . 12)

aI ateral ,curve

The smaller the radius of curvature of the road, the greater the curvature,
which can be considered to be the wider the driving range. Therefore, by
selecting the smaller value of the two curvature radii of the roads thus obtained,

the road area with greater curvature is included as the region of interest.

r.curvature =max ( If-curvature, RDS (Vc) rcurvature, 1ISO-ACC (Vc )) (3 . 1 3)

As described above, we designed an anterior region of interest at the 1st, 2nd,
and 3rd level using RDS. It is a method of estimating the range of roads that
can be driven, provided that the vehicle is on the road. When defining the lateral
range in Equation (3.9), it also applies to road curvature along the lane, as

defined by a decent lane detection level.
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3.1.1.2. Rear ROI Design

The minimum perception range at the rear of the vehicle is designed in detail.
In the case of basic level, it is not necessary to consider driving situations such
as lane change and turn, so it is necessary to consider the situation in which
own vehicle is a threat during lane-keeping driving. Consideration should be
given to a lane change from the rear to a lane ahead of the ego vehicle. In the
ADS of this study, the minimum recognition time is necessary to build up the
tracking reliability for reliable recognition of the surrounding objects. Even if
there is no lane change or turn motion, the minimum rear detection should be
performed because the safety of the ego vehicle can be secured by monitoring
the approaching vehicle from the rear side. Therefore, the rear ROI in normal
driving conditions is designed, taking into account the characteristics of
overtaking driving behavior. As with the design of the front ROI, the

importance defines the ROI by dividing it into 1st level and 2nd level.

_— /
RC'LLT'IJQ.I."LLTE

.

Road Standard based

Invalid

Lane data based

Figure 3.10. Detailed design parameter of rear ROI.
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In the case of the rear ROI, the lateral range and the radius of curvature of
the road are calculated in the same way as the front, using the state variables of
the ego vehicle, as described in Figure 3.10. Since the radius of the curve is

determined by the speed of the vehicle, the same T, calculated earlier

curvature

applies. The same applies to Ly nin and Ly nax in (3.9) and (3.10) calculated

from the lateral width of front ROI design.

As mentioned earlier, monitoring of vehicles attempting to overtake from the
rear is necessary, so this section considers how far perceptible the rear is in the
longitudinal direction. The proper distances necessary for determining the
minimum detection range of several rear longitudinal distances are calculated,
of which an appropriate value is selected.

Hegeman ('04) analyzed the maneuver characteristics of the overtaking
vehicle through the majority of driving data of the over-taking vehicle.
Overtaking strategies were performed based on the findings of Gordon ('70),
who classified the characteristics of overtaking vehicles. Since the distance
prior to the overtaking maneuver distribution for forward passing vehicles is a

normal distribution, the 2-sigma range is used.

L m +2-0 (3.14)

prior headway = prior headway,o0 prior headway,o

We used the prior headway among the time gap of prior headway for each

strategy.

I—priorTG headway = Vc - max ( mTG, flying r-nTG, piggi backing mTG,2+ ) (3 : 1 5)
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where, Mg o =2.503(P<0.05), Mg vy = 2805(P<0.08) |
Myg . = 2.494(p <0.05).

Comparing the two values calculated so far, the and

I‘|ongi ,rear,min

Liongi rear mex  Tequired for the rear 1st Level ROI can be defined as follows.

L|ongi,rear,min = min ( Lprior headway LpriorTG headway (Vc )) (3 ° 16)

L|ongi,rear,max = maX( Lprior headway I-priorTG headway (Vc )) (3 ° 17)

3.1.1.3. Surrounding ROI Design

So far, we have defined areas of interest for the front and rear of the vehicle.
We decide the area to monitor the surrounding area that should be minimally
recognized regardless of the vehicle status.

The front and rear areas of interest defined so far are approaches for
recognizing nearby objects or facilities according to the direction of the vehicle.
This approach is appropriate for motorways, such as highways and arterial
roads. However, in the urban environment, various objects, such as pedestrians
and two-wheelers, exist in addition to vehicles and facilities, and an unexpected
sudden situation may occur under various environmental conditions, and an
expanded area of interest is required. Therefore, the third-level area of interest
defines the surround ROI that always performs recognition regardless of the

state of the vehicle. Since the driving direction of the vehicle is the front and
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rear directions, an elliptical ROI having a major axis in the forward direction is

proposed, as depicted in Figure 3.11.

Figure 3.11. Detailed design parameter of ellipsoid based surrounding ROI.

In equation (3.5), the result of calculating the minimum distance that should
be secured in the longitudinal direction is set to the length of the long axis of

the ellipse to be designed.

LSur,Iat = mOT,after headway + 2 ’ O-OT,after headway (3 1 8)

It also considered the possibility of a running pedestrian appearing to
determine the lateral range. In urban environments, there is a possibility that
pedestrians may appear running from various directions, such as jaywalking, so
we want to ensure sufficient monitoring of this situation. A statistical analysis

of the place state according to the pedestrian velocity distribution shows that

48



the average speed of a running pedestrian is 6 m/s [Tordeux,'16, Oh,'19]. It is
assumed that the Object tracking algorithm had a sufficient time of 4 seconds
to recognize pedestrians and properly predict their behavior. Based on this
information, we can calculate the minimum distance of the area to be monitored

at all times and use it as the minor axis length of the surrounding ellipse.

(3.19)

LSur,Iongi :Vped,running 'tsuff,detection

In Figure 3.12, the results of integrating the front, rear and surrounding areas
of interest so far designed by importance can be seen. The speed adaptive ROI

is designed when there is left lane information in general lane keeping driving.
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Figure 3.12. ROl integration scene for normal driving with reliable left lane.

49



3.1.2. ROI Design for Lane Change

Previously, the ROI was designed in the basic driving mode, which maintains
lanes and prevents front collisions. However, since not all roads are single-lane,
lane changes are essential for safe and competent driving to the destination. In
the case of Tesla's Autopilot currently on the road, if the driver commands the
lane change signal through the direction indication lever, it checks whether the
lane change behavior is safe and performs the lane change. Automated driving
studies have been conducted to determine whether to change lanes in various
situations and to perform lane change effectively. Suh proposed how to
determine and perform a lane change decision when an autonomous vehicle
needs to change lanes for efficient driving or to change lanes at a merger or
branch road [Suh,'16]. If the automated driving system aims to change lanes in
a specific direction, it is possible to determine if the lane change is possible and
design an expanded area of interest to secure safety. Although similar to how
ROI was designed for front and rear in normal driving situations in 3.1.1.1 and
3.1.1.2, the areas of interest are extended to reflect additional considerations
when changing lanes.

A safe lane change requires avoiding collisions between vehicles in front
lanes and vehicles in destination lanes. In normal driving, since the ego lane is
the purpose lane for driving, the ROI is set as the area in which the vehicles in
the ego lane or the potential for entering the ego lane exist. In the case of a lane
change, the target lane is adjacent, not an ego lane, so it is essential to monitor
the vehicles existing in the target lane and potentially entering vehicles. Figure
3.13 shows the extended ROI design scheme in the front and rear of lane-change
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driving. Figure 3.13 (a) defines the area of interest for changing lanes in the
forward lane by reflecting the vehicle in the forward lane, the vehicle
potentially entering the target lane, and the curvature of the road. Similarly,
Figure 3.13 (b) shows the definition of a region of interest, taking into account
the vehicle driving on the target lane, the vehicle potentially entering the target
lane and the curvature of the road. Thus, the transverse required perception
range extends one lane wider than the basic ROI. Both sides are expanded in
Figure 3.13, but in a situation where the lane change direction is determined,
the area is expanded only in the direction for efficiency. Figure 3.14 shows that
the ROI expands as you change lanes from normal driving to lane change when
you try to change lanes to the right. Also, the parameters used to determine ROI

in the situation are shown.
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(a) Front ROI for lane change driving

(b) Rear ROI for lane change driving
Figure 3.13. Designed ROI for lane change driving.
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Figure 3.14. Detailed design parameter for lane change driving.
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First, when changing lanes, it is necessary to determine the recognition range
of the target lane to calculate the required recognition range in the forward
longitudinal direction. Based on the statistical analysis of lane-change driving
data, the lane change distance and the spacing of the vehicle in front of the
vehicle are determined by using the time required for lane change and the

spacing characteristics of the vehicle in the front and side lanes [Toledo,'07].

LIongi,frontLC,duration :Vc 'tLCduration,totaI + CLC

L =L +Cc

longi, frontLC,spacing FVspacing (3 20)
Where' tLCduration,totaI = mLCduration,totaI +1' GLCduration,total
LFVspacing = mFVspacing +1- O-FVspacing

By comparing the distance thus calculated and the forward braking distances
calculated in equations (3.6) and (3.7), the forward longitudinal distance

required for lane change can be determined as follows.

I-Iongi, frontLC,max = max ( I-Iongi, front,max ? maX( I-Iongi, frontLC ,duration ? I-Iongi, frontLC, spacing ))

I-Iongi, frontLC,min = max ( I-Iongi, front,min ? min ( I-Iongi, frontLC,duration ! I-Iongi, frontLC,spacing ))

(3.21)

The rear longitudinal distance is considered for lag-read spacing to be
obtained from the target lane during lane change. In addition, the distance is
calculated to reflect the time the vehicle is changing lanes, assuming that the
target lane vehicle is travelling at a slightly faster speed than the vehicle

[Toledo,'07].
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LIongi,rearLC,duration :Vc 'tLCduration,totaI

t - (3.22)

LCduration,total LCduration total +1. GLCduration,total

The maximum value is used for the 1% ROI level by comparing the necessary
distances to the rear calculated above. The 2™ ROI rear longitudinal range is

decided to expand by 20% to ensure a greater recognition range for safety.

:max(L L L

=12-L

I-Iongi,rearLC,min longi, rear,min dist longi,rearLC,duration longi,rearLC,Lag—Lead spacing )

longi,rearLC,max longi,rearLC,min

(3.23)
WhCI’C, Llongi,rearLC,Lag—Leadspacing is the Lag'lead Spacing and Liongi,rear,mindist 1S

minimum clearance set to 20m in this study.

In the case of the transverse direction, as mentioned above, the transverse
range extended by one lane width than the normal driving situation is
determined in order to monitor a vehicle that may potentially enter the target

lane for lane change.

E ' W[i],lane (Vc) (If i=LC direction)
I‘[i] lat,LC,max —
o > 3.24
E ’ W[i],Iane (Vc ) (9|SE) ( )

where, i ={Left, Right}

The road curvature uses the result of Equation (3.13) calculated according

to the speed of the vehicle in normal driving.
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3.1.3. ROI Design for Intersection

In this subsection, the minimum cognitive requirements in the intersection
environment are designed in detail. Although the intersection environment can
identify the shape of the intersection when using a map, this study proposes a
method to cope with the situation without a map. The intersection environment
is also designed to be safe enough within the range of urban driving speed
according to the road design standard so that the basic ROI area defined in the
above-mentioned normal driving is possible to some extent. At the intersection,
however, there are situations in which the direction of travel of the own vehicle
is different, and the angles close to 90 degrees should be considered. To safely
enter and exit an intersection, an area of interest for further intersection driving
before and after the intersection area is required. As shown in Figure 3.15, the
ROI is designed to drive the intersection using the intersection angle, width,
and length. Finally, Figure 3.16 shows that the ROI is additionally designated
to the front and rear diagonal directions to the previously designed normal
driving ROL

Although the size and shape of the region of interest may change depending
on the situation, the integrated ROI shape is close to a circle based on the center
of the own vehicle. It shows that omnidirectional cognitive performance is

essential to ensure safety in complex environments, such as intersections.
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Figure 3.16. ROl integration for intersection driving.

The design parameters of the ROI, which are additionally defined for
intersection mapping in Figure 3.15 and Figure 3.16, can be seen in Figure 3.17.
Figure 3.17(a) is the front diagonal direction of interest, and the unique point is
designed using the maximum minimum angle to recognize the cars on the
intersecting road. Figure 3.17(b) shows the ROI of the rear-side to counteract
exit from the intersection.
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Although the intersections where the compartments are well organized are
installed at an angle of close to 90 degrees, many intersections actually have
various intersecting angles, so countermeasures are required for these
environments. The intersection is designed with a minimum angle of 60 degrees
between the road entering and considering the driving ability and safety of the
vehicle[ Gattis,'98]. As shown in Figure 3.18, it is assumed that the intersection
angle is located between 60 and 150 degrees and that the vehicle entering the
intersection runs at a speed of about 20% higher than the own vehicle for safety.

It is possible to calculate the distance required for emergency braking of the

own vehicle, d and the travel distance of another vehicle approaching the

stop »

intersection, d during the time required for braking is traveling at 20%

cross,cv ?
speed. Use this to calculate that collisions do not occur at the point where the
vehicle is expected to be a potential crossing point.

2
Vc

2adecel (325)

dCI’OSS,CV = VCI’OSS (tstop + tperc,req ) + IV

d

stop

where v, isspeed of vehicle entering intersection from a far side of minor

road which is set to 120% of subject vehicle speed. |, is the vehicle length set

v
to 5 meters.
The angle to detect the furthermost vehicle approaching the intersection from

ego vehicle, 6

min >

can be obtained using the geometry of the triangle. In

addition, a second cosine formula can be used to calculate the drange .
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dcross.cv -sin (emin,lnters )
+d ’ COS(Bmin,lnters )

stop Cross,cv

0. =tan™

(3.26)

drange = \/dstop2 + dcross,cv2 - 2d d : COS(/Z' - amin,lnters ) (327)

stop - cross,cv

where aminmers is minimum intersection angle in road design standards,

which is set to 60 degrees in this research.

e

RC urvature

i,/nterS,r,min

Llongi,mters,

L Llat,mters,r
lat,InterS,f

(a) Forward ROI for intersection (b) Rear ROI for intersection

Figure 3.17. Detailed design parameters for intersection ROI.
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Figure 3.18. Scheme of angle and distance calculation under collision

assumption at the intersection.

Using Equations (3.26) and (3.27), define the parameters needed to build
an intersection ROI, as shown in Figure 3.17.

In the forward direction, the width of the intersection road is defined as three
times the lane width, and the minimum longitudinal range uses a value of (3.27).
For safety, the extended 2nd level longitudinal range is designed to be 150% of

the minimum longitudinal range. 6,

is applied to 6, obtained in (3.26),
and 0,

obtuse

is fixed at 120 degrees, considering that the design angle of the
intersection was at least 60 degrees, as previously noted.

In the case of the rear direction, it is similar to the method of defining the
front and rear ROI defined above. The ROI is defined by reflecting the

longitudinal range, lateral range and curvature of the road. The difference is to
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secure the rear region of interest by reflecting the angle to detect the vehicle in
the relative lane crossed while driving at the intersection. In this study, the angle
is set to 35 degrees.

It is inefficient to activate regularly the intersection ROI designed above.
Since the road design dictates that the diamond road marker is displayed before
the intersection of the road, this marker recognition gives a reasonable
prediction of the forward intersection situation. In this way, it is expected that
safe and efficient ROI selection will be possible by extending the intersection
response ROI in the situation where the intersection driving situation can be

predicted in various ways such as V2X and traffic light recognition in the future.

Figure 3.19. The diamond-shaped road marker indicating ahead intersection.
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3.2. Data Processing based on Adaptive ROI

The batch processing by applying the same weight to all surrounding
information causes a large computational load on the entire system. In order to
solve this problem, we propose a method to reduce the computational load
without degrading the driving safety of the vehicle by applying the weight of
each region designed in the previous Section 3.1.

In the previous section, we designed an adaptive ROI by importance to
ensure driving safety based on vehicle speed and detected lane information.
This section deals with how to process environment information obtained from
the lidar sensor using the constructed adaptive region of interest. Lidar
information is acquired in the form of the point cloud and processed into a form
that represents the surrounding environment necessary for motion planning.
The processing of point cloud consists of voxelization, which typically
performs data downsizing, and clustering, which classifies point group signals
by object. In order to achieve more efficient and advanced performance, this
section categorizes point cloud by Adaptive ROI prior to these processes and
proposes processing methods that reflect the important characteristics of each
region by using this result. The designed adaptive ROI-based data processing

scheme is shown in Figure 3.20.
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Figure 3.20. Scheme of point cloud processing based on adaptive ROIL.

3.2.1. Point Cloud Categorization by Adaptive ROI

Recently, many automated vehicles utilize precision road maps constructed
to process a large amount of lidar information. Using road areas such as roads
and sidewalks on the map, the point cloud is classified by setting ROI only in
areas where objects such as people or vehicles can exist. This approach is highly
efficient on the premise that map information represents the actual road
environment, but it can pose a significant risk if the degraded map information
in the vehicle localization differs from reality, for example, due to climate,
satellite conditions, and so forth. It is not applicable in areas where maps are
not constructed, and if an unexpected situation occurs or the actual road repair

or change is not updated on the map, improper ROI setting may cause problems

with the performance of environment perception.
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We classify point cloud acquired from the lidar sensor using the previously
designed adaptive ROI. Since the shape and size of the region of interest vary
depending on the driving condition of the vehicle and the reliability of the lane
recognition, area-specific point cloud classification shall be carried out for each
cycle. The goal is to achieve perception performance through efficient pre- and
post-processing execution strategies because it is limited to performing all point
cloud processing under limited resources. To secure the driving safety of
automated driving vehicles by ensuring sufficient precision and accuracy
without omission or distortion of the information recognized by the sensors, the
process of classifying the point cloud by the designed adaptive ROI must
precede.

In most cases, areas of high importance are included in areas of low
importance. Therefore, point cloud categorization is performed in the order of
importance of the region of interest to increase computational efficiency. If the
points exist within the region of interest, categorization is applied in such a way
that an importance index is assigned to each point. In this study, the point cloud
without the ROI importance index is considered as not necessary right away
from the viewpoint of driving safety and is eliminated. In the future, if applied
to hardware with higher cognitive module computational capability, the areas
of perceived importance can be expanded by considering the eliminated points
as the fourth area of importance. The results of point cloud categorization by

ROI level are shown in Figure 3.21, Figure 3.22, and Figure 3.23.
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Figure 3.21. Point cloud categorization result (Normal driving).
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Figure 3.22. Point cloud categorization result (Lane change to the right).
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Figure 3.23. Point cloud categorization result (Intersection passing).

3.2.2. Separated Voxelization

Lidar's point cloud is very tightly spaced 3-D point cloud data, depending on
the precision of the sensor. Since the raw data of the lidar point cloud, which
includes sensor noise and surface, is very large, it should be downsized with
minimal loss of environmental information to reduce computations. In general,
a technique called voxelization, which defines the size of the smallest cell based
on the Cartesian coordinate system, is applied. The voxelization consists of two
processes:

1) Quantizing end-points of the beams: Considering the object point set O ,

the quantization of X =(x,y,z), X €O is derived by following:
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g X.
X =|—L |xds.
A A (3.28)

]
where, j={x,y,z}

where ds i is the voxel size of j direction, here chosen as Table 9 and

|_J denotes the floor function. This process converts the original values in

O to the quantized set 0.

2) Computing the occupancy cell values: The repeated elements in o)

denote points within the same cell. The occupancy value of a voxel is

determined by counting the number of points in O that have the same value.

The output of this task is a list of voxels with the occupancy values of

N(G:U), vXeU, X=(x,v,Z), XeU and U=unique(O).

The voxelization process, which performs the downsizing of the point cloud
information, has a significant influence on the performance of the cognitive
environment using lidar depending on the cell size setting. In general, most
autonomous driving systems downsizing the same cell size for all point cloud
information. As a result, the trade-off relationship between information loss and
computational load occurs depending on the cell size. If the cell is too large, the
loss of environmental information may occur, or if the cell is too small, the
computational burden may be increased.

In this study, by applying a separate voxelization to each point cloud group
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classified by ROI level through point cloud categorization, sufficient cognitive
information to secure the driving safety of autonomous vehicles is secured. As
defined above, the ROI level represents the surrounding area in order of
importance according to the driving state of the subject vehicle. A high-priority
Ist ROI is relatively significant in environment perception performance.
Therefore, to minimize data loss to prevent collisions, the cell size is carefully
set to use most raw data. Due to the relatively low importance in 2™ and 3™
order, the cell size was set to be large gradually, even if data loss is taken at
some cost, to reduce the computational volume while maintaining the proper
level of cognitive performance to increase efficiency.

When voxelization is applied, down-sizing is generally performed in units of
cube cells. However, in this study, the axial direction was different. The density
of point cloud varies according to the size of the voxel in each direction, which
causes the error of object recognition performance. From the driving control
point of view, the recognition error caused by the quantizing in the x-direction
can be coped with by setting a safety margin for the x-direction voxel size. The
quantizing error in the y-direction can cause inaccurate problems in estimating
and predicting the width or position of the object, such as a vehicle, which has
a significant impact on the planning of the behavior of the surrounding objects
in terms of motion planning. Thus, to minimize this problem, a relatively dense
voxel size setting than the x-direction is required. To prevent the loss of
environment information, various voxel sizes are applied to find the appropriate
size through simulations. As a result, the longitudinal voxel size is confirmed
to maintain the perception performance when setting up to twice as much as
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that of the lateral direction. At the 1st level, 5 centimeters is determined through
experiments as a standard to obtain the downsizing effect while maintaining the
ability to detect even pedestrians or small objects. At the 2nd level, it is
necessary to recognize an object, such as a bike or motorcycle, with the
potential to enter the small and 1st ROI area than moving faster than someone
vehicles, taking into account the size of these objects was estimating the y-
direction quantizing value to 20 centimeters. The 3rd level is less likely to affect
driving immediately than the other areas. However, it is an area for continuous
monitoring of objects such as vehicles with significant volume and dynamic
capability, thus setting a reference value for the short length of the vehicle.

In this way, the y-direction voxel size was determined for each ROI level,
and the x-direction voxel .size was defined accordingly. Besides, Figure 3.24
shows an example of the result of voxelization the point cloud classified

according to ROI by level.

Table 9. 2-D cell size by adaptive ROI for separated voxelization.

Cell Size [m]

Level of Adaptive ROI
X y
1% Level 0.10 0.05
2m Level 0.40 0.20
39 Level 0.80 0.40
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Figure 3.24. Separated voxelization result with left lane information.

3.2.3. Separated Clustering

Since the point cloud data represents the precise surface on which the laser
beam is reflected, the boundary is accurately detected. However, in order to
estimate the state variables for each object, the process of clustering the point
cloud data must be preceded.

In the clustering process, graph-based clustering is conducted by applying a
Euclidean Minimum Spanning Tree (EMST) technique. EMST is a spanning
tree of a set of n points in a metric space, where the length of an edge is the
Euclidean distance between a pair of points in the given point clouds. In this
study, edge weights are calculated according to the definition of Euclidean
distance, and breakpoints are determined. Then, a random sample consensus
(RANSAC) technique is applied to distinguish the outlier between the edge

weights. At the moment of detecting outlier, we determine to pass to the next
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cluster is spanning tree concept. The derived cluster signal from the above

procedure is used as a representative point of a detected object.

Figure 3.25. Scheme of EMST based clustering.

The clustering is typically performed on a point-to-point basis. Most
environmental sensors, including lidar, acquire environmental information by
transmitting and receiving signals radially. Because the vertical and horizontal
angular resolution of lidar is fixed, the surface of an object that is close to the
sensor, regardless of the size of the object, has a high density of point cloud
distribution. On the contrary, the distance between adjacent beams increases as
the distance from the sensor increases, resulting in a relatively low density of
point cloud distribution.

In Euclidean clustering, the performance of clustering is greatly affected by
the distance threshold parameter, which is used to classify clusters, and the
minimum point cloud number threshold, which is the size standard of lower
limit point groups. The lower the distance threshold for precise clustering, the

smaller the cluster are separated, resulting in a decrease in the state estimation
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performance of the object because the same object is grouped into several parts
according to the sensing geometry. The higher the distance threshold, the less
likely it is to divide and cluster the same object, but there is a weakness that is
difficult to distinguish when two or more objects are adjacent. Besides, the
lower the minimum point cloud number threshold, the better the noise of the
sensor is reflected in the clustering results, the higher the likelihood that the =
cluster will fail to determine a signal with a low viscosity density as it is far
from the sensor and object. In general, clustering with uniform parameters is
applied to the entire point cloud, so clustering results are limited in properly
reflecting the characteristics of the environmental signals obtained above.
Therefore, to minimize the possibility of false recognition and maximize
cognitive performance, a clustering strategy that reflects the geometric
characteristics of the beam is required. Additionally, the voxel size of the
voxelization process performed in the previous step also affects the point cloud
density distribution and should be considered in the clustering process.

So far, we have defined the adaptive ROI based on the vehicle's driving status
information, classified the point cloud data accordingly, and individually
downsizing according to the area characteristics and importance. As an
extension of this approach, clustering processing is performed by ROI to
improve clustering performance in this subsection. The minimum point cloud
number threshold is inversely proportional to the distance between the lidar
sensor and the object to achieve proper clustering according to the density of
the point cloud. Thus, the threshold setting was improved by reflecting the
geometrical characteristics of each region.
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The proposed algorithm verified through the data-based simulation. Since it
is difficult to compare all cluster results distributed in all directions, clustering
performance is compared for objects that must be considered in terms of driving
safety. We compared the cognitive results of objects in in-lane, left-lane, and
right-lane under normal driving conditions. The results of each clustering
application are applied to the multiple object tracking algorithm described in
Section 4.3 to obtain the results of the recognition of the surrounding objects.
Conventional uniform clustering and adaptive ROI-based separated clustering
are applied to the same driving data.

Figure 3.26 shows the number of valid targets for in-lanes and side lanes.
There are a large number of recognized valid objects when the proposed
separated clustering is applied throughout the simulation. It affects the
prediction result based on the estimation of the state information of the object
that can affect the driving of the vehicle, which has a positive effect on the
motion planning performance to prevent collisions and the rapid response
performance in case of accidents. Figure 3.27 compares the longitudinal
distance to the most crucial front in-lane target in terms of control to avoid
collisions. The conventional methods result in loss of in-lane target due to
undetectable cluster loss in long-terminal resistance of approximately 75 m, but
the proposed method can be found to be perceived as being up to approximately

120 meters.
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Chapter 4 Environment Perception

Algorithm for Automated Driving

Automated driving requires a quick and accurate ability of the environment
perception. The environment perception algorithm computes environmental
information for safe driving by processing signals obtained through various
sensors mounted outward to the vehicle. It is essential to identify the
characteristics of the target sensors and target systems and to reflect them so
that no distortion or omission of information occurs. There can be two main
types of environment information of self-driving cars: road facility information
such as lanes and curbs, and objects necessary to prevent collisions in driving
environments such as vehicles and pedestrians.

This chapter analyzes the characteristics of external environment sensors that
are widely used in self-driving systems, and describes the environmental
perception algorithms needed for the motion planning and control process by
processing signals. All sensors and devices have latency in the process of
sensing and transmitting information. These time delays occur in a series of
processes related to information transmission, such as sensing, transmitting,
and receiving, and the causes are complex. The time delay creates more
distortion of the environmental information as the vehicle's behavior increases.
Lidar sensor is widely applied to the automated driving system because it can
precisely and accurately recognize the surrounding environment information
compared to other sensors, but when information distortion occurs, it can cause
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a decrease in perception ability. Therefore, in this study, we develop and verify
the method to prevent information distortion of lidar information by analyzing
and estimating the time delay characteristics of the target autonomous driving
system and the mounted lidar sensor. Besides, an algorithm was proposed and
verified to recognize the information on the road structures needed for the
motion planning of the driving. Also, a method has been developed to estimate
the status of dynamic objects that are essential to prevent collisions. In order to
improve the limitation of model-based tracking (MBT), which determines and
tracks the average model of a vehicle, the geometric model-free tracking
(GMFT) is developed that can achieve tracking performance independent of the
size or shape of an object by matching the point cloud information of object
cluster. In particular, GMFT is applied to separated data processing based on

adaptive ROI in Section 3.2 to recognize surrounding objects.
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4.1. Time Delay Compensation of Environment

Sensor

Nowadays, various kinds of automated driving systems (ADS) have been
suggested and progressed in order to improve driver’s safety. However,
perceiving environment precisely is still challenging problem. The ADS have
increasing demand for several sensor systems, which are not only
complementary but also redundant. Much research has therefore been focused
on high-level sensor fusion which requires reliable ability of each
environmental sensor. Measurement of object with sensor such as laser scanner,
radar, vision camera and so on, in driving area is crucial issue of ADS
researches.

The time-delay is the major cause of debased performance and instability of
ADS system. The network and sensor introduces delays in addition to process
and transmission delay that are prevalent in most digital systems [Halevi,'88].
The signal handling should be designed to compensate for these delays. The
laser scanners are widely used in field of engineering, such as autonomous
vehicle driving, because of their advantages of non-contact measurement and
high precision in over a large working range. This is the reason why various
laser scanners are installed in most of automated driving vehicles [De
Cecco,'06]. Thus, the laser scanner is focused on this research.

Besides, the system parameter uncertainties, it has been recognized that the

time delay is also often the main cause of instability and poor performance of
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systems [Malek-Zavarei,'87]. The filter design problems for uncertain time-
delay systems have been studied [Pila,'99, Wang,'02, Wang,'04, Sahebsara,'07].
Up to now, in most relevant literature, the time delay of sensor is mostly
assumed to be deterministic [Kaempchen,'03]. To work with sensor delay
systems, normally, stochastic delay or uncertainty information are transformed
to a stochastic parameter of the system.

Consequently, it is necessary to develop an algorithm which can minimize
distance error due to time delay of measured object in driving area. To
accomplish this task, a time delay of the laser scanner is analyzed and a delay
compensation algorithm has been developed. The proposed algorithm was
devised based on the ideas of forward estimation of movement state in posterior
parietal cortex [Mulliken,'08]. The widely used transformation can be used to
the model with a maximum of the one sampling delay, while the new proposed
representation in this seection. The proposed delay compensation algorithm

was verified via automated driving system in the open loop simulation.

4.1.1. Algorithm Structure of Time Delay Estimation and Compensation

To improve driver’s safety, more accurate environment perception is required.
Due to processing latency of laser scanner, delay compensation is needed.
Therefore, we developed the forward estimation of object algorithm as shown
in Figure 4.1. The laser scanner data and ego vehicle’s chassis signals are used
to compensate the sensor latency. Consequently, the proposed algorithm can
lessen the sensor latency and modified object signals can be obtained.

Figure 4.2 describes the proposed compensation algorithm scheme. The
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coordinate transformation using vehicle state obtained from vehicle filter is

applied in order to correct the delayed sensor data.

Delay Compensation
Delayed y P Delay
Sensor Data Compensation Compensated
— with Coordinate Measurement
Data Transformation
Vehicle T Ego-veh\;]cyle motion
Sensor Data
Chassis > Vehicle Filter
Motions

Figure 4.1. Block diagram of delay compensation process.

Delayed
Measurement

@—» True Object *‘/X

Delay
Compensation

Figure 4.2. Scheme of delay compensation.

For the verification of the algorithm, vehicle tests in real road have been
conducted. The proposed algorithm is implemented on test vehicle to confirm

the process delay effect on automated driving.

4.1.2. Time Delay Compensation Algorithm

The vehicle’s current dynamic states are estimated with the Kalman filter.
Then, the forward estimation is applied to object by using coordinate
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transformation. The states of subject vehicle obtained from vehicle filter can be

used in forward estimation.

4.1.2.1. Vehicle Filter

The Kalman filter is used to estimate present vehicle states like as
longitudinal velocity, yaw rate, longitudinal acceleration and yaw acceleration
from the vehicle sensor signals such as steering angle, yaw rate, longitudinal
velocity and longitudinal acceleration under the assumption of the Gaussian
white noise. As previously stated, the state vector X is defined as following in

order to represent the driver’s intention and the vehicle’s planar behavior:

AT
x=[v y a 7] (4.1)

where V is the longitudinal velocity, y is the yaw rate, @ is the
longitudinal acceleration and y is the yaw acceleration. The measurement

vector is defined as following to reflect the available sensor information.

z=[v » a 5] (4.2)

where 0, is the front wheel steering angle. Assumption of the time

derivatives of the longitudinal acceleration and the yaw acceleration can be
considered as process noise, the process model and measurement model are

given by following form:

X[k +1]=F[k]-x[k]+w[k] (4.3)
z[k]=Hx[k]+Vv[k] (4.4)
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where

1 0 At O 1 0 0 O
01 0 At 0 1 0 O
F= H=
00 1 0 0 1 0
00 O 1 0 h42 0 h44
21.°C, +2I.°C, |
2 =T A~ h44: -
21,C,v 21,C,

where At is the sampling time which taken as 0.1 second in this study, |

z

is the yaw moment of inertia, C; and C, are the front and rear wheel

cornering stiffness, respectively |, and | are the distances from vehicle’s

center of gravity to front and rear axles. Two elements in 4" row of
measurement matrix are determined from the bicycle model which is most well-
known lateral vehicle dynamics model [Rajamani,'11].

The process noise is assumed to be a white noise with associated covariance
matrix, W . The measurement noise is also assumed to be a white noise with
associated covariance, V . Note that measurement model, H , is time varying
because there exist longitudinal velocity in the element of the matrix. Therefore,
it should be re-calculated at each time step. With above process and
measurement model, vehicle states are recursively estimated by using the
Kalman filter which is a sequence of time and measurement update steps as

following specific equations [Simon,'06]:
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Time update

X[K]=F -f[k-1] (4.5)
M[k]=F-P[k-1]-F +W (4.6)

Measurement Update
&[] = X[+ K[K]-(2[k]- H[K]x[x] @7)
K[K]=M KK -(H[IM IR K] +v)” @3)
P[klk]=(1 - K[K]H[K])-M[K] (49)

4.1.2.2. Forward Estimation

In this study, forward estimation algorithm is proposed in order to correct
object information as described in Figure 4.3.

Under existence of process delay, the host vehicle moves for time period of
sensor delay. Consequently, estimation of the previous host vehicle position that
is the exact time of sensing is possible to diminish inaccuracy.

The coordinate systems of host vehicle and object and the relations of them

are defined as described in Figure 4.4. The current host vehicle frame is

determined as {1} and past host vehicle frame is defined as {0}. Also, the
frame of true object which measured in driving area was decided as {2} and
the frame of delayed measurement is determined as {3}. The relation T,

indicates coordinate transformation of host vehicle during delayed period and
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T,, presents frame transformation between true and delayed measurement. In
this study, we assume that T,, isnearly same as T,, because the delay effect

results from vehicle movement for the delay period.

Figure 4.3. Schematic description of forward estimation.

Figure 4.4. Definition of coordinate systems and their relations.

The measurement vector is defined as following.

X= I: Pytarget  Py.target 1:|T (4- 10)
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where Dy ager> Pyrager are the object position relative to ego-vehicle.
The compensated delay signal X e 1S obtained multiplication of

transition matrix T,, and delayed measurement X,z -

)A(compensated = T32 ' Xdelayed (4- 1 1)

where,

At
b 1t

v At . yeAt
cos(——) —SsIin(——
S N VN

DR N DR

.yt At
T,, =[sin(—— cos(—— 0
* (NDR) (NDR)

0 0 1

DR

where At is process delay assumed, y is yaw rate and V is longitudinal
velocity of host vehicle, and N, is the split number of dead reckoning

process which is taken as 10000 in this study.

4.1.3. Analysis of Processing Delay
First of all, the laser scanner’s processing latency has to be analyzed.
Specification sheet of sensor provide us only sampling frequency, therefore we

attempt to get its processing time-delay by conducting actual experiment.

4.1.3.1. Configuration of the Test Vehicle

The test vehicle as shown in Figure 4.5 is used for delay analysis and
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verification of proposed algorithm. Laser scanner, radars, camera and vision
sensor are installed on test vehicle to perceive driving environment. Also, auto
box, ECU and PC are mounted in order to control ADS. Additionally, DGPS is
also used to this test to determine reference object position. In this research, the
4-layer laser scanner located in front of test vehicle is concerned. The proposed
algorithm of this research is applied and tested to this vehicle in order to verify

the process and transmit delay effect on automated driving situation.

Camera (Recording) Vision Sensor
( Mobileye : C2-170 )

tw

Autobox & ECU

Rear-side Radar
( Delphi : 24GHz )

Long range Radar
( Delphi : 77GHz )

Laser Scanner
(IBEO)

Figure 4.5. Sensor configuration of test vehicle.

4.1.3.2. Test Scenario

The vehicle tests have been conducted at the intersection of Intelligent
Transportation System (ITS) test road in Korea Transportation Safety Authority.
Descriptions of this test situation are given in Figure 4.6.

The place of experiment is depicted in Figure 4.6-(a) and the specific test
85
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scenario is described in Figure 4.6-(b). The test site is an intersection which has
four traffic lights in each corner. In order to obtain the ground truth of given
obstacles, the test vehicle measured the positions of traffic light poles while
standing still at the stop line for 1 minute. The accumulated signal data at this
process is assumed the actual true position of object. Secondly, the same poles
under driving state are measured. By comparing these data obtained from the

experiment, time delay of laser scanner can be investigated.

(a) Test road condition (b) Test scenario

Figure 4.6. Test Situation Description of Intersection with traffic lights.

4.1.3.3. Test Result

From the test, time delay of sensor can be analyzed by comparing the position
of four traffic poles on the intersection. The test result is shown in Figure 4.7.
In Figure 4.7, the black circles which are obtained with halted vehicle located
in intersection indicate reference position of traffic light poles. And the blue

triangles represent the same pole signal on driving pass through the intersection
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with 15kph vehicle speed. The measurement while driving was perceived as far
object that are compared to true position. The difference between true object
and delayed measurement is approximately 0.4 meters as shown in Figure 4.7.
Due to 15kph vehicle velocity, we can roughly expect that around 100ms
latency exists.

From the result, when the vehicle is moving, the system measures the delayed
objects which are far away from the true position. It means that distance error
occurs due to time delay. Also, we can expect that the distance error of each

object is proportional to relative motion between host vehicle and object.

Far Left Fole Far Right Puole
510 : 515 :
E sggslb... . #“ - E s1asb.... f]
2z . 7 -
A ' =) :
L (= M, - [ T 1 R e
. : s :
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X Globoallm) E Globoallm)
Mear Right Fole Hear Lefi Pole
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Figure 4.7. Comparison of global position of poles.

Besides, experiments are conducted with different host vehicle speed in
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0~30kph range as shown in Figure 4.8. The four cases of driving data are used
for analysis. In Fig.8, the red diamond and magenta x marks indicate the
distance error when test vehicle passes through the intersection with waiting in
front of stop line. On the contrary, blue square marks and green triangle marks
describe the distance error while passing through intersection with no stops
under 15kph and 26kph. In Figure 4.8, we can find out that tendency that the
distance error increased in proportion to relative velocity between host vehicle
and obstacle. Also, the distribution of y-axis is assumed as the effect of sensor
noise and obstacle width.

If delayed measurement is used as an object information, the safety clearance
becomes unreliable due to distance error. To secure driver’s safety, sensor’s
process delay has to be estimated and compensated.

The estimations are attempted under various process latency assumptions.
The black circles which indicate true position of object and the blue triangles
which represent delayed measurement under driving condition are marked in
Fig.9. What one has to look at is the red square marks which represents the
result of forward estimation. We applied 0.1s delay assumption in Figure 4.9-
(a) and also 0.15s in Figure 4.9-(b). Accordingly, it is easily noticed that forward
estimation improves perception accuracy.

The error between true and compensated object was defined as follows.

. 1 R 2 2
nlltn {‘] = N Z\/( Xcompensated ~ Xirue ) + ( ycompensated ~ Yirue ) } (4.12)

where X,.., VY. are the position of true object, X.,pensated + Yeompensated '€
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the position of compensated object and N is the number of object

measurement.
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Figure 4.8. Measured global object position with 0~30kph range.
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Figure 4.9. Compensated signal of forward estimation with At =0.1s, 0.15s.
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The assumed delay At, which minimize the error J, is the actual process and
transmission delay of laser scanner. The error, J, is calculated by 0.001sec time
interval as shown in Figure 4.9. Therefore, the minimum error occurs at 0.112s.

From this result, the time delay of laser scanner was estimated as 0.112s and
then, Atis determined as 0.112s to compensate. The error probability is
calculated in Figure 4.10. The distance error is highly decreased by applying
compensation under delay 0.112s. This is the reason why assumption of 0.112s

time delay is reasonable.

0.4

=
a

Distance Error, T(m)

At= 0.113 sec
] .05 0.1 015 02
Estimated Process Delay, At (sec)

Figure 4.10. Calculated error J by At.
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Figure 4.11. Comparison of distance error probability.
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4.1.4. Test Data based Open-loop Simulation

In previous section, the processing delay of our laser scanner which
minimizes the distance error is derived as the value of 0.112s. The effect of
presence of process delay compensation in vehicle control should be
investigated. Therefore, test data based open-loop simulation has been
conducted to validate the automated driving performance enhancement due to
the proposed time delay compensation algorithm.

The test data have been acquired for several automated driving tests at the
internal road of Seoul National University as depicted in Figure 4.12 (a). The
scheme of automated driving strategy is shown in Figure 4.12 (b). The system
detect the preceding vehicle and perform the following driving with ensuring
the safety distance from the measured obstacles.

The given test roads have quite complicated environments to drive
automatically. The lanes were hard to be distinguished because of faded paint.
There are a lot of buses parked along the road as shown in Figure 4.13 (b). In
Figure 4.13 (c), there exist non-vehicle obstacles such as pedestrian and
guardrail to avoid. Also, we need to consider other traffic participants like
oncoming and preceding vehicles as described in Figure 4.13 (d).

The open loop simulation was conducted via logged data of our test vehicle
by using MATLAB. In this simulation under open loop, our system calculated
desired local path and steering angle to drive automatically. By comparing
results which the proposed algorithm is applied and not applied, the effect of

delay compensation will possibly confirmed.
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Figure 4.12. Description of test scenario.
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(b) Highly extreme condition

(c) Non-vehicle obstacles (d) Other traffic participants

Figure 4.13. Major scenes of test environment.

From this simulation, desired steering angle is obtained while the proposed
algorithm is applied to the automated driving system. The comparison plot of
desired steering angle is depicted in Figure 4.15. In Figure 4.15, around 100
and 108 seconds in horizontal time axis, it is confirmed that phase of desired
steering commend has been moved forward due to the proposed compensation.
When the forward estimation applied to the object signals, most of compensated
signals are located closer to the host vehicle. Because of these compensation,
safety clearance decreased and the system need earlier control to grantee the

safety margin. Details at this critical situation are described in Figure 4.14 (b).
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4.2. Environment Representation

Environment information that should be detected from an automated driving
perspective consists largely of two types: road facility, such as lane, marker,
road boundary, and surrounding objects information. Using lane and road
boundary features, the pathways depending on the driving environment can be
determined, and the route planning method is implemented to recognize the
surrounding objects to prevent collision. This section proposes a detection
algorithm for lane and road boundary information and static obstacles that
should be preceded by motion planning for sensor-based automated driving.

In general, it is assumed that the vehicle runs on the road. For this reason, a
person determines the desired driving path of a vehicle by recognizing the
facilities indicating the lanes and road boundaries such as road surfaces, lanes,
and markers through vision. The route information to be driven through painted
lanes on the road can be found. In the case of motorway, a guardrail or a median
strip can be a kinds of road boundary. In the case of an urban road, the curb that
separates sidewalk and road can be regarded as a road boundary. Because lanes
and road boundaries are largely regular and continuous on most roads, this
information can be used to determine the desired path of vehicle. In addition, a
static obstacle map is constructed to utilize information on the stationary
objects that are not standardized road facilities but still in the path planning. In
this section, we propose lidar based detection algorithms of lanes, road markers,

and road curbs, and static obstacle map construction approach. The proposed
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algorithm is verified through experiments on roads that represent complex
urban environments.

Furthermore, the road information extracted in this section is a fixed facility
that does not change unless artificial modifications are made, so it is included
in the element of the high-definition map (HD map) currently constructed in
the main section. Therefore, detected road facility information can be applied
not only to route planning of sensor-based self-driving but also to Vehicle

localization through map matching.
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4.2.1. Static Obstacle Map Construction

In the boundary extraction process for static objects, we apply a grid
representation technique to confirm the signals that become an actual obstacle.
Grid representation technique means dense raw data transformed into a
representative grid cell described in Figure 4.17. Since raw static signals are
large as inefficient in view of the memory system, data downsizing through grid
representation is required to improve computational efficiency.

A grid is fixed as a square, and representative grid points indicate that object
boundaries can be expressed as configured grid size. Each grid of the map has
the counter, which indicates how many points existed in that grid cell. If the
counter value of the cell is higher than a certain designated threshold, the grid
is considered occupied by the object. The set of occupied cells is considered a
static obstacle map. To cope with the noisy measurement of lidar and guarantee
minimum space in any case, a safety margin is determined by considering the
sensor’s systematic error, statistical error, and designated minimum clearance.

In the case of the candidates for moving objects, they are detected by
comparing the current observation with estimated moving objects from MOT
to be described in Section 4.3. If a point is entirely within the area of the
estimated moving object, the point is considered as a part of the moving object.

An example result of static obstacle map construction is shown in Figure 4.18.
The sensing area of lidar is depicted as a cyan-colored region. Black points are
the current observation of lidar, green squares are estimated static objects, and
blue circles are moving objects. Also, red filled squares are the occupancy grid

of static obstacles, and blue filled squares are the occupancy grid of moving
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objects. It can also be seen that the performance of moving object estimation is

sufficient to construct static occupancy cells.

Raw data / Grid cell Representative Cell Considered Safety Margin

/"’7\

15 10 5 0 -5 -10 -15
Y [m]

Figure 4.18. Example result of static obstacle map construction.
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4.2.2. Lane and Road Boundary Detection

It is essential to recognize the road boundaries such as lanes and curbstones
for collision-free driving in a narrow and complex urban environment. Road
boundary information cannot only be used directly to establish a sensor-based
desired driving path, but also to be used in the vehicle localization through map-
matching. Many researches [Schreiber,'13, Tao,'13], use lane marking data to
build their digital map. The second most used feature is a curb [Schreiber,'13,
Hata,'14b]. Curbs usually appear at the borders between streets and sidewalks.
Therefore, this section presents ways to extract lane and curb information using

lidar.

4.2.2.1. Lidar based Curb and Lane Detection

The lane marks close to the own vehicle can be reliably extracted by their
corresponding intensity value of a lidar measurement [Isogai,'09]. The effect
that dark road surface reflects significantly less laser light energy than the
brighter lane marks was taken advantage of in that work to extract lane mark
measurements by using an adaptive threshold on the intensity channel of the
lidar sensor.

In this research, four SICK LMS511-10100 are installed on the test vehicle.
To detect lane marks on road surfaces, two lidar are located on the roof of the
vehicle as depicted in Figure 4.19.

The lidar layers are facing ground and are intersecting the road surface in
distance of approximately 3 meters for the front bumper and 2 meters for the

rear end of vehicle. Figure 4.19 shows two lidars we use for curb and lane
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detection in red color circle and their view angle toward down. LMS511
provides 190 degree field of view range with 0.25 degree angular resolution
and its scan rate is up to 25 Hz. Their sensing maximum range reaches 80 meters
with a 50 mm error and they also can output reflectivity values which called
Received Signal Strength Indicator (RSSI). RSSI is the measurement of power
received by the lidar. This value is generated for every measurement and has an

arbitrary unit with a logarithmic characteristic.

AVM

Parallel
High LiDAR

(b) Top view of four lidar and AVM

Figure 4.19. Sensor configuration of test vehicle to detect curb and lane.

First of all, each scan is processed individually. In Figure 4.20, where scan
signal points are projected in the vehicle local coordinates in green color, it can

be noticed that the center of the road is quite flat. Then, we tried to found a

101

.T. .T]-'r



polyline expression that best approximates the road scan data. By using
Random Sample Consensus (RANSAC) algorithm, only two thresholds are
necessary; the first one indicates the expected outlier rate in the points set,
which is directly related to the iterations number, and the second one specifies
the distance above which a point is considered as an outlier. The result of road
boundary estimation which can be called as curb stone is presented in Figure
4.20. Vertical magenta dashed line represent the extracted curb stone point
using the RANSAC algorithm. It can be seen that the road is well extracted.
With a correctly extracted ground and using the reflectivity data, we can also
extract lane marks through a simple thresholding. Asphalt presents a much
lower reflectivity than road marks so that threshold determination is quite easy
[Dietmayer,'05]. Nevertheless, this approach can in some cases be less robust
than image processing methods, as it highly depends on marking reflectivity,
which is faster deteriorated than white painting. In Figure 4.20 and Figure 4.21,
parallel red dashed line indicates adaptive RSSI threshold and blue dots are
RSSI values of the road. In these figures, blue points which are exceed the RSSI
threshold represent the extracted points of lane marks. As shown in Figure 4.20,
it can be easily found that three points exceeding RSSI threshold are left, center
and right lane of two-lane road. Also, Figure 4.21 shows the pattern painted on

the crosswalk can be extracted.
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Figure 4.20. Lidar based lane detection result using RSST (Normal Road).
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Figure 4.21. Lidar based lane detection result using RSSI (Crosswalk).

4.2.2.2. Test Results

Vehicle tests were conducted at the driver’s license test course located in
Incheon as show in Fig.8. The length of the designated path is about 600 meters
long. The vehicle passed 90 degree course, S-curve course, and three

intersections. The width of normal road is generally 3.5 m, but averagely 3.0 m
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in target route. This is the reason why high accurate level of detection ability is
fundamentally required to avoid collision accident of automated driving in

complex urban road.

Figure 4.22. Test site description of lane and curb stone detection.

The road boundary and lane detection algorithm has been verified by real
time automated vehicle on designated route. Figure 4.23 and Figure 4.24 show
algorithm verification scenes during real-time vehicle test. In these figures, the
blue and cyan dots express detected road boundaries with accumulation, and

magenta and red dots indicate the extracted road lane with accumulation.
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Figure 4.23. Vehicle test result of lane and curb stone detection (Crosswalk).
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Figure 4.24. Vehicle test result of lane and curb stone detection (Intersection).
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4.3. Multiple Object State Estimation and Tracking

based on Geometric Model-Free Approach

In this study, a novel approach is applied to enhance the performance of
detection and tracking of moving objects (DATMO) by using a Geometric
Model-Free Approach (GMFA) on our ADS system for real-time application.
The proposed algorithm detects objects and estimates their states irrespective
of feature shapes. The following are the major contributions of this study.

P the proposed approach is robust against sparse point clouds, object shape

due to long distance, sensor resolution, and partial occlusion leading to an

increase in F; score.

» the estimated velocity and heading angle of objects depend on the motion

between the corresponding point clusters with consecutive scans. In most

typical driving scenarios for urban environment, the accuracy of velocity and
heading angle estimation has been improved.

The GMFA tracks the moving objects and estimates their states. In our
approach, compared with previous studies, each point is depended on clustering
using Euclidean distance. Since the correspondence between points is
determined by the similarity of shape and the distance between the average
position of the cluster, the correspondence between points in successive scans
can be established even with a small computational load. After establishing the
correspondence between the clusters, Iterative Closest Point (ICP) method is

applied to perform a match for each cluster, and also the states of the moving
107



objects are estimated through the Extended Kalman Filter (EKF) based on the
movement direction and distance of the mean position of the cluster.

The multiple object state estimation is conducted by using clusters obtained
in grouping process. In order to estimate the motion states of the object, EKF
is designed by utilizing processed signals as measurements and motion
information of the target as output. The motion information of the vehicle was
defined as filter input. The state vector and input vector for the filter were

defined as follows:

X” = [ pnrx pn‘y en Vn,x 7/n an‘x }}n ]T (413)

u=[v, 7] (4.14)

The coordinate systems and the seven states of filter are depicted in Figure

4.25. In this study, we use two coordinate systems: a fixed global coordinate

system, o x y,,and a body fixed coordinate system moving around the rear

axle of subject vehicle, O,x.y,.The p ., p,, 6 stand for the mean position of

ny
the cluster, and @ indicates the heading angle of the object in respect of

O,x,y, coordinate system. The v denotes the vehicle velocity in the

direction of o x y frame. The y , a , and y describe the rate of

heading angle, the acceleration, and the angular acceleration of subject vehicle

108



with respectto o x y, , respectively. The v,, y stand for the velocity and the

rate of heading angle of subject vehicle at the frame of o x vy .

A Mean of tracked cluster
«  Tracked cluster
®  LiDAR measurement

Ground truth

Figure 4.25. States of moving object in GMFA

4.3.1. Prediction of Geometric Model-Free Approach
Each track is predicted through process update of the discrete-time EKF

using the model as expressed in equation (4.15).

x =a(x ,u)+w

4.1
= [al aZ a3 a'4 a5 a6 a'7 ]T W ( 5)
where,
a =V, ,C0sO -V +p Xy
a,=v singd -p xy
a3=yn-7 a'4:a'n,)<
a =y, a, =-k a, =-k
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where a(x_,u) isthe state function; and w is the white Gaussian noise with
covariance matrix W, , respectively. Also, the discretization of the process
model has been accomplished [Kim,'15b]. The state and the observation

functions are linearized, as shown in the following equations:

A== (4.16)

where A isthe Jacobian matrix of the state function. The track index n is
omitted for clarity. By neglecting the higher-order terms of the Taylor series,

the priori state estimate and the covariance matrix can be given as follows:

- +
X = a(xk ’uk)

B T 4.17)
Pk+l = AkPkAk Jr\Nk

where x,,,P,, and x;, are the priori state at time k+1, the priori

covariance at time k+1, and the posteriori state at time Kk, respectively.
It is essential to transform the previous clusters to present step O Xy, in

accordance with the static assumption in order to initialize the tracks and

evaluate the speed of moving objects. The clusters of the past step, Z[k -1],
are transformed into the present step, Z[k—1], employing dead reckoning

using velocity and yaw angle rate of subject vehicle under the static assumption.
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4.3.2. Track Management

The track management process can be divided into three categories: the
cluster assignment in the present step to the predicted tracks from previous
result, the initialization of the new tracks using clusters not yet assigned to the
predicted tracks, and the termination of the tracks that have yet to be updated
over a given period. The cluster assignment to the predicted object track is
conducted through technique of Global Nearest Neighbor (GNN). For a

comprehensive analysis of the track management in this research, the Z[k -1] ,

Z[K] , and {Zn[k]} are configured as follows. The Z[k —1] is composed of p

clusters, {Y.,Y,,---,Y;,---,Y,}, and each \_Ki consists of n  two-dimensional

points. The Z[k] consists of q clusters, {Y,,Y,,---,Y;,---, Y.}, and {Zn[k]}

also comprise N clusters, {Z,,---,Z,,---,Z,} . The feature vector, f, for each

cluster A, in GNN is determined previously as shown in equation (4.18).

f20xy, 4,4 T

MAX !

[, y] = mean(A)
[4,. 4. 1=eig(cov(A)) when 4, >4

(4.18)

MAX ! min

The feature vector is a four-dimensional vector containing of a mean point
position and eigenvalues of the cluster’s covariance matrix. The eigenvalues
provide information of feature geometry regardless of rotation. A weighted 2-

norm is defined as a Euclidean distance in 4-D feature space. If the distance
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between Z  and Y, s less than a predefined threshold, v, indicates a

measured value of the n-th track Z .

Once the assignment of the measurements to the predicted tracks is
completed, the track initialization and interruption are performed. If the track
is not continuously updated for more than 30% of the duration of life or for

consecutive three steps, the track is dropped. The track initialization presents a

new track generation by using clusters (Vi ., ) that has not yet been assigned

to a track. If the distance between Y; and Y, is less than the predefined

threshold of distance, a corresponding relationship for creating a new track is
established. The position, velocity, and heading angle of object are initialized

through ICP based point matching, and the other elements are initialized to zero.

4.3.3. Measurement Update

The EKF structure is used to conduct the measurement update. Since the

process model of the object was described in subsection 4.3.1, the measurement
and the actual calculation of the assigned cluster for n-th track, Z , are
discussed in this subsection. In this study, the three measurements collected via

Z include the X, y directional position and the heading angle of the target

objects. When z_is a measurement vector of the EKF, Z isexpressedasa

3D vector as following:
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z, =[h,..h,.hT (4.19)

The three elements of z_ express the mean position of point cloud cluster
and yaw angle of the object at O,x y , respectively. The position of the n-th

track is considered the average of the matched Z  after matching Z to Z

n

by using ICP. The movement direction of the moving object represents the

direction of the displacement vector from the mean position of Zz [k -1] to
the mean position of matching Zn. In Figure 4.26, these measurements are

depicted with different colored dots, and the measurement model based on them

is linear as derived in (4.20), assuming that the measured values associated

with white Gaussian noise with a covariance matrix of V .

z,[k]=H.x,[K] + v, [k]

v,[K] = N (0,V,[K])

1000000 (4.20)
H =01 00000

0010000

With this measurement, the state can be updated by calculating Kalman gain.

The posteriori estimates can be given by:
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Kia = PoHI (HPLHT +R)

k+1 —

X = X Ky (Zea = HiXe ) (4.21)
Pk++1 = ( Kk+lH ) Pk_+1

where K., , X,, and PR’ are, respectively, the Kalman gain, the

posteriori estimate, and the posteriori covariance.

o i”[k —1] with ego motion compensation
) — -
. 0500 ® Z,[k]
&mm @ Z,[k]

@ matching Z [k] to Z [k] viaicp
Figure 4.26. The measurement of n-th track from corresponded cluster. The

triangle denotes mean point of each cluster.

4.3.4. Performance Evaluation via Vehicle Tests

The proposed object tracking algorithm has been verified by comparing to
geometric model-based tracking (MBT) algorithm in respect of object detection
and state estimation. The MBT is the representative tracking method among the
detect before track approaches. MBT extracts the practically possible feature
candidates of objects from the present point cloud signals, and tracks the shape
candidates using the multiple hypothesis tracking structure proposed in
[Cho,'14]. After clustering in the point clouds of present step, the shape
candidates were extracted by using the scheme of bounding box and the virtual
ray. The performance of state estimation accuracy was verified by comparing

to MBT approach in regard to the standard deviation of the state estimation
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error. With the purpose of the error analysis, the driving data including situation
of lane keeping and lane change were acquired at various relative positions
using the RT-range. The data log of Seoul National University (SNU) Kwanak
campus is used to determine the results. The test-driving road included a variety
of urban environments such as intersections, crosswalks, and speed bumps.
Each data frame was labeled with moving objects detected from a camera
located in front windshield, and 540 number of moving objects were labeled
including vehicles, buses, motorcycles and so forth.

The results of target detection are shown in Table 10. As explained in Table
10, the F; score for the proposed approach was around 59% higher than that
for MBT approach since both precision and recall had increased. The precision
and recall were improved by 0.062 and 0.478 respectively. Increased precision
indicates a decrease in the number of false alarms, and significantly
improvement of recall indicates the reduction in the frequency of false negative

results.

Table 10. Comparison result of GMFA and MBT based on data log of SNU

Kwanak Campus.

Moving Detected Correctly
Method Precision  Recall F;score
Objects  Objects Detected

GMFA 540 568 486 0.856 0.900 0.877

MBT 540 287 228 0.794 0.422 0.551

As the performance of tracking was obtained without assumption of the

moving objects’ shape, the efficient detection and tracking of diverse moving
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objects faced in the urban situation were successfully performed. The speed and
heading angle of the vehicle were estimated with a high degree of confidence

through points correlation in consecutive scans.
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Chapter 5 Computational Load

Management

The automated driving system consists of perception, positioning, decision-
making, and control, and the real-time stability of the system must be secured
for safe driving. For the whole system to operate normally, a designated
calculation cycle must be ensured based on the evaluation of hardware
capabilities and algorithm performance. The computational load of the
environment perception algorithm is very high in terms of real-time stability
since the computational load of the perception module that processes
environment information takes up a large portion of all resources. Therefore,
this study focuses on lidar-based environmental recognition technology and
proposes a computational load management strategy to ensure real-time
reliability of environment recognition systems for automated driving.

The adaptive ROI-based environment perception algorithm designed in
Chapter 3 and 4 has improved efficiency, scalability, and accuracy compared to
the existing algorithm. Although this improves efficiency, there is still a
possibility that the operation fails within a given period, so this design cannot
guarantee that real-time stability is achieved. To improve the real-time stability
of the target algorithm, it is necessary first to identify and efficiently use the
resources allocated to the cognitive algorithm in the target system. In terms of
practical application, the computational load is regarded as the computation

time. The lower processing module constituting the environment-aware
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algorithm must complete the operation within the allocated period for smooth
operation. Data that senses the surrounding environment using lidar correlates
with the amount of data and the point cloud data depending on the road structure
and traffic conditions, and the deviation can be quite significant. Unlike most
algorithms with fixed input and output sizes, lidar-based environment
recognition algorithms have variable input and output data sizes. In order to
reflect these data characteristics and the characteristics of the entire system, a
computational load management strategy is established based on the data
analysis of the target automated driving system implemented on the vehicle.

The structure of the automated driving system developed in this laboratory is
shown in Figure 5.1. Lidar-based algorithms applied in this system are mounted
along with motion planning on PC devices shown in shades of blue in Figure
5.1.

To determine sampling cycle of system, various factors should be considered:
hardware capability and requirement of system performance. The automated
driving system required to be able to understand the real-time traffic
environment and react to it fast enough. However, the actual performance
requirement for automated driving system is still largely undefined. According
to previous work in ADAS, the reaction time of ADS is determined by two
factors: frame rate and processing latency. The frame rate determines how fast
the sensor data can be fed into the process engine, and the processing latency
of perceiving scenes and making operational decisions determines how fast the
system can react to the acquired sensor information. Human drivers take
varying amount of time to respond based on the level of expectation and action
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chosen. The fastest possible action by a human driver takes 100-150ms
[Newell,'85, Thorpe,'96]. To secure better vehicle safety, automated driving
systems must be able to react faster than human drivers, which recommends the
processing latency should be within 100 milliseconds [Lin,'18]. To react
quickly to the constantly changing traffic condition, the system should be able
to react faster than human reaction time, which suggests a frequency of once
every 100 milliseconds. This processing frequency aligns with the industry
standards of Mobileye [Shalev-Shwartz,'16] and the design specifications of
Udacity [Udacity,'17]. In consideration of the system performance constraint
determined above, target hardware specification and the sensor's performance,
the sampling cycle is designed at 10Hz.

Due to the interlocking characteristics of the LabVIEW and MATLAB
software applied, environment awareness and motion planning are designed to
perform serial operations in our ADS. Since the sum of the execution time of
two modules on the same hardware should not exceed a predetermined period,
the resource allocated to the environment recognition algorithm is calculated
using the relatively small variation in the computational load of the motion
planning module. By applying multiple linear regression to the driving data of
the target system, the computational load of the main functions of the
perception algorithm is estimated before the algorithm is executed. In order to
prevent execution time from being exceeded based on the expected processing
time, processing time reduction is performed in which the data used for
processing is reduced sequentially based on ROI. Nevertheless, when the actual
execution time of the algorithm continuously exceeds the allocation criteria, the
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driving control ability is partially limited to ensure driving safety and real-time

stability of the proposed system.

The performance of the proposed

algorithm is verified through data-based

simulation with driving logs. It is shown that the perception module's

computation efficiency performance can be significantly enhanced.

Environment Perception Part

" Low-
: S ; Multiple Object| | Motion
Signals Clustering _’Tracking (MoT) Planning level
Control -
Sensors PC Autobox Vehicle
10 Hz 100 Hz
PC Sampling Time [100ms] - ; v
P L | Consideration of
1" . 1 sensor's sampling freq.
Perception Mothn etc.
Planning
Processing Time Estimation
———————— P> Normal Operdtion
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|<. Processing Time Reduction

Allocated Perception Processing Time

Figure 5.1. Scheme of processing time estimation and reduction.
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5.1. Processing Time Analysis of Driving Data

In order to ensure the real-time stability of the proposed algorithm under
given conditions, it is necessary to identify the allocated resources and
effectively use them accurately. The ability of the algorithm to keep a proper
execution cycle under given execution conditions is a criterion for evaluating
the algorithm's real-time computational stability. For the real-time performance
of the algorithm proposed in this study, we must first identify the resources
allocated to the algorithm.

The main modules of the automated driving system we are developing are
composed of PC and Autobox, as shown in Figure 5.1. Among them, algorithms
such as environment perception and motion planning are installed on PC. Since
the resources are shared among the algorithms of the same device, resources
must be allocated individually for each algorithm. As mentioned above, in the
recognition algorithm using the environment sensor information, the dimension
of input and output data is variable, and the deviation is significant. On the other
hand, the calculation time required for motion planning and other algorithms is
relatively small because the variation of operation time by cycle is relatively
small. By performing statistical analysis on the actual driving data of the target
system, the processing time required for algorithms other than recognition can
be obtained. Using this, it calculates the resources that can be used by the
proposed environmental awareness algorithm while guaranteeing the

performance of other algorithms in the PC environment.
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Motion planning is the most computationally loaded algorithm in PC,
excluding the environment recognition algorithm. Therefore, to obtain the
maximum resources available in perception computation, an analysis of the
motion planning algorithm should be preceded first. Motion planning is
performed using all information, including environmental recognition results.
The motion planning of the automated driving system applied in this study is
designed based on MPC. The primary process consists of four steps, as shown
in Figure 5.2. The safety envelope is determined using the environmental
cognition results, maps, and localization results, and the ego vehicle model for
the MPC is determined. Motion optimization is finally performed through mode

decision on lane keeping and lane change.

Perception Result

Multi Object Static Obstacle Map
Estimation (SOM)
| ]
Metion Planning ¢

Safety Envelope Decision

v

Ego Vehicle Model for SMPC

v

Lane Keeping(LK) / Lane Change(LC) Decision

v

Optimization

v

Autobox

Figure 5.2. Algorithm flow of motion planning after environment perception.
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Using the actual driving data of the subject automated vehicle, the
computation time of the functions that make up the motion planning depicted
in Figure 5.2 are analyzed. Figure 5.3 shows the result of analyzing the
calculation time of MPC-based motion planning functions using driving data.
Figure 5.3 (a) shows the computation time for each configuration function. In
other functions except for LK/LC decision, it is possible to see that the
operation time is constant regardless of the situation, considering intermittent
noise. On the other hand, the LK/LC decision function can see some variation
in computations depending on the driving situation, but the deviation is not
significant. Figure 5.3 (b) shows the processing time of motion planning over
time by accumulating the result of Figure 5.3 (a). Except for some occasional
noise, it can be seen that the total computing time and proportion are constant.
Figure 5.3 (c) shows the histogram of the time required for each function. Many
functions have small standard deviations, but as mentioned earlier, LK/LC
decision shows significant variations in computational time depending on the
situation. The algorithms of this automated driving system on PC are designed
in LabVIEW and MATLAB software in the Windows OS environment. Since
the real-time performance guarantee is not an optimal development
environment, the intermittent noises showed in Figure 5.3 (a) and (b) plots are
presumed to be due to such limitations. Figure 5.3 (d) shows the execution time
in overall motion planning. The green dashed line represents the total
computation time set in the PC. The dashed blue line represents the maximum
computation time, and the red dashed line represents the minimum computation
time. In view of reflecting all these characteristics in order to secure real-time
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stability in the target environment, the maximum time is determined as the

acquisition time for the smooth execution of motion planning.
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(d) Total motion planning processing time

Figure 5.3. Processing time analysis of motion planning based on driving data.

Data analysis has been conducted on the processing time of the functions
required to perform the remaining functions in the PC device. The computation
time of the remaining functions was analyzed to reflect the actual system
characteristics, although the computations are relatively small compared to the
motion planning and perception algorithm. Figure 5.4 (a) is a cumulative plot
of the computation time, and the shaded color expresses the ratio of
computation time for each function. Figure 5.4 (b) shows the histogram of the
time required for each function. In most cases, it takes about 1 or 2 milliseconds.
The processing time for the motion planning and other functions analyzed
earlier, based on the total allocated time, is depicted in Figure 5.5. The area
filled in yellow is the time required for motion planning, and the area filled in
cyan is other processing time, which is relatively small. As mentioned above,
to take into consideration the performance characteristics of the H/W and S/W

intermittently, the decision is made based on the worst case. Thus, as shown by
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the red dashed line in Figure 5.5, 50.29 milliseconds of the total time of 100

milliseconds can be allocated to an algorithm that is lidar-based.
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Figure 5.4. Processing time analysis of other function except motion planning

based on driving data.
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Figure 5.5. Evaluation result of remained processing time for perception.
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5.2. Processing Time Estimation based on Multiple

Linear Regression

From the results in Section 5.1, the resources allocated to lidar-based
cognitive algorithms in the target system were identified in terms of
computation time. The algorithm should be designed to perform operations
within allocated resource conditions to increase the real-time reliability of the
target algorithm. The adaptive ROI-based environmental cognition algorithm
designed in Chapter 3 has improved efficiency, scalability, and accuracy
compared to the existing algorithm. Although the efficiency is improved, there
is still a possibility that the operation fails within a given period. Therefore, it
is necessary to reduce processing load to ensure real-time stability. To manage
computational load of the system, this section proposes computational time
prediction techniques in functional units that constitute the algorithm.

Through data analysis, the lidar-based perception algorithm of the automated
driving system correlates with the characteristics of input/output data,
processing results of the previous cycle, and processing time of the current
cycle. A processing time estimation model is constructed for clustering and
multi-object tracking, which are functions that are highly resource-intensive to
secure real-time computational reliability. As shown in Figure 5.6, the factors
that account for a large proportion of the computation of the two functions were
selected among the variables in the perception algorithm. By fitting the various

regression models, an appropriate processing time prediction model was
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determined. Multiple linear regression models were selected to reflect the
algorithm and execution environment of the target system by applying them to
many driving data as well as statistical fitting results.

The strategies for estimating computation time prior to actual processing
using the processing time prediction model obtained in this section to determine
whether execution can be performed normally with the allocated resources and

preventing failures will be covered in the next section.

. PointCloud Driving Data
PointCloud  size of each NSt NI EE Vehicle
Size cluster Previous Clusters Previous Tracks ~~° Status
S
- ~ .
predict _~»7 “x.predlct
& TSA
Clustering Multi-Object Tracking (MOT)
Processing Time Processing Time

Figure 5.6. Scheme of processing time estimation based on multiple linear

regression.

5.2.1. Clustering Processing Time Estimation

In this subsection, we predict the processing time of the clustering process
that requires considerable computational power among the lidar-based
cognitive algorithms applied to autonomous driving systems. By analyzing the
actual driving data of the target autonomous driving system, we extract the main
factors affecting the clustering process and determine the relationship by
applying the linear regression technique. By predicting the processing time

based on only the information of the main factor before operating, it is expected
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that it is possible to determine in advance whether a successful operation can
be performed with the resources allocated to the lidar-based perception module.

The clustering refers to a process of grouping point cloud data into adjacent
group units by considering scattered point cloud data such as Euclidean
distance. In subsection 3.2.3, clustering processing was described in detail. For
the distributed point cloud to be classified as a group, the point-to-point
Euclidean distance must be smaller than the distance set as the threshold. In the
process of clustering in this way, the distance between each point must be
calculated one by one. An intuitive method is to perform sequential iterations
of points in the entered point cloud, where a point is determined, and the
distance to the remaining points is compared based on that point. Another
method is to calculate the distance between all points to be processed in a vast
matrix form and extract the point-to-point relationship through the processing
process. In both methods, it can be determined that the number of operations
and the dimension of the matrix are determined according to the size of the
input data. Therefore, clustering processing has a performance characteristic
that depends on the dimension of the input point cloud under the condition that
hardware specifications and software characteristics are similar. This
relationship is confirmed by the data distribution between the input point cloud
size and the clustering processing time, as shown in Figure 5.8 (b).

As mentioned above, it can be seen that the input point cloud size is
intuitively proportional to the clustering processing. However, to construct a
processing time prediction model with only one factor, the margin of error due
to the distribution of the point cloud can be quite large. To find out the factors
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related to the clustering operation, we analyzed the relationship between the
parameters in the algorithm and various signals and processing time. Road
facilities, such as walls, guardrails, and buildings, do not move, and treating
them as moving objects reduces not only recognition accuracy but also
increases the computational load. Boundary information of clusters exceeding
a specific vehicle size is applied to construct a static obstacle map, and it is
classified as an object that cannot move in the clustering process and is not used
for MOT. However, as the cluster size increases during the clustering process,
the correlation between already clustered points and the remaining points needs
to be checked, and thus, it is estimated that a considerable computational load
occurs. Therefore, the majority of data that is not determined to be a valid
cluster moving in the clustering results are named as rejected point cloud
because they are dropped from the cluster because they are huge objects causing
computational load. Figure 5.8 (c) shows the relationship between the cluster
output rejected point cloud and the clustering time. The relationship between
the clustering processing time and the two main factors has a constant tendency,

as shown in Figure 5.7.
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Two major factors were selected from several factors related to clustering
computational complexity: point cloud size and rejected point cloud size. Since
the update frequency of the environmental information acquired by the lidar
sensor is generally about 10 to 25 Hz, the scan period is short. Therefore, it can
be reasonably assumed that a similar signal distribution exists between the
scans without a large environmental change. In this way, the rejected point
cloud size of the previous cycle can be applied to the current cycle because the
results processed in the previous cycle have a distribution that is quite similar
to the results of the current cycle. We apply these two factors to multiple linear
regression to determine the clustering time prediction model.

To determine the most reasonable model using the lidar environmental signal
log stored in driving data, it is necessary to combine the data and the appropriate
model. Table 11 shows the characteristics of driving data to perform multi-

linear regression.

Table 11 Data description for multiple linear regression of clustering.

Standard

deviation

Variable Min. Max. Median Mean

Clustering Time
43489 53.1293 9.3084  12.3478 7.5718

[ms]
Point Cloud Size 236 801 355 391.7945 100.0276
Rejected Point
48 732 225 257.8151 106.8280
Cloud Size
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A reasonable regression model form is required for proper fitting. Referring

to the data distribution in Figure 5.8, four models are selected as candidates as

shown in (5.1).

MOdeI Cl Tcluster ~ :30 + ﬂlN PointCloud
~ ﬂo + ﬁlN PointCloud,rej
~ ﬁo + lglN pointCloud T ﬁz N PointCloud , rej

~ ﬁo + ﬂlN PointCloud + :BZ N PointCloud,rej + :63 N Point Cloud N PointCloud,rej

Model C2: T
Model C3:T

cluster

Model C4: T

cluster

cluster

(5.1)

Models C1 and C2 are simple linear regression models for each factor. C3 is

a multiple linear regression model consisting of the sum of two main factors.

Fitting was performed on the data described in Table 11 and the four regression

models in Equation (5.1). The results are shown in Table 12.

Table 12 Multiple Linear Regression Result of Clustering Time

Estimation by models.

F-statistic vs.

Model | RMSE R? Adjusted R’
constant model
Cl 3.46 0.792 0.792 1.16e+04
C2 3.52 0.783 0.783 1.11e+04
C3 3.08 0.835 0.835 7.73e+03
C4 2.88 0.856 0.856 6.05e+03

To select the most reasonable model among the four regression models, we

applied the data to the target data and compared the output with the reference

data and evaluated the difference. Root Mean Square Error (RMSE) represents
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the sum of the squares of the residuals and the least error of the C3 and C4
models. R® is the coefficient of multiple determination, and since the model
represents the ratio representing the data, it can be said that the larger the data
is reflected.

Figure 5.9 illustrates the fitting results of models C1 through C4. Figure
5.10(a) shows a plot comparing the results of the clustering time by the model
with the actual data (black-colored solid line) over time. Figure 5.9(a) shows
intuitively that multiple linear regression models C3, C4, rather than C1, C2,
which are simple linear regression models that only consider the single receiver
variable, fit the actual data well. Figure 5.9 (b) through (e) shows a model-
specific Residual histogram, where, as in the RMSE shown in Table 12, the

response of Model C4 shows better results than other models.
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Figure 5.9. Multiple linear regression result of four clustering time models (C1-

C4).

Based on the above results, we determined that the C4 model is the best

among the four models for selecting the clustering time estimation model.

C4: Tcluster ~ ﬁo + ﬂlNPointCIoud + ﬂz NPointCIoud,rej + ﬂS NPointCIoud NPointCIoud.rej (52)
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Table 13 shows the analysis of the regression of the selected model C4.
Figure 5.10 consists of the histogram of the residual and the normal probability
plot of C4. The selected model is used in the computational load assessment to

ensure the real-time stability of the algorithm.

Table 13 Properties of selected clustering time prediction model based on

multiple linear regression.

Estimate(5,) SE tStat p-Value
(Intercept) 1.0211 0.59458 1.7173 0.0086028
N porrccioug 0.010224  0.0017011  6.0104  2.0699¢-09

N pgintcloud rejected -0.011104 0.0022955 -4.8374  1.3807e-06

Np: .
Point Cloud 9.2179¢-05 4.3736e-06 21.076 3.5058e-92

N PointCloud, rejected
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Figure 5.10. Residual plots of Selected Model C4.

5.2.2. Multi Object Tracking (MOT) Processing Time Estimation

In this subsection, we determine a model that estimates the computation time
for the process of performing multiple object tracking (MOT) with clustering
results in the recognition algorithm. Similar to the previous subsection, we
extract the main factors that affect the operation of the MOT and apply the
driving data-based linear regression technique. The practical MOT computation
time can be predicted from an integration perspective by reflecting the hardware
specifications and software characteristics because the actual target system data
is used. Similarly, since the processing time is predicted using only the
information input to the MOT algorithm, it is expected to be effectively used to
determine and cope in advance whether normal execution is possible within the

allocated computation time.
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The MOT of the lidar-based cognitive algorithm proposed in this study is
described in detail in previous Section 4.3. GMFA-based MOT performs EKF-
based object state estimation using the ICP matching result of point cloud
constituting a cluster. ICP matching and individual EKFs are applied as many
as the number of tracks created by the MOT structure. Therefore, the
computational complexity is increased in proportion to the number of object
tracks created in the previous operation cycle. These relationships are shown in
Figure 5.12 (c). Besides, since the cluster generated by the clustering process is
used to estimate the status of objects moving in the environment, the association
process with the existing object tracks is performed as many clusters input to
the MOT. For this reason, the number of input clusters can also be a significant
factor in the MOT operation time. The relationship between the number of
clusters and the MOT operation time is shown in Figure 5.12 (b).

Since the ICP algorithm estimates the state information of objects through
ICP matching of the point cloud, it is expected that the number of point groups
included in each cluster can be a regressor variable. However, no real
correlation with MOT calculation complexity was found through analyzing the
actual data. As noted in previous subsection 5.2.1, clusters extracted for
application to MOT are already limited in the point cloud count for each cluster
input into the MOT process, since classification is preceded by size
considerations in the clustering process. For this reason, the point cloud size for
each cluster could not be adopted as a regressor variable. Therefore, the
regressor variable to obtain the estimation model of MOT computation time
was determined by the number of clusters and the number of tracks.
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Among the many factors related to MOT computational complexity, two

main factors were chosen: the number of clusters and the number of tracks.

Therefore, we apply these two factors to multiple linear regression to determine

the MOT time prediction model.

To select the most rational model using the driving data, the data and the

appropriate model combination candidates are needed. Table 14 shows the

characteristics of regressor variables related to the MOT operation of driving

data for performing multi-linear regression.

Table 14 Data description for multiple linear regression of MOT.

Standard
Variable Min. Max. Median Mean o
deviation
MOT Time [ms] 1.0400 43.0951 17.4848 17.2600 73.4342
Number of Clusters 1 27 12 11.5132 3.7018
Number of Tracks 0 20 9 9.0287 3.7131

A reasonable regression model form is required for proper fitting. Referring

to the data distribution in Figure 5.12, four models are selected as candidates as

shown in (5.3).

MOdeI M1: Tcluster ~ ﬂo + ﬂlNCIuster
Model M 2: Tcluster ~ ﬁo + ﬁlNTrack
Model M3:T,

cluster " ﬂo + ﬂlNCIuster + ﬂz NTrack

MOdeI M 4 : Tcluster ~ ﬂo + ﬁlNCIuster + ﬂz NTrack + ﬂSNCIuster NTrack
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Models M1 and M2 are simple linear regression models for each factor. M3
is a multiple linear regression model consisting of the sum of two main factors.
In the track association process of the MOT, the multiplication term has a
practical meaning because the correlation between the existing tracks and the
input clusters is determined through the iterative operation. The fitting was
performed on the data described in Table 14 with the four regression models in

(5.3), and the results are shown in Table 15.

Table 15 Multiple linear regression result of MOT time estimation by models.

F-statistic vs.
Model RMSE R? Adjusted R? constant
model
M1 5.27 0.498 0.498 3.03e+03
M2 3.78 0.741 0.741 8.76d+03
M3 3.78 0.741 0.741 4.38e+03
M4 3.76 0.744 0.744 2.96e+03

To select the most reasonable model from the fitting results in Table 15, the
outputs obtained by applying the models to the target data were compared with
the actual reference. RMSE represents the sum of the squares of the residuals,
and the M1 model is the largest. The coefficient of multiple determination, R2,
represents the ratio at which the model represents the data, so the larger it is,
the better the data is reflected. R2 shows that M2, M3, and M4 are models that
reflect about 74.1% of data.

Figure 5.14 depicts the fitting results for models M1 through M4. Figure
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5.14(a) is a plot comparing MOT time estimation results by the model with
actual data. In the simple linear regression model considering only the single
regressor variable, M1 did not fit adequately compared to M2. It indicates that
the computational complexity is highly dependent on the number of tracks due
to the structure of the MOT algorithm. In addition, it can be seen intuitively in
Figure 5.14 (a) that M2 and M3 and M4, which are multiple linear regression
models, are better suited to actual data than M1. Figure 5.14 (b) through (e)
shows the residual histogram for each model, where the residuals of models M2,

M3, and M4 show better results than the M1 model, as shown in RMSE of Table

16.
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Figure 5.13. Multiple linear regression result of four MOT time models (M1-

M4).

From the above results, the fitting performance evaluation of M2, M3, and
M4 except for M1 has been similarly derived. When the three models are
applied to data not used for fitting, the error of the M4 model is calculated to

be the smallest. It is because the regression model of M4 is appropriately
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composed of the items reflecting the characteristics related to the MOT
calculation load. Therefore, it is determined that the M4 model is most suitable

as the MOT time estimation model.

M 4 : Tcluster ~ ﬂO + ﬁlNCIuster + ﬂz NTrack + ﬂS NCIuster NTrack (54)

Table 16 shows the analysis of the regression of the selected model M4 and
Figure 5.14 consists of the histogram of the residual and the normal probability
plot of M4. The selected model is applied to the computational load assessment

to ensure the real-time stability of the algorithm.

Table 16 Properties of selected MOT time model based on multiple linear

regression.
Estimate( £,) SE tStat p-Value
(Intercept) -0.49918 0.42539 -1.1735 0.02407
N ciuster 0.2419 0.048676 4.9696 7.0771e-07
N rack 1.9656 0.056395 34.854 2.0655e-224
Neiuster - Nrrack -0.024085 0.0042215 -5.7054 1.2719¢-08
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(a) Histogram of Residuals
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Figure 5.14. Residual plots of selected model M4.

5.2.3. Validation through Data-based Simulation

In the previous two subsections, we determined a model that predicts the
processing time of clustering and MOT functions that takes up the large
computational load of lidar-based cognitive algorithms. In this subsection, the
determined models are applied to the target perception system and evaluated by
comparing the actual processing time with the estimated processing time. The
results applied to the beltway at Seoul National University's Kwanak campus
are described in Figure 5.15. Although there are some differences from the
actual data, it can be seen that the estimation results are similar to the actual
data. For detailed error analysis, residuals are shown as histograms in Figure
5.16, and the probability density function is also shown for clarity. Figure 5.16

(a) shows that the predicted time of the MOT tends to be slightly larger than the
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predicted time of the clustering. Table 17 shows the RMSE of the results of
clustering and MOT processing time estimation. By comparing the RMSE

values, it can be said that clustering has a higher accuracy of the regression

model than the MOT.
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Figure 5.15. Simulation result of processing time estimation.
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Figure 5.16. Error analysis of processing time estimation simulation.

Table 17 RMSE analysis of processing time estimation of clustering and

MOT.
Function Clustering MOT
RMSE [ms] 4.9680 5.8616
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5.3. Computational Load Management

Conventional lidar-based cognitive algorithms not only process point cloud
data of limited area but also apply uniform processing to all data. When the
surrounding environment is simple and the detection signal data is small, it is
executed smoothly. When the surrounding environment is simple and the
detection signal data is small, it is executed smoothly. Otherwise, the operation
fails sometimes within the allotted calculation time, and thus the operation
result of the algorithm is not normally transmitted to the next module. If the
actual operation time of the module exceeds the allotted period, the operation
results are not updated. Therefore, it can be said that the ability to respond
immediately is reduced from the viewpoint of the entire system.

In Chapter 3, a method of performing adaptive ROI-based point cloud
processing was proposed. It is more efficient and environmentally aware than
existing processing techniques that process all point clouds in a batch or use
map information to define areas of interest. However, there is still a possibility
of exceeding the time limit due to the computational load depending on the
running conditions of the system and the surrounding environment. Therefore,
this section proposes a computational load management method to prevent such
a failure. The concept of optimization in computer engineering means
maximizing performance by improving algorithms in a limited hardware
environment. There are a variety of software optimization techniques such as

optimization of function call speed, optimization of operation speed,
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optimization of control statements, and code optimization to reduce memory
usage. Since this section focuses on the algorithm's execution cycle adherence,
not on the code optimization, we develop a computational load management
strategy by applying computational assessment of perception algorithm.

The computation load management proposed in this study is ultimately
aimed at reducing execution time. If the predicted processing time exceeds the
given execution time, it should be reduced, as mentioned earlier, since the size
of the point cloud to be handled is the most significant cause due to the
algorithm characteristics. The number of point clouds to be processed should
be reduced by reducing the required perception ROI. The previously designed
ROI can be reduced in two ways: area selection based on importance and
reduction of overall design area due to deceleration control. These two methods
are critical components of computational load management with processing

time reduction and restriction of driving control, as shown in Figure 5.17.

Massive Separate Processing
Sensing Data based on Adaptive ROI
[
v

Predicted
Processing Time
Exceeds?

Processing Time
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A

Processing Time Reduction
based on ROI Selection

Actual Processing
Time Exceeds?

Sequential Processing i

1
v vY
Restriction of Restriction of
Computation Load Driving Task Driving Ability
Management Restriction of Driving Control

Figure 5.17. Scheme of proposed computation load management.
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Sequential processing in processing time reduction is a method that excludes
areas of low ROI importance step by step if the predicted computation time is
not appropriate. The ROIs classified as 1st, 2nd, and 3rd are dropped from the
3rd ROI in the lowest order, and are sequentially executed until the prediction
execution time satisfies the criteria. In addition, voxelization, which is 20%
looser than the default, is applied before dropping the ROL.

Restriction of the driving condition is a method to increase the real-time
computational reliability by limiting the behavior of the vehicle by utilizing the
vehicle behavior according to the level characteristics of the adaptive ROI and
the subject vehicle speed-dependent ROI characteristics. In cases where
sequential processing is heavily applied, it may not be appropriate to expand
the area for lane-change, thus limiting the choice that results in zone expansion
for safety reasons. Besides, ROI is reduced by limiting the top speed on the
road, which leads to a decrease in the number of point clouds. Since excessive
limits on driving capability can cause degradation of driving performance,

reasonable criteria are established and designed to be applied only if necessary.

5.3.1. Sequential Processing to Computation Load Reduction

In Section 3.1, the adaptive ROI by level is defined and applied to lidar
processing. The 1st level ROI is the most essential and essential area, and its
weight decreases toward the 3rd level ROIL In Section 3.2, the processing is
applied differently in each area to reflect these design characteristics to
maximize efficiency. Section 5.1 analyzes and identifies the resources allocated

to the algorithm in a given execution environment. Nevertheless, the
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environment is so complex that the allocated execution time may be exceeded
if there is a lot of input data. Therefore, processing time reduction is performed
by designing sequential steps using the method of estimating the algorithm
execution time in advance in the previous section 5.2.

The sequential steps are constructed, as shown in Figure 5.18, using the ROI
importance level concept defined in Chapter 3. The st level ROl is the area of
the highest importance and must be recognized — the lower the level, the lower
the importance. The process of computations using all the data inside the three-
step ROI was proposed in Section 3.2. The processing time is reduced by
reducing the size of data to be processed by sequentially excluding the lower

regions except for the 1st ROL
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& Processing Time Estimation

2 Loose Voxelization

& Processing Time Estimation
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Processing Time Reduced Successfully

Figure 5.18. Flow chart of sequential processing time reduction.
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Before applying sequential processing, it is necessary to determine the
suitability of the input data using the predicted processing time. The blue
diamond-shaped block illustrates this process in Figure 5.18. The criteria for
appropriate predictive processing time are established and applied, taking into
account the allocation time obtained in Section 5.1 and the RMSE error in each
function's processing time estimation results in Section 5.2.

Sequential processing consists of three main stages: the point cloud ROI
selection, the track and cluster ROI selection, and loose voxelization. In Section
5.2, the processing time reduction for the two computational processes has been
performed because clustering and MOT take up most of the computational load
in the lidar-based environment perception algorithm. Since the calculation time
for each function can be individually reduced by changing the input data for
each function, ROI selection was performed in two stages. Point cloud ROI
selection directly reduces the input of the clustering function, and track and
cluster ROI selection reduce the input of the MOT function. Besides, a cell
configuration that is looser than the existing downsizing condition is applied to
correspond to the case where the calculation time is exceeded even though the
ROI selection is performed. In this study, a 20% increase in the size of the
voxelization cell in subsection 3.2.2 is applied. In Figure 5.18, sequential
processing is designed as a total of seven steps, and processing time prediction
is performed immediately after applying each step to determine the suitability

of the input data size.
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5.3.2. Restriction of Driving Control

Exceeding the execution time of the modules constituting the system may be
regarded as a failure from the system's point of view. According to the technical
report containing the framework for test cases and scenarios of automated
driving systems published by National Highway Traffic Safety Administration
(NHTSA) of United States [Thorn,'18], system failure modes are classified as
follows: Sensing and communication, perception, navigation and control, and
Human-Machine Interface (HMI). In this case, the application consists of
sensor processing, localization, and world modeling, and the item that
corresponds to the objective of this study is sensor processing. The failure is

summarized in the following three ways.

1) No data — Information is absent altogether.
2) Inadequate quality data — Information is of poor or degraded quality.
3) Latent data — Information is delayed or old.

If the cognition algorithm proposed in this study is not executed within the
allotted period, failure of the above type may occur. The NHTSA report
classifies failure mitigation into two strategies for failure: fail-operational (FO)
and fail-safe (FS). FS strategies are for cases where the ADS cannot continue
to operate due to a significant failure, and FO strategies are for cases where the
ADS could continue to operate even in the face of failure. Since we design
processing time reduction for failure release purposes from a system
perspective, we have a similar orientation to the FO strategy. Among the

mechanisms of FO, this study refers to degraded operations. Degraded
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operation is one of the strategies to keep the system functioning in a confined
environment even after a failure and limits the following items: top speed,
automation level, Operational Design Domain (ODD), maneuver, and Object
and Event Detection and Response (OEDR). Among these, restriction of the
maneuver related to lane change and limitation of the top speed related to ROI
dependent on speed, are considered in the algorithm development. Restriction
of driving control is activated when certain conditions are met throughout the

sequential processing and perception algorithms, as shown in Figure 5.19.
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Figure 5.19. Scheme of restrict driving condition.

The restriction of driving control utilizes the level characteristics of adaptive
ROI and the ROI characteristics dependent on the subject vehicle speed.
Sequential processing excludes low-level ROI data when the predicted

computation time is exceeded. At this point, the area was expanded in
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subsection 3.1.2 to conduct safe lane changes. Lane change requires more ROI
than normal driving conditions. If area reduction is already applied in sequential
processing, it should be limited because there is no resource space to cope with
area expansion. For example, if up to 2nd ROI is eliminated and only 1st ROI
of data is processed, environment awareness of the three-lane area from the
lane-keeping situation to both sides is performed. For safe lane changes, the
environment must be extended to at least the area next to the second lane.
Therefore, if only 1st ROl is selected during sequential processing, lane change
is limited for reliable real-time operation of the system.

Figure 5.20 through Figure 5.22 show the results of processing at the actual
driving speed for the same driving data, and the results processed according to
the ROI constructed when the speed was set by 10kph and 20kph slower than
the driving speed. While a decrease in speed does not always guarantee a
decrease in ROI, the point cloud size that is processed tends to decrease, as
shown in Figure 5.20. The execution time for each function can be seen in
Figure 5.21. From that figure, the ROI change due to the reduced speed has a
more significant impact on the clustering operation time than the MOT. The
total computation time is depicted in Figure 5.21 (c), and a histogram in Figure
5.22 for statistical analysis. The fitting parameters are shown in Table 18 for

fitting with a log-normal distribution.
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Figure 5.21. Processing time comparison by applying speed restriction.
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Figure 5.22. Density distribution of actual processing time by applying speed

restriction [-10kph, -20kph].

Table 18 Lognormal distribution properties of perception time by top
speed restriction.

Speed Restriction Type A (mu) o (sigma)
No restriction 3.26558 0.356428
-10kph 3.15659 0.337481
-20kph 3.06129 0.350763
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Despite the application of computational load management up to now, the
actual execution time of the module is possible to be exceeded due to various
reasons. As mentioned above, the computation load of the lidar processing is
required to reduce the ROI because it is proportional to the input data size. The
reduction of computation time of the perception algorithm according to the
speed reduction setting was confirmed through the simulation above. The speed
limiting method has a direct effect on the vehicle's behavior, and if applied
indiscriminately, it is likely to be inefficient and inadequate in terms of normal
driving control. In the case of self-driving systems and ADAS, there is not only
a delay for each module that makes up the system, but the actuator delay is large,
particularly for automobiles. If not an extreme contingency, intermittently
exceeding the running time may not be serious in terms of vehicle control.
Therefore, in this study, real-time performance of the perception module is
ensured through a top speed limit when continuous exceedance of execution

time occurs.

5.3.3. Validation through Data-based Simulation

The performance of the proposed sequential processing has been evaluated
through driving data-based simulation. Figure 5.23 shows the simulation result
of applying sequential processing to the driving data. Figure 5.23 (a) shows
when sequential processing is applied and not applied to the same data. The
solid green line represents the allocation maximum execution time of the
perception algorithm obtained in Section 5.1, and the solid magenta line is the
criterion to consider the processing time prediction error. In Figure 5.23 (a), the
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execution time without the computational load reduction indicated by the solid
black line frequently exceeds the allotted time. With the computational load
reduction in blue dashed line, the execution time does not exceed the allocation
time most of the time. Figure 5.23 (b) shows the switch flag when processing
time reduction is activated when the prediction processing time of the
perception algorithm exceeds the criteria using adaptive ROI-based processing
results. The reduced prediction processing time when computational load
management is applied is shown in Figure 5.23 (c¢). The histogram is shown in
Figure 5.24 for statistical analysis of the execution time of Figure 5.23 (a).
Figure 5.23 (d) shows top speed restriction flag when actual processing time
exceeds continuously even computational load management is applied. Figure
5.24 shows that the computational load used by existing algorithms over 40ms
can be reduced to less than 40ms by applying computation load reduction,
which in almost all cases results in a successful operation within the allocated
cycle. These results demonstrate that the processing time reduction based
computational load management proposed in this section is effective in

reducing the execution time of the environment perception algorithm.
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Figure 5.23. Simulation result of computational load management.
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Chapter 6 Vehicle Tests based

Performance Evaluation

The proposed algorithm is evaluated through test-data based computer
simulations and actual vehicle tests. The test-data based simulation is
constructed using the commercial vehicle software, MATLAB/Simulink with
collected driving data. Data is collected under various driving conditions while
driving on urban city roads. The automated driving system of test vehicle is
configured and executed on the LabVIEW, MATLAB, and Simulink
environment. The vehicle tests have been carried out on a section of the Nambu
beltway of Seoul, with regular vehicles driving together. The designated test
route is suitable as a test environment for evaluating algorithms because it can
be considered to represent a typical urban driving environment: it includes
representative facilities such as intersections, crosswalks, and median dividers
and has a large amount of traffic during the day. The experimental results
demonstrated that automated driving vehicle with perception algorithm based

on the proposed strategy in this study successfully drives the test route.
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6.1. Test-data based Simulation

Analyzing the vehicle test result of the automated driving system applying
the previous method, which used the batch application, it was confirmed that
the operation results are not updated or delayed due to intermittent system
timeout. The previous method is an approach to reduce the amount of
computation by downsizing the entire data, and it is difficult to cope with the
computational load due to various environmental changes. It cannot guarantee
reliable operation of the system, and vehicle safety cannot be guaranteed due to
the problems by applying the previous method. Vehicle safety must be
guaranteed because it is directly related to human life. In this study, we
proposed an algorithm that ensures system operational stability and vehicle
safety at the same time by acquiring cognitive performance first by weighting
the area considering the result of the automated driving plan and managing
computing load. In this section, we verify that these problems can be effectively
improved by applying the proposed method to two representative situations
where the performance degradation of the system occurred due to the
computational load problem. The performance is improved by comparing the
target acceleration calculated from the clearance, TTC, and the perception result
of the front driving area.

Figure 6.1 and Figure 6.3 show the results of the offline simulation by
applying the method proposed in this study to the experimental data applying
the previous method. Subfigure (a) shows the execution time of the entire

system when the existing method is applied, and the timeout occurrences are
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shown in subfigure (b). The result of applying the proposed computational load
management method is shown in subfigure (c), and the variation of the
computational load is relatively smaller than that of subfigure (a). Subfigure (d)
shows a comparison of system runtime distributions.

Figure 6.2 shows the case where the braking command was delayed due to a
delayed update of the detection result due to a continuous eight-step timeout.
Figure 6.4 also shows the situation where the update of the cognitive results
fails and affects vehicle control. It indicates that braking command may be
delayed by not being able to make a cut-in vehicle detection quickly, resulting
in a real crash or a decline in ride quality due to a late braking command with
a large degree. The proposed method can be adequately reflected in control by
performing fast and accurate environment perception as indicated by the blue
dashed line in Figure 6.2 by effectively managing the computational load.
Besides, using the vehicle-related safety indices, Figure 6.5 shows that the
proposed method achieves more reasonable risk assessment and management
by accurately and reliably performing object perception than the previous

method.
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6.2. Vehicle Tests: Urban Automated Driving

6.2.1. Test Configuration

Vehicle experiments have been conducted at the Nambu Beltway of Seoul.
The details of test roads are depicted in Figure 6.6. The designated test route is
Skm long and has quite complicated environments to drive automatically. Other
traffic participants should be considered because traffic on the given road is
very heavy during most of the day. In addition, there are various road
environments such as intersection, crosswalk, and median strip, and so forth, as

shown in subfigures of Figure 6.6.

o o o

Figure 6.6. Configuration of test route in Nambu beltway (5km).
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6.2.2. Motion Planning and Vehicle Control

The automated driving system that we are currently developing consists of
environment perception, motion planning, and vehicle control. In this study, we
dealt with research on strategies and algorithms for environment perception. To
apply and operate the proposed perception strategy-based algorithm, it is
implemented with an algorithm that plans and controls the vehicle behavior
using perception results. This section briefly introduces the built-in motion
planning and control algorithms implemented in our ADS.

The motion planning algorithm of ADS comprises three layers: dynamic
environment representation, static environment representation, and motion
planning optimization, as shown in Figure 6.7.

Based on the environment representation results from the perception module,
the moving objects are classified, and behavior prediction is performed
according to the characteristics of the classified objects. More accurate
decisions and safer control can be performed through improved object behavior
prediction.

The result of object behavior prediction and the constructed static obstacle
map define the drivable area boundary: the free space boundary, and the
drivable corridor. The free space boundary utilizes a lidar-based static obstacle
map to represent the physical boundaries of the occluded area. The drivable
corridor is the boundary for safe driving in traffic situations surrounding the
ego vehicle. All environment information is represented on the same plane and
is used to redefine the drivable corridor from the initial guess.

Based on the dynamic and static environment representation, the desired
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longitudinal acceleration and desired path are determined using the Model
Predictive Control (MPC) approach. Safety, dynamics, and actuator constraints
are simultaneously considered to optimize the desired motion of the vehicle.
We use the linear MPC based on the particle motion model. The optimal states
determined by MPC are used as the desired path. The optimal acceleration input
of the first prediction sampling is used as the desired acceleration.

When the desired motion of the ego vehicle is determined, the desired
acceleration is applied to test the SCC module of the test vehicle to control
longitudinal motion. Besides, the path-tracking controller determined the
required overlay steering wheel torque to track the optimal trajectory [Jung,'14].
The required overlay steering wheel torque is applied to the MDPS system of

the test vehicle.

Lidar Dynamic Environment Representation for Motion Planning
- Moving Object Classification > Motion Prediction
Vision
GPS Static Environment Representation for Motion Planning
—P]
. . Static Obstacle Map —>| Free Space Decision |
Vehicle Filter Construction — Drivable Corridor Decision |
—>
Perception o tl -
otion Planning Desi
esired Ax
Digital M Proactive Constraints Motion >
igital Ma i iti :
g P Velocity > Initial Guess [ Define Optimization Desired Path _
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Figure 6.7. Architecture of motion planning algorithm of our automated driving

system.
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6.2.3. Vehicle Tests Results

Vehicle tests have been conducted several times at the Nambu beltway in
Seoul, depicted in Figure 6.6. The configuration of the test vehicle was
described in the previous subsection 6.2.1. The proposed algorithm mainly
utilizes six multi-layer lidars, in-vehicle sensor, and front vision sensor. The
proposed lidar-based environment perception algorithm operates on the
LabVIEW/ MATLAB/Simulink environment of a computer installed in the test
vehicle. The proposed environment perception algorithm has shown
satisfactory performance, and the test results are given in Figure 6.8 through
Figure 6.10.

As shown in Figure 6.8, the subject vehicle drives on urban roads with other
regular traffic participants. Figure 6.8 is plotted in a body-fixed coordinate
system centered on the subject vehicle marked with a blue vehicle. The areas
colored in red, yellow, and green represent adaptive ROI areas for each level
designed using vehicle information, road design standards, and lane
information. Black dots indicate the raw data of lidar, and the point cloud data
processed based on adaptive ROI is indicated by a circle of color according to
the ROI area. The information representing the boundaries of the various
installations and objects from the lidar sensor is extensive, as represented by
scattered point clouds. The results of the proposed adaptive ROI-based
processing can be confirmed to be effectively processed without distortion or
loss of the boundary of the object by comparing raw data and processed points
based on adaptive ROI. Objects estimated by the point cloud processing are
represented by blue arrows as default and classified into In-lane objects (red
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arrow), side-lane object (orange arrow), and oncoming object (violet arrow)
according to the position of each object.

Figure 6.8 (a) shows the normal driving situation of the experimental vehicle
along with other vehicles on a three-way road. The ROI is designed using valid
lane information detected from the front vision. In the presence of a significant
number of vehicles and facilities around the ego vehicle, efficient and accurate
environment perception ability is required. The environment recognition result,
as shown in Figure 6.8 (a), confirmed that the surrounding monitoring for safe
driving is well performed. In addition, the 3rd ROI of the fan shape on the front
of the vehicle can be seen acting as a backup to the forward recognition area
regardless of lane information. Among the numerous point clouds acquired, the
processing of data within the ROI area has shown that objects are effectively
tracked. Figure 6.8 (b) describes the situation in which the vehicle in the next
lane is cut-in to ego lane. Due to the high importance of processing objects near
the ego lane under lane-keeping driving conditions, rapid response to the cut-
in vehicle has been demonstrated. The data at 12 seconds in Figure 6.10 (a) and
(b) show that the cut-in vehicle recognition results are applied to motion
planning and vehicle control to achieve longitudinal control to maintain a safe
distance. If there is no lane, the region of interest is designed, as shown in
Figure 6.8 (c). Due to the lack of information on the surrounding road
environment owing to the absence of lanes, a relatively wider area is defined
than Figure 6.8 (a), and processing for this area is applied. In-lane targets
marked with red arrows, as well as oncoming targets in opposite lanes marked
with purple arrows, were correctly recognized.
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Figure 6.9 consists of subfigures that analyze the experimental results of the
automated driving system applied to the test vehicle in terms of execution time
evaluation. Figure 6.9 (a) shows the results of adaptive ROI based point cloud
categorization and separated voxelization in Section 3.2. The processed data
size for each ROI level was summed up, and as a result, downsizing was
performed successfully at about 1/8 ratio. The processing stages based on the
processing time estimation in Section 5.2 and computational load management
in Section 5.3 are shown in Figure 6.9 (b). The higher the level, the lower the
ROI, and the smaller the data to be processed. Figure 6.9 (c¢) indicates how
much time the actual operation has decreased compared to the time previously
predicted when processing time reduction is applied. Figure 6.9 (d) depicts the
computation time of clustering and MOT functions that constitute the
perception algorithm. It can be seen from Figure 6.9 (e) that the execution time
of the environment representation algorithm to which the proposed adaptive
ROI strategy is applied does not exceed the allocated time. Figure 6.9 (f) and
(g) shows the execution time of the motion planning and the rest of the
algorithms that comprise ADS in addition to perception. The distribution and
sum of the execution time of the three major algorithm parts are shown in
Figure 6.9 (h) and (i). As a result, the computation of the algorithm within the
allocated computation time has been performed successfully.

Figure 6.10 shows the results of the vehicle motion planning and vehicle
control in several states of the vehicle by using the environment result while
driving. Using the front clearance shown in Figure 6.10 (a), motion planning
calculates the target acceleration and inputs it to the vehicle's longitudinal
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control module, which is depicted in Figure 6.10 (b). In the 12 seconds time
point, the deceleration control due to the cut-in vehicle was applied and
decelerated. Also, in 23 to 30 seconds, the control for the deceleration and stop
was applied due to the stop of the front vehicle. Based on the desired path
calculated by the motion planning algorithm, the result of applying the proper
range of steering control for lane-keeping can be seen in Figure 6.10 (d). In
Figure 6.11, the result of driving risk management on clearance-time to
collision (TTC) plane through collision risk assessment is shown in black
squares. As indicated by the red arrow, the risk of collision with the front object
increases as it goes to the lower left, and appropriate driving control reduces

the risk of collision as indicated by the green arrow.
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Figure 6.8. Test scenes based on adaptive ROI processing.
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Chapter 7 Conclusions and

Future Works

This dissertation has proposed an efficient environment perception algorithm
for a fully automated driving system that is capable of automated driving on
urban roads with guaranteed safety. In this study, we focused on developing an
environment perception algorithm by considering the interaction between
configured modules in terms of entire system operation to secure the stable and
high performance of an automated driving system. The proposed algorithm
consisted of the following three steps: adaptive ROI design and processing,
environment perception, and computational load management strategy. In a
design of adaptive ROI, vehicle driving status and driving control solution
based rational area construction has been developed. Based on defined adaptive
ROI, the regional processing method, which consists of categorization,
voxelization, and clustering, has been developed. With pre-processed data,
environment perception algorithms for automated driving, which include time
delay compensation, environment representation, and multiple object tracking,
have been developed. In computational load management strategy, an analysis
of allocated time for the entire automated driving system, computation load
estimation based sequential processing time reduction, and driving restriction
in terms of fail prevention have been developed. The developed perception

algorithm computes the appropriate and sufficient environment information to
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secure safe driving control.

The effectiveness of the proposed algorithm has been evaluated via test-data
based simulations and actual vehicle tests. In adaptive ROI-based processing,
it is found that separated processing can increase cognitive performance while
reducing computational load, depending on the reasonably designed level of
ROI. Moreover, motion-planning results computed for automated driving
control are considered in the ROI design in order to guarantee the practical
vehicle safety of the automated vehicle. The characteristics analysis of the
environmental sensors is reasonably performed and experimentally verified that
time delay compensation is appropriately performed to increase sensing
accuracy. It is confirmed that the required environment information output from
the algorithms developed for each recognition target is appropriate. In
consideration of the system performance constraint determined by using human
reaction time and industry standards, target hardware specification and the
sensor's performance, the appropriate sampling time for automated driving
system is determined to enhance safety. Resources were reasonably allocated
for each configurated function through a driving data analysis that reflected the
actual operating environment characteristics. To predict the computation time
of complex algorithms in the target environment, multiple linear regression is
performed based on the actual vehicle data, and the appropriate processing time
prediction model is determined. Furthermore, it has been demonstrated that the
proposed algorithm could keep the allocated execution period by applying
processing time management with processing time prediction models. Based on
the results, it has been shown that the proposed algorithm enhances execution
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stability with respect to efficient processing.

Although the approach presented in this study has significantly improved the
performance of environmental data processing, there are still elements to
improve. It can be determined that the proposed approach has the potential for
development. In this study, we designed ROI for rational processing under the
assumption that the road surface is flat, and based on this; it performed area-
specific processing and computation load management. Besides, in urban
environments, various road environments, such as unformatted intersections,
roundabout, and parking lots, exist, so the scope of the algorithm can be
extended if these environmental characteristics are reflected in the ROI design.
Although the ROI for typical driving modes has been designed and applied in
this study, it is expected that a more reasonable ROI design is possible if the
driving behavior characteristics for the various driving tasks, such as U-turn,
joins, branches, stops, slow turns, and so forth, are reflected. In addition, if the
additional environment information, such as HD map and stereo vision,
obtained from other sensors is utilized, the performance may be improved by
being specialized in those driving environment. Besides, in the development
environment optimized for parallel operation, it is expected to maximize
processing performance in terms of reduction time through not only perception
and motion planning module separation but also simultaneous processing by
ROI level. In addition, by analyzing various sensors and driving conditions, the
optimum sampling cycle of the perception system is defined to achieve
satisfactoryperformance. It is expected that the recognition and overall system
performance will be improved through a variable sampling system applied to
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the derived sampling period. Enhancing and verifying the proposed algorithm
in the above way to achieve a high level of automated driving by extending to

cover complex situations on urban roads are the topics of our future research.
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