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Since annually 1.2 million people die from car crashes worldwide, 

discussions about fundamental preventive measures for traffic accidents are 

taking place. According to the statistical survey, 94 percent of all traffic 

accidents are caused by human error. From the perspective of securing road 

safety, automated driving technology became interesting as a way to solve this 

serious problem, and its commercialization was considered through a step-by-

step application through research and development. Major carmakers already 

have developed and commercialized advanced driver assistance systems 

(ADAS), such as lane keeping assistance system (LKAS), adaptive cruise 

control (ACC), parking assistance system (PAS), automated emergency 

braking (AEB), and so on. Furthermore, partially automated driving systems 

are being installed in vehicles and released by carmakers. Audi AI Traffic Jam 

Pilot (Audi), Autopilot (Tesla), Distronic Plus (Mercedes-Benz), Highway 

Driving Assist (Hyundai Motor Company), and Driving Assistant Plus (BMW) 

are typical released examples of the partially automated driving system. These 

released partially automated driving systems are still must be accompanied by 

driver attention. Nevertheless, it is proving to be effective in significantly 

improving safety.  
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In recent years, several automated driving accidents have occurred, and the 

frequency is rapidly increasing and attracting social attention. Since vehicle 

accidents are directly related to human casualty, accidents of automated 

vehicles cause social insecurity by causing a decrease in the reliability of 

automated driving technology. Due to recent automated driving-related 

accidents, the safety of the automated vehicle has been emphasized more. 

Therefore, in this study, we propose an approach to secure vehicle safety in 

terms of the entire system in consideration of the behavior control of the 

automated driving vehicle. 

In addition, the development of automated driving is not merely a 

replacement technology for driving, but it is expected to have an industrial 

assembly as integration of high technology. Currently, automated driving 

systems have been extended from the conventional framework of the existing 

automotive industry, and are being developed in various fields. Since 

automated driving is composed of a complex combination of various 

technologies, development is currently underway in various conditions and has 

not been standardized yet. Most developments tend to pursue local performance 

improvement in each module unit, and the overall system unit approaches 

considering the relationship between component modules is insufficient. Local 

research and development at the submodule level can be challenging to achieve 

adequate performance from a system-level due to the effects of module 

interaction in terms of system integration perspective. The one-way approach 

that considers only the performance of each module has its limitations. To 

overcome this problem, it is necessary to consider the characteristics of the 

modules involved. 

This dissertation focuses on developing an efficient environment perception 

algorithm by considering the interaction between configured modules in terms 

of entire system operation to secure the stable and high performance of an 

automated driving system. In order to perform effective information processing 

and secure vehicle safety from a practical perspective, we propose an adaptive 

ROI based computational load management strategy. The motion 

characteristics of the subject vehicle, road design standards, and driving tasks 

of the surrounding vehicles, such as overtaking, and lane change, are reflected 

in the design of adaptive ROI, and the expansion of the area according to the 
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driving task is considered. Additionally, motion planning results for automated 

driving are considered in the ROI design in order to guarantee the practical 

safety of the automated vehicle. In order to secure reasonable and appropriate 

environment information for the wider areas, lidar sensor data is classified by 

the designed ROI, and separated processing is conducted according to area 

importance. Based on the driving data, the calculation time of each module 

constituting the target system is statistically analyzed. In consideration of the 

system performance constraint determined by using human reaction time and 

industry standards, target hardware specification and the performance of sensor, 

the appropriate sampling time for automated driving system is defined to 

enhance safety. The data-based multiple linear regression is applied to predict 

the computation time by each function constituting perception module, and the 

computational load reduction is applied sequentially by selecting the data 

essential for automated driving safety based on adaptive ROI to secure the 

stable real-time execution performance of the system. In computational load 

assessment, it evaluates whether the computational load of the environmental 

perception module and entire system are appropriate and restricts the vehicle 

behavior when there is a problem in the computational load management to 

ensure vehicle safety by maintaining system stability. 

The performance of the proposed strategy and algorithms is evaluated 

through driving data-based simulation and actual vehicle tests. Test results 

show that the proposed environment recognition algorithm, which considers the 

interactions between the modules that make up the automated driving system, 

guarantees the safety of automated vehicle and reliable performance of system 

in an urban environment scenario. 

 

Keywords: Automated driving system, Adaptive ROI, Lidar processing, 

Environment perception, Vehicle safety, Computational load management 
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Chapter 1 Introduction 

    

1.1. Background and Motivation  

 

Worldwide, 1.2 million people are killed in car accidents every year, with the 

number of road traffic deaths rising steadily [WHO,'15]. There were 37,461 

people killed in crashes on U.S. roadways during 2016, a 5.6% increase over 

the previous year [NHTSA,'17]. Besides, road traffic injuries are the eighth 

leading cause of death for all age groups. More people died from road traffic 

injuries than from HIV/AIDS, tuberculosis, or diarrhoeal diseases [WHO,'18]. 

As the increase in traffic accidents on roads causes serious social problems, 

then discussions about fundamental preventive measures for traffic accidents 

are taking place.  

According to the statistical survey from national highway traffic safety 

administration (NHTSA) in the U.S., 94 percent of all traffic accidents are 

caused by human error. Among the accidents caused by human error, the 

recognition errors accounted for 41 percent (±2.1%), decision errors 33 percent 

(±3.7%), and the performance errors 11 percent (±2.7%) of the crashes 

[Singh,'15b]. Moreover, during many types of collision accidents, most drivers 

do not attempt to avoid crashes due to unawareness of collision risks 

[Tideman,'07]. Furthermore, it is estimated that 5~35 percent of all road deaths 

are reported as alcohol-related [WHO,'18]. 

From the perspective of securing road safety, automated driving technology 



 2 

became attractive as a way to solve this problem, and its commercialization was 

considered through a step-by-step application through research and 

development. Major carmakers already have developed and commercialized 

advanced driver assistance systems (ADAS), such as lane keeping assistance 

system (LKAS), lane change assistance (LCA), adaptive cruise control (ACC), 

parking assistance system (PAS), automated emergency braking (AEB), vehicle 

stability control (VSC), blind spot intervention (BSI) and so forth. 

[Hoedemaeker,'98, Bishop,'00, Tingvall,'00, Kato,'02, Netto,'04, Tideman,'07, 

Naranjo,'08, Moon,'09, Gordon,'10, Kastner,'11, Zhang,'11]. 

Furthermore, partially automated driving systems have been released by 

carmakers. Audi AI Traffic Jam Pilot (Audi), Autopilot (Tesla), Distronic Plus 

(Mercedes-Benz), and Highway Driving Assist (Hyundai Motor Company), 

and Driving Assistant Plus (BMW) are typical released examples of the 

partially automated driving system [Brenner,'18]. These released partially self-

driving systems are still must be accompanied by driver attention. Nevertheless, 

it is proving to be effective in significantly improving safety. 

The primary issue in terms of the advancement and commercialization of 

automated driving is the accurate and rapid recognition performance of the 

surrounding environment and rational decision based on it. Most of the self-

driving car accidents in recent years have proved to be cognitive performance 

problems, which is the reason why they support them. To improve environment 

perception performance, it may be the ultimate solution to mount many sensors 

and to fuse much information quickly, but there are practical limitations in 

terms of cost. In terms of the commercialization of automated vehicles, it is 
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necessary to consider the hardware capability and cost realistically. Therefore, 

an effective and efficient approach is required in the process of applying the 

sensor for providing high-precision environment information in addition to the 

sensor already in mass production. 

This study focuses on the lidar sensor, which is emerging as the core of 

environment awareness for automated driving in the current sensor technology 

level. Lidar is a product of high-level optical technology and can improve 

recognition performance with higher accuracy and precision compared to 

conventional environment sensors. Conventional cameras and radars have 

sufficient sensing capabilities for the purpose of applying ADAS, but not 

enough to be applied to automated driving systems of level 3 and above. Lidar 

is currently less practical in terms of production cost because it is difficult to 

mass-produce. It was assessed that lidar is challenging to commercialize 

because it requires considerable computational resources. However, due to 

advances in technology, the price of lidar has gradually dropped, and although 

still classified as an expensive sensor, it can be installed in the Audi A8 2018 

model [Zhao,'19]. Although it is currently used to provide environmental 

sensing for partial front areas due to cost issues, the coverage and number of 

applications are expected to increase gradually. Therefore, perception 

technology using lidar is not only a medium-to-long-term prior technology but 

also needs to be applied as a technology to be applied in the present and near 

future. 

As technology advances, more and more data can be obtained with sensors, 

the amount of computation increases exponentially. Since point cloud 



 4 

processing is performed in consideration of the correlation between each point, 

as the number increases, the computational complexity can also be considered 

proportional [Asvadi,'16]. Because the amount of data and the correlation 

between the data vary depending on the sensing situation, there is a 

considerable variation in the data size that must be processed every moment. It 

causes a considerable variation in the computation. It can be solved simply by 

securing high-performance hardware that can stably handle the most substantial 

amount of data that can be acquired, but this is not a suitable solution due to the 

high cost. Thus, a realistic approach is needed to solve this problem through 

optimization in the system operating environment. For the perception algorithm 

to run properly, the variation in the amount of data to be processed must be 

reasonably selected and reduced, even with changes in the sensed environment. 

In addition, the development of automated driving is not simply a 

replacement technology for driving, but it is expected to have a industrial 

assembly as an integration of high technology. Currently, automated driving 

systems have been extended from the conventional framework of the existing 

automotive industry, and are being developed in various fields. Since automated 

driving is composed of a complex combination of various technologies, 

development is currently underway in various different conditions and has not 

been standardized yet. Most developments tend to pursue local performance 

improvement in each module unit, and the overall system unit approach 

considering the relationship between component modules is insufficient. Local 

research and development at the submodule level can be difficult to achieve 

adequate performance from a system level due to the effects of module 
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interaction in terms of system integration perspective. The one-way approach 

that considers only the performance of each module has its limitations. To 

overcome this problem, it is necessary to consider the characteristics of the 

modules involved. 

Therefore, this dissertation focuses on developing an efficient perception 

algorithm to secure the stable performance and vehicle safety of an automated 

driving system in terms of the practical point of view, which gradually develops 

from partially automated driving to fully automated driving technology 

development. 
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1.2. Previous Researches 

 

A number of studies have been introduced for the development of an 

automated driving algorithm. Zhu et al. designed control system for parking of 

an automated vehicle and verified by implementing it on a truck to conduct 

demonstration [Zhu,'06]. Kim et al. proposed a fully automated driving 

algorithm on complex urban roads with lidar, vision, and GPS/map based 

environment representation with guaranteed safety [Kim,'15a]. Jo et al. applies 

distributed system architecture to the autonomous driving system, to obtain 

reduction of the computational complexity of the entire system, fault-tolerant 

characteristics, and modularity of the system [Jo,'14]. Bertha Benz proposed 

vison and radar-based perception, digital road maps and video-based self-

localization, as well as motion planning in complex urban scenarios and 

verified through vehicle test in fully autonomous manner equipped with close-

to-production sensor hardware [Ziegler,'14] 

Comprehensive and precise environment perception is the basis for safe and 

comfortable autonomous driving in urban complex situations [Vanholme,'13]. 

To improve environment recognition performance, various sensors such as 

radar [Hutchison,'10, Ziegler,'14, Giese,'17], lidar [Börcs,'17, Magnier,'17, 

Moras,'11, Salti,'14], monocular vision [Premebida,'07, Hadsell,'09, 

Sivaraman,'13, Ren,'15], stereo vision [Bertozzi,'00, Kaempchen,'02, Oniga,'10, 

Li,'18], ultrasonic sensor [Satonaka,'06, Adarsh,'16], around view monitoring 

(AVM) camera [Jo,'15, Kim,'16, Park,'16, Lee,'17] have been studied to 
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recognize the environment situation for ADAS or automated driving system. 

Among the environment sensors for automated driving systems, lidar plays 

the most crucial role in high-level automated driving due to the high resolution 

and accuracy of distance. Also, lidar has been widely used for high-definition 

map (HD Map) construction and map-based localization [Bosse,'09, 

Wolcott,'14, Hata,'14a, Hata,'14b], simultaneous localization and mapping 

(SLAM) [Hess,'16], detection and tracking of moving objects (DATMO) and 

object recognition [Asvadi,'16, Wojke,'12, Feng,'18, Gao,'18]. Fuerstenberg et 

al. proposed pedestrian detection algorithm to improve object tracking and 

classification performance by considering the distance and reflectivity of lidar 

[Fuerstenberg,'04]. A lot of studies of model based object tracking algorithms 

using lidar sensor have been proposed [Mendes,'04, Ye,'16, Cho,'14, Zhang,'17].  

The huge volumes and complexity of lidar data are to be significant 

challenges for data processing as the limitation of the computing hardware. 

With conventional sequence algorithms, massive point cloud processing is to 

be time-consuming because the processing is computationally intensive and 

iterative [Yang,'13, Wu,'11, Asvadi,'16]. Thus, the development of alternative 

solutions is urgently needed in practical applications. Various optimization 

techniques and algorithms have been proposed to improve the performance of 

lidar point cloud processing [Elseberg,'11, Isenburg,'06, Han,'09]. Some of 

those, parallel processing, is to be a potential lidar processing solution [Liu,'12, 

Będkowski,'13]. Cao et al. proposed a data processing structure by integrating 

parallel computing based on efficient network topology to improve the 

processing efficiency [Cao,'15]. However, these approaches are typically 
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designed about the parallel architecture of target systems such as multi-core 

processors, GPU, etc. These approaches show better performance indicators 

than the conventional processing approach, but it is not practical from the 

commercialization point of view since it still requires high hardware 

performance. 

Due to the significant computational load for vision-processing algorithms 

for high-resolution images, various studies have been conducted to simplify or 

minimize computations. Benligiray et al. proposed a simple and video-based 

lane detection algorithm that uses a fast-vanishing point estimation method in 

order to obtain real-time performance. The angle-based elimination of the line 

segment reduced the number of features to be processed afterward to make 

execution time for each frame stable [Benligiray,'12]. Ding et al. proposed a 

vision-based road ROI determination algorithm to detect efficiently road region 

using the positional information of a vanishing point and line segment. Road 

ROI was first detected, and processing was performed at such determined ROI, 

which improved recognition accuracy and calculation efficiency [Ding,'13]. 

Baek et al. developed an efficient algorithm to set adaptive ROI for detecting 

pedestrians in a moving vehicle in order to reduce computation time and 

maintain the performance of the conventional method [Baek,'12]. Samejima et 

al. proposed the autonomous adaptive ROI selection method with a risk 

evaluation of the working condition by an autonomous monitoring robot. 

Autonomous ROI selection is realized by the relationship evaluation based on 

the gestalt factor. Experiment results confirmed that the reduction of working 

time and the number of the concurrence of the error [Samejima,'16]. Grois et al. 
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proposed a method and system for the scalable video coding by presenting a 

complexity-aware adaptive spatial ROI SVC pre-filtering scheme. The ROI 

SVC visual presentation quality is significantly improved, which can be 

especially useful for various resource-limited devices in real-time [Grois,'11]. 

In many vision-processing studies above, execution time was reduced by 

performing a selective operation on variable ROI. This concept of the approach 

is applicable to lidar processing for environment perception in a similar way. 

Computing huge amounts of data every cycle is very inefficient in terms of 

overall system resource management, and is uneconomical because it requires 

high-end hardware to ensure performance. In various research fields, 

computational load problem has become an important issue from a practical 

point of view. Among the various methods, the key-frame concept that selects 

and applies the currently necessary data according to the conditions has been 

studied on various topics. Mouragnon et al. presented a application of SFM 

techniques to localization and mapping, for a moving car. Their model is built 

in real-time with 3D points reconstructed from interest points extracted in 

images and matched through the monocular video sequence [Mouragnon,'06]. 

Kim et al. proposed a robust loop detection method by matching image features 

between the incoming image and key-frame images saved in SLAM [Kim,'07]. 

In text detection, a method has been proposed to efficiently extract the key 

frames from the videos based on color moments and then text localization is 

done only on the key frame [Singh,'15a]. In this way, the key frame approach 

to increase the computational efficiency is effective from a practical point of 

view. It is expected that the concept of key frames of images and maps can be 
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similarly applied as ROI concepts to point cloud data processing.  

A prediction of the execution time of computer programs is an important but 

challenging problem in the community of computer systems. Iverson et al. 

proposed a statistical execution time estimation algorithm for use in a 

heterogeneous distributed computing environment. This algorithm makes 

predictions using past observations of the execution time. These estimates 

compensate for the properties of the input data set and the machine type, 

without requiring any direct knowledge of the internal operation of the task or 

machine [Iverson,'99]. Huang et al. proposed Sparse POlynomial REgression 

(SPORE) algorithms that use the automatically extracted features to predict a 

computer program’s performance using feature data collected from program 

execution on sample inputs [Huang,'00]. Yamamoto et al. propose an execution 

time prediction method that combines measurement-based execution time 

analysis and simulation-based memory access analysis. They used a 

measurement of basic block execution times on a real machine [Yamamoto,'06]. 

Regarding these studies, the predicting execution time method through 

structural algorithm analysis and actual execution result data can be applied to 

lidar processing. 

From a considerable amount of literature above, it is possible that various 

methods and concepts can be effectively introduced to develop the proposed 

environment perception algorithm. 
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1.3. Thesis Objectives 

 

This dissertation focuses on developing an efficient environment perception 

algorithm by considering the interaction between configured modules in terms 

of entire system operation to secure the stable and high performance of an 

automated driving system. In order to perform effective information processing 

and secure vehicle safety from a practical perspective, we propose an adaptive 

ROI based computational load management strategy. The motion 

characteristics of the subject vehicle, road design standards, and driving tasks 

of the surrounding vehicles, such as overtaking, and lane change, are reflected 

in the design of adaptive ROI, and the expansion of the area according to the 

driving task of the vehicle is considered. Additionally, motion planning results 

for automated driving are considered in the ROI design in order to guarantee 

the safety of the automated vehicle. To secure reasonable and appropriate 

environment information for the broader areas, point cloud data is classified by 

the designed ROI, and separated processing is conducted according to area 

importance. Based on the driving data, the calculation time of each module of 

the target system is statistically analyzed. In consideration of the system 

performance constraint determined by using human reaction time and industry 

standards, target hardware specification and the performance of sensor, the 

appropriate sampling time for automated driving system is determined to 

enhance safety. The data-based multiple linear regression is applied to the 

perception module in order to predict the computation time by each function, 
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and utilize it to secure the reliable real-time performance of the system by 

applying computational load reduction in stages. In addition, it evaluates 

whether the computational load of the environmental perception module is 

appropriate and restricts the vehicle behavior when there is a problem in the 

computational load management to ensure vehicle safety by maintaining 

system safety. 

Mainly three research issues are considered: processing based on adaptive 

ROI, environment perception, and computational load management. In the 

remainder of this thesis, we will provide an overview of the overall architecture 

of the proposed perception algorithm for automated driving and the 

performance evaluation based on experimental results, which show the 

effectiveness of the proposed algorithm. The proposed environment perception 

algorithm is evaluated through data-based simulation and actual vehicle tests. 

Test results show that the proposed environment awareness algorithm, which 

considers the interactions between the modules that make up the system, 

guarantees the safety of automated vehicle and reliable performance of system 

in an urban environment scenario. 
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1.4. Thesis Outline 

 

This dissertation is structured in the following manner. The overall 

architectures of automated driving and the proposed perception strategy are 

described in Chapter 2. Chapter 3 presents the design of adaptive ROI and 

separated processing algorithms by ROI. The primary purpose of adaptive ROI 

is to properly define the necessary detection areas based on vehicle status and 

result of motion planning to ensure driving safety by importance and process 

the categorized data by area to achieve both computational efficiency and 

accuracy. In Chapter 4, the environment perception algorithms are introduced. 

The perception algorithms consist of a sensor delay analysis and compensation, 

static obstacle map construction, detection of road facilities, and moving object 

tracking and estimation. In Chapter 5, the adaptive ROI based computational 

load management in order to prevent the execution timeout of the environment 

perception module is described. The processing time estimation of significant 

environment recognition functions is designed based on multiple linear 

regression by using driving data. Then the processing computational load 

management strategy including processing time reduction by applying 

sequential processing and restriction of driving condition to achieve real-time 

computational reliability has also been proposed and validated. Chapter 6 

presents the vehicle experiment results to evaluate the performance. Then the 

conclusion which consists the summary and contribution of the proposed 

algorithm and future works is presented in Chapter 7.  
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Chapter 2 Overall Architecture 

      

2.1. Automated Driving Architecture 

 

The overall architecture of our automated driving system is outlined in 

Figure 2.1. For an automated driving system, mainly three research issues are 

considered: an environment representation, motion planning, and vehicle 

control. Environment representation consists of environment perception and 

localization. The environment perception computes boundary and state 

information of surrounding objects by processing data obtained from the sensor, 

and the localization module conducts global positioning of ego vehicle using 

GPS, inertial sensor, and environment information. The results of environment 

recognition and vehicle positioning have a direct impact on the performance of 

motion planning for appropriate driving. The objective of the motion planning 

modules is to derive an optimal path as a function of time by utilizing the 

environment representation results. Based on the environment representation 

results from the perception module, the moving objects are classified, and 

behavior prediction is performed according to the characteristics of the 

classified objects. All environment information is represented on the same 

plane and is used to redefine the drivable corridor from the initial guess. The 

desired longitudinal acceleration and desired path are determined using the 

Model Predictive Control (MPC) approach. Safety, dynamics, and actuator 
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constraints are simultaneously considered to optimize the desired motion of the 

vehicle. The vehicle control module feeds back the pose estimate of the 

localization module to guide the vehicle along the planned trajectory.  

This study focuses on the environment perception algorithm. The developed 

algorithm in this study is implemented in the automated driving system of 

Figure 2.1 to perform its role. Figure 2.1 summarizes the main functions, such 

as adaptive ROI based processing, computation load management, and 

environment representation proposed in this study. The detailed structure of 

adaptive ROI based perception can be seen in Figure 2.2. 

 

 

Figure 2.1. Overall architecture of automated driving system. 

 

The proposed algorithm consists of the following three stages: regional 

processing, computation load management, and environment perception, as 

described in Figure 2.2 by colored blocks. The algorithm proposed in this study 

aims at maximizing recognition ability and execution stability by strategically 

performing massive data processing through rational ROI design in terms of 

entire system perspective. 
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In the first stage, the adaptive ROI definition designs an adaptive ROI for 

normal driving, lane change, and intersection passing situations. By using lane 

geometry obtained from vehicle status information, road design standards, and 

vision, the ROI is designed to be flexible and adapt to every situation. Adaptive 

ROI-based separated data processing is then performed. Point cloud 

classification is the most basic classification process for classifying data by 

region. The point clouds classified by ROI are downsizing and clustering 

according to ROI importance. Unlike conventional methods that apply 

uniformly to the entire data, parameter settings are applied differently for each 

important area. As a result, processing performance is maximized while 

minimizing distortion or loss of data. 

Nevertheless, depending on the operating conditions of the system and the 

surrounding environment, there is still a possibility of exceeding the time limit 

due to the computational load. Thus, we propose a computational load 

assessment method to prevent such a failure. The computational load 

management consists of processing time prediction, sequential processing, and 

restriction of driving conditions. In processing time prediction, multiple linear 

regression is applied to estimate the computation time using real driving data. 

We select a model that properly reflects algorithm computation characteristics 

and system operating environment characteristics. Using the determined 

processing time prediction model for each function, the algorithm determines 

whether the algorithm timeout before processing and applies a strategy to 

prevent it. Also, to ensure the minimum driving safety of the automated driving 
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system, a restriction function that partially limits the driving task or reduces the 

top speed is applied. 

In Figure 2.3, the process flow of the computational load management 

strategy is classified into three colored states. First, it is not necessary to reduce 

the computational load because it is determined that the normal operating state 

shown in green is sufficient to process all the data obtained through adaptive 

ROI-based processing. The computation load reducing state in the blue line 

indicates a process in which computational load reduction through stepwise 

ROI is applied because the computational load exceeds the allocated resources. 

Finally, the restricting driving behavior state, which is marked in red, represents 

an extreme situation in which the function is restricted by controlling the 

vehicle behavior in order to secure system stability by reducing the system 

computational load. In most cases, the system operates with the first and second 

states, and the third state is activated when there is not enough computational 

load reduction intermittently. 

The proposed environment perception stages consist of an analysis of the 

characteristics of external environment sensors that are widely used in 

automated driving systems, the environment perception algorithms needed for 

the motion planning and control process by processing signals, and the 

computational load management to ensure real-time reliability of environment 

recognition systems for automated driving control. 

The stages outlined in this section are described in detail in Chapter 3, 

Chapter 4, and Chapter 5, respectively. 
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Figure 2.2. Proposed architecture of adaptive ROI based environment 

perception with computational load management. 

 

 

Figure 2.3. Process flow of computational load management 
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2.2. Test Vehicle Configuration 

 

Automated driving in complex situations, such as urban environments, 

requires very accurate, precise, and rapid environment perception ability. In a 

motorway environment, it is considered a relatively simple environment 

because only vehicles that drive in the same direction as the subject vehicle and 

road facilities are considered. On the other hand, in the urban environment, 

various types of roads such as intersections, crosswalks, and roundabouts are 

constructed in various forms and various objects such as pedestrians, 

motorcycles, bicycles, and other road facilities must be recognized. Therefore, 

it is considered to be relatively complicated and challenging from a technical 

point of view. The development of fully autonomous driving technology is the 

ultimate goal, but if you make up your system with high-performance, high-

performance sensors to achieve this, the gap between reality becomes quite 

large. For this reason, we aim to develop systems that realistically consider both 

mass production and high performance. Therefore, we focus on solving the 

main issues in the process of developing from the already commercialized 

ADAS, partially automated driving system to the future fully autonomous 

driving system. 

The complete sensor setup for automated driving is shown in Figure 2.4. Six 

multilayer lidar for environment detection are depicted in red and monocular 

front vision is marked in yellow. A low-cost GPS is shown in green color and 

around view monitoring (AVM) cameras are depicted in blue. Computers, 
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controllers and other major equipment are also briefly described. In order to 

ensure high perception performance and to realize a high level of autonomous 

driving with safe and comfort, various sensors and equipment are installed on 

the test vehicle.  

 

 

Figure 2.4. The experimental vehicle and its sensor-setup. 
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Chapter 3 Design of Adaptive ROI and 

Processing 

   

In order to improve the performance of the environment perception algorithm 

and ensure the safety of automated vehicle from a practical point of view, we 

propose an adaptive ROI method considering interaction of configured modules 

for automated driving using the differential operation method according to the 

real-time ROI concept. To define the necessary detection area that must be 

guaranteed for safe driving, the subject vehicle's driving status information, 

recognized lane information, road design criteria, and vehicle's situational 

characteristics are used. In addition, motion planning and control results of 

previous step are considered for the ROI design that can guarantee the safety of 

the automated vehicle. Moreover, the voxelization and clustering process, 

which is essential for estimating the state variables of surrounding objects, has 

been improved to be performed according to the designed adaptive ROI. 

Before designing ROI, this chapter defines the self-driving mode that 

considers the active function and environment of an automated driving system 

and reflects it in the design. The level of automated driving considering 

functions and the environment was classified in the previous Chapter 2. Figure 

3.1 shows typical driving situations for each level. In addition, the concept is 

shown in Figure 3.2 by dividing the essential cognitive areas by importance in 

consideration of the main factors of the typical driving situation of each mode 

in Figure 3.1. This type of ROI design will be discussed in detail in Section 3.1. 
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First, at the basic level, the vehicle is determined to travel, and motion 

planning and control are required to avoid collisions in the driving path. The 

vehicle generally performs the road keeping function and the ACC function for 

the front object under the assumption that the vehicle is traveling on the road to 

which the road traffic law is applied. Second, for motorways, the action of 

changing lanes in the aforementioned Basic level is added. Lane change 

requires a more significant amount of steering control than steering control for 

lane keeping, and additional deceleration and acceleration control is also 

required depending on the decision and strategy to change lanes. Therefore, 

these factors are considered in expanding the required recognition range when 

changing lanes. Finally, urban environments not only need to detect non-vehicle 

objects such as pedestrians and bikes but also require cognitive performance in 

geometrically complex environments such as intersections. The urban mode 

requires coping with various objects and situations in spite of the relatively low 

speed compared to the motorway mode. Therefore, this study aims to secure 

perception performance through additional ROI design, and this study deals 

with a representative intersection environment in an urban environment. 
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Figure 3.1. Characteristics of typical driving environment. 

 

 

Figure 3.2. Perception ROI scheme on typical driving environment and 

classified ROI by importance. 
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Based on the premise that self-driving cars drive on roads that are designed 

to meet standards, they can define areas that need recognition by using road 

design standards and information on driving conditions of automated driving 

vehicles. The behavior of surrounding vehicles in each area is taken into 

account in the ROI definition. Besides, forward lane information obtained from 

the front vision sensor is used in the region of interest design. To guarantee 

safety for automated vehicle, motion planning and control results are highly 

considered in ROI design. Since the ROI is constructed and applied in real-time 

in consideration of various information and the result of automated driving 

control, the designed area is called an adaptive ROI. Depending on the 

importance, it is designed into three levels. The computational load 

management proposed in Chapter 5 also uses this ROI of importance. Based on 

the designed ROI for each level, the point cloud is categorized, voxelized, and 

clustered to improve computational efficiency and perceptive accuracy. 

The performance of the proposed adaptive ROI based regional processing is 

verified via data-based simulation by comparison with the conventional 

processing approach. The comparison of performance is conducted under the 

same hardware environment using driving logs, including vehicle status, data 

of environment sensors, and so forth. It is proven that the proposed approach 

reduced computation load against typical approaches to ensure efficiency and 

effectively increase environment recognition performance. 
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3.1. ROI Definition  

 

In this section, the region of interest for differential processing for each region 

is defined to efficiently process a large amount of raw data acquired from lidar. 

The ROI proposed in this section is not fixed and is designed flexibly by 

considering every situation based on driving condition information, road design 

standards, and detected lane information. In addition, the motion planning 

results calculated by the automated driving system are used in the ROI design, 

thereby increasing the practical safety of the automated vehicle. The motion 

planning of automated driving system to which this study is applied calculates 

the desired path based on drivable corridor as depicted in Figure 3.3(a). The 

driving corridor is determined using the environment representation result and 

lane information. The optimal desired route is calculated to drive safely inside 

the driving corridor. In this study, we apply them to ROI design to give priority 

to the areas that must be recognized for safe automated driving control. 

Moreover, in order to effectively detect objects that are likely to be considered 

in motion planning, the previous recognition results are also utilized in the ROI 

construction. This structure can be seen in Figure 3.3(b). 
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(a) Drivable area and desired path computed from motion planning 

 

(b) Adaptive ROI construction structure related with other modules 

Figure 3.3. Scheme of adaptive ROI design with other modules configuring 

ADS. 

 

Although the world's specifications are not the same in every country in the 

world, this does not significantly affect the way people drive in other countries. 

Similarly, road design standards in each country are not very different in that 

respect. The highway design criteria for major countries around the world is 

shown in Table 1. 
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Although detailed criteria are not consistent among countries, overall, design 

speed, a width of roadway, and width of lane painting are similar. In this study, 

we design an adaptive region of interest based on detailed specifications related 

to road design standards in Korea. Table 2 shows the design speed according to 

the functional classification of roads announced by the Ministry of Land, 

Infrastructure, and Transport. Most road infrastructures officially established 

by the government reasonably design ROI using design parameters such as road 

width, curvature, and intersection angle. The details related to the road 

standards used in this study are described in the subsections that describe the 

specific ROI design process. 
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Table 1. Road design standards by global country [Ministry of Land,'15]. 

Country and 
name of 

guidelines or 
other source 

Design Speed 
or Reference 
Speed [km/h] 

Width of 
Traffic Lane 

[m] 

Width of 
Traffic Lane 
Marking [m] 

Width of 
Carriageway 

[m] 

Austria RVS 
9.232  

80-100 3.50 0.15 7.00 

Denmark 
(practice) 

90 - 120 3.60 0.10 7.20 

France CETU 80-100 3.50 - 7.00 
Germany 

RAS-Q 1996 / 
RABT 94  

100 
70 (26t) 

110 (29.5T) 

3.50 
3.50 
3.75 

0.15 
0.15 
0.15 

7.00 
7.00 
7.50 

Japan 
Road Structure 

Ordnance  

80-120 
60 

3.50 
3.25 

- 
7.00 
6.50 

the Netherlands 
ROA 

120 
90 

3.50 
3.25 

0.15 
0.15 

7.00 
6.50 

Norway Design 
Guide Road 

Tunnels  
80-100 3.45 0.10 6.90 

Spain 
Instrucción 3.1  

90-120 3.50 0.10 7.00 

Sweden 
Tunnel 99 

70 
90 
110 

3.50 
3.75 
3.75 

0.10 or 0.15 
0.15 
0.15 

7.00 
7.50 
7.50 

Switzerland 
(SN 640201)  

80-120 3.50-3.75 0.20 7.75 

UK TD27 
(DMRB 6.1.2)  

110 3.65 0.10 7.30 

USA AASHTO - 3.60 n.s. 7.20 

 

Table 2. Design speed by functional road classification on road design 

standards of Korea. 

Functional Road 

Classification  

Design Speed [km/h] 

Local Area Urban 

Area Flatland Hill Mountain 

Freeway/Expressway 120 110 100 100 

City 

Street 

Major Arterial 80 70 60 80 

Minor Arterial 70 60 50 60 

Collector 60 50 40 50 

Local 50 40 40 40 
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In this section, the design of the adaptive ROI is divided into three 

subsections: normal driving, lane change driving, and intersection driving. 

Figure 3.4 shows the process of selecting each ROI in consideration of driving 

status information, driving environment, and the activation function of the 

subject vehicle. As defined in Chapter 2, the automated driving level can be 

determined according to the function and environment applied to the current 

system. The basic level is always applied as primary mode because the only 

lane-keeping function is active. In the case of the motorway Level, if the vehicle 

maintains without changing lanes, the primary mode of setting the detection 

importance toward the front is applied like the basic level. In the case of 

performing lane change, the ROI for a lane change in which the front, rear, and 

lateral ROIs are extended is applied. Urban Level includes all of the functions 

of the lower levels and applies additionally designed areas when driving at 

intersections. The previously designed ROI has limitations when driving in an 

environment where roads intersect or diverge, such as intersections, because 

the vehicle takes into account general driving conditions (roads with moderate 

curvature). When driving at the intersection, it is necessary to perceive the front 

side and the rear side area at the time of entry, and additionally design an 

intersection ROI to cope with the road crossing situation and activate it in the 

relevant situation. The process of determining this mode is depicted in flow 

chart form in Figure 3.4. 
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Figure 3.4. Flow chart of driving mode determination according to driving task 

by automated driving system level. 

 

3.1.1. ROI Design for Normal Driving Condition   

In this subsection, the ROI of the Basic Level is designed to represent the 

most primary driving situation of the three levels. At this level, autonomous 

vehicles keep in the lane along the path or lane and avoid collisions with 

forward obstacles through proper longitudinal control. It can be classified as 

the most basic and essential driving situation. Reasonable cognitive ROI is 

designed based on vehicle state, road design criteria (RDS), international 

standards (ACC: Adaptive Cruise Control, FVCMS: Forward Vehicle Collision 

Mitigation System), lane information (if reliable), and vehicle driving 

characteristics studies. Lane information may not be used in an environment 

where lanes are lost, failure to recognize due to the performance limitation of 

lane-detecting sensors, or where there are no lanes such as intersections, 

crosswalks, and parking lots. Thus, for realistic and reasonable design, ROI is 

designed based on road design standards without lane information, and it is 

reflected when reliable lane information exists. 
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To analyze and reflect the driving conditions and characteristics of each area, 

the ROI design is divided into three area elements, front, rear, and around the 

vehicle. It is defined as the 1st, 2nd, and 3rd level of ROI according to the 

importance of each region. Since ROI designed in this subsection is the 

minimum required perception area in the most normal driving situation, it 

becomes a basic structure that should be monitored at all times for the normal 

operation of the automated driving system. 

 

3.1.1.1. Front ROI Design  

In order to define the area of forwarding interest when driving, two typical 

situations of driving conditions could be considered. The conditions of normal 

driving, avoiding collisions with other vehicles and obstacles, and the 

conditions of braking and stopping due to road facilities, traffic regulations, or 

obstacles shall be included in the design of the ROI as described in Figure 3.5. 

The most important thing from the point of view of securing the driving safety 

of the vehicle is to avoid collisions with objects along with the path of the 

vehicle. In general, there are two situations in which objects exist within the 

path where the vehicle is driven on the road, affecting the behavioral plan. The 

ACC mode of driving along the preceding vehicle as shown in Figure 3.5(a), 

and the braking mode of stopping the target object as depicted in Figure 3.5(b), 

should be considered. 
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(a) ACC Mode    (b) Braking Mode 

Figure 3.5. Major representative driving conditions to ensure forward safety 

and avoid rear-end accident. 

 

To design the required perception area for the front, the radius of curvature 

of the road according to the longitudinal distance, the lateral distance, and the 

present speed with respect to the front is determined. Depending on the 

longitudinal and lateral distances, the forward ROI can be determined in a 

rectangular shape. Considering the curvature along the curve radius of the road, 

the region of interest is defined by the concept shown in Figure 3.6. Also, the 

three typical parameters required for the design of the front ROI are shown in 

Figure 3.7. 
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Figure 3.6. Design scheme of front ROI. 

 

 

Figure 3.7. Detailed design parameter of front ROI. 

 

Using three parameters in Figure 3.7, the detailed ROI according to 

importance with or without lane information is defined as shown in Figure 3.8. 

If the lane on the front road can be detected through the front vision sensor, 

the lane area in which the own vehicle is driving can be precisely identified. If 

lanes are detected, the forward lanes can be specified to focus on a narrower 
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range than the Road Design Standards. Even if the higher ROI decreased due 

to lane information, the overall perception ROI is not reduced because the lower 

ROI acts as a backup zone by covering it. In Figure 3.8, the right lane is detected, 

and the upper-level area of the right is reduced compared to the left, but the 

lower-ROI is substituted to ensure that no ROI loss occurs. 

 

  

Figure 3.8. Designed ROI by important level under reliable right lane detection. 

 

When braking by a forward object, the braking distance is shorter with the 

AEB because the braking command is higher in the AEB than in the ACC. 

However, in this study, the longest braking distance is reflected in the 

calculation of the forward minimum recognition distance because the aim is to 

secure the minimum recognition area to ensure safety. In the case of ACC mode, 
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the limit of acceleration and jerk (2.5m/𝑠3) is limited in ISO-ACC. To cope 

with the extreme ACC situation to avoid accidents, the longitudinal safety 

distance that can be secured by considering various factors under the ACC 

mode condition when the vehicle ahead is suddenly stopped is calculated as 

follows. 

2
3

, , ,

,

1

6 2

c
longi front Braking c detect c delay delay front min

decel ACC

v
L v t v t jerk t c

a
         (3.1) 

where, 
cv  is current velocity of subject vehicle and 

delayt  is the actuator 

delay time of the subject vehicle. 
,front minc  means minimum clearance to the 

front, and 
detectt  is the required minimum detection time of object detection 

algorithm. 
,decel ACCa  is maximum deceleration limit of ACC function. 

Besides, the recommended time gap, 
safeTG , for vehicle driving is usually 2 

seconds. For safety purposes, a wider range of longitudinal cognitive distances 

is calculated by reflecting more as much as this time gap in 
, ,longi front BrakingL  of 

Equation (3.1). 
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v
L v t TG v t jerk t c

a
          

  (3.2) 

The delayt  means the actuator delay time of the subject vehicle and takes up 

a great deal of weight in calculating the braking distance. By performing system 

identification on the longitudinal control characteristics of the test vehicle, the 

actual delay time can be calculated. Although actuator delay time analysis is 
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required for both acceleration and deceleration situations, only deceleration was 

considered in this case as it is necessary to calculate the clear braking distance 

for collision prevention. In the deceleration situation, system identification is 

performed by acquiring the actual measured longitudinal acceleration data 

according to the deceleration command of the actuator through actual 

experiments. The results are calculated for two types of inputs, referring to the 

use of step and ramp inputs in general when performing system identification, 

as shown in Figure 3.9. In order to fit the model for the step input, the data was 

obtained by adjusting the final speed before the start of deceleration input, A in 

Figure 3.9(a), and the target acceleration after inputting the deceleration 

command, B in Figure 3.9(a). The slope C in Figure 3.9(b) with respect to the 

target acceleration was variously set for the ramp input. 

 

 

(a) Step input (deceleration) 
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(b) Ramp input (deceleration) 

Figure 3.9. Example driving log of acceleration and velocity of test vehicle. 

 

Since we do not know the actual longitudinal control system model of the 

vehicle, we perform the system identification on three models: Simple time 

delay model (STD), first-order plus time delay model (FOPTD), and second-

order plus time delay model (SOPTD). The System Identification Toolbox of 

the MATLAB was used to fit the data log into each model, and as a result the 

FOPTD model was found to match the most. The equation for the FOPTD 

model is: 

 FOPTD: 
 

  1

dT s

p

Y s Ke

U s T s






 (3.3) 
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where 
pT  is process time constant, 

dT  is process time delay, and K  is 

process gain set to 1 in this study. 

The model fitting results for each input are shown in Table 3, Table 4, and 

Table 5. 

 

Table 3. System identification result of longitudinal control by applying 

FOPTD model with step input at 10kph driving. 

Speed before 

deceleration 

 [km/h] 

Desired 

deceleration  

[m/𝑠2] 

Process time 

constant, 
pT  

[s] 

Min. actual 

deceleration 

[m/𝑠2] 

Process time 

delay, 
dT  

[s] 

10 

-1 0.5 -0.96 

1.0 

-2 0.6 -1.8 

-3 0.7 -2.2 

-4 - -2.4 

-5 1.0 -2.4 

-6 1.7 -2.4 

Table 4. System identification result of longitudinal control by applying 

FOPTD model with step input at 30kph driving. 

Speed before 

deceleration 

 [km/h] 

Desired 

deceleration  

[m/𝑠2] 

Process time 

constant, 
pT  

[s] 

Min. actual 

deceleration 

[m/𝑠2] 

Process time 

delay, 
dT  

[s] 

30 

-1 0.5 -0.95 

1.0 

-2 0.6 -1.9 

-3 0.6 -2.9 

-4 0.6 -3.6 

-5 0.8 -4.4 

-6 1.1 -4.4 
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Table 5. System identification result of longitudinal control by applying 

FOPTD model with step input at 50kph driving. 

Speed before 

deceleration 

 [km/h] 

Desired 

deceleration  

[m/𝑠2] 

Process time 

constant, 
pT  

[s] 

Min. actual 

deceleration 

[m/𝑠2] 

Process time 

delay, 
dT  

[s] 

50 

-1 0.5 -0.95 

1.0 

-2 0.5 -1.9 

-3 0.5 -2.8 

-4 0.7 -3.5 

-5 0.8 -4.2 

-6 1.1 -4.6 

 

Table 6. System identification result of longitudinal control by applying 

FOPTD model with ramp input. 

Slope of deceleration 

 [m/𝑠3] 

Process time constant, 

pT  [s] 

Min. actual 

deceleration 

[m/𝑠2] 

Process time 

delay, 
dT  

[s] 

-0.25 

0.9 

-2.2 

0.7 
-0.5 -3.0 

-0.75 -3.6 

-1.0 -3.9 

 

From the system identification result above, the time delay of the test vehicle 

was determined to be 1.0 sec and 0.7 sec for the step input and ramp input, 

respectively. Since this analysis is used to determine the braking distance, a 

larger value of 1.0 seconds is used to design ROI. 

Harwood suggested that a sufficient Acceptance Time Gap, turnTG , needed 

for a vehicle to turn left or right at an intersection, is 7.5 seconds [Harwood,'99]. 
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It may be determined as a driving safety distance according to the speed of the 

ego vehicle in a road environment in which the other vehicle is not in a straight 

line where interference with the progress path of the own vehicle may occur. 

Therefore, we can define , ,longi front TurnL  as: 

 
, ,longi front Turn c turnL v TG   (3.4) 

Since these forward ranges are dependent on the speed of the subject vehicle, 

the driving speed is reduced, and the value becomes considerably smaller when 

it is close to a standstill. The minimum safety distance for the overtaking 

vehicle is determined by referring to the statistical data of the driving data 

coming in front of the overtaking vehicle and the lower limit of , ,minlongi frontL . 

 
, , ,2OT after headway OT after headway OT after headwayL m     (3.5) 

Using this defined longitudinal safety distance, , ,minlongi frontL   and 

, ,maxlongi frontL  are defined as follows. 

 
, ,min , , , ,max( , )longi front longi front Extend longi front TurnL L L  (3.6) 

 
, ,max , , ,max( , )longi front OT after headway longi front BrakingL L L  (3.7) 

 

The determination of parameters for designing the transverse safety range is 

made as follows. In the case of the basic level, lane-keeping is carried out, and 
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deceleration and acceleration control are performed based on the relative speed 

and the relative distance to the object in the own lane. It is necessary to monitor 

strictly for safety since the vehicle can be driven into the lane from the adjacent 

lane on either side of the lane. The ,lat minL , therefore, means the width from the 

lane center to the lane outside the adjacent lane. The Lane width is basically 

determined by referring to lane width limit value by the design speed of Road 

Design Standards in Table 7. If valid lane information is detected by the front 

vision, the obtained lane information is used. 

 

Table 7. Minimum road width by road classification and design speed in 

road design standards of Korea. 

Road Classification 

Minimum Road Width [m] 

Local Area Urban Area 
Compact 

Car Road 

Freeway/Expressway 3.50 3.50 3.25 

City 

Street 

Design 

Speed 

[km/h] 

≥ 80 3.50 3.25 3.25 

≥ 70 3.25 3.25 3.00 

≥ 60 3.25 3.00 3.00 

< 60 3.00 3.00 3.00 

 

The lane width based on RDS, 
RDS lanew  , and the minimum lateral range, 

,lat minL , are determined as follows. 
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where [ ]confid ilane   represents the confidence level of lane obtained from 

front vision which means reliability of lane detection. It has a integer value from 

0 to 3, and the larger the number, the more reliable. 

Occasionally, there are vehicles that drive outside of both sides of the lane 

that cross more than one lane, so it is possible to set up ,lat maxL  that extends by 

the width of the lane to monitor it. 
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 (3.10) 

In most well-organized cities, roads are designed in a straight line, but in 

general, roads are usually curved. Road curvature can be calculated with the 

approach of RDS and ISO-ACC, respectively. In road design criteria, the 

curvature of a road is determined by the driving design speed of the road. The 

automated vehicle can estimate the maximum radius of curvature of the 
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currently running road under the premise that the driving control is optimized 

for road design. According to the Table 8, the minimum plane curve radius, 

,curvature RDSr  , according to the maximum slope can be obtained through 

interpolation by the design speed of the road. The maximum slope of the road 

was assumed to be 8% in this study. 

 

Table 8. Minimum plane curve radius per design speed of road design 

standard of Korea. 

Design Speed 

[km/h] 

Minimum Radius Curvature [m] 

Maximum Superelevation Slope 

6% 7% 8% 

120 710 670 630 

110 600 560 530 

100 460 440 420 

90 380 360 340 

80 280 265 250 

70 200 190 180 

60 140 135 130 

50 90 85 80 

40 60 55 50 

30 30 30 30 

20 15 15 15 

 

In addition, ISO-ACC restricts lateral acceleration of vehicles to 3m/𝑠2 . 

Velocity according to lateral acceleration and curvature limitation is presented 

as follows. 
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_ mincircle lateral curvev a R      (3.11) 

where, circlev  is a steady-state speed for the curve driving, minR   is curve 

radius, and _lateral curvea  is the design lateral acceleration for curves on highways 

which is derived from average driver behavior in curves (95% drivers) in 

Mitschke ('91). 

Using the relationship between the vehicle speed and the maximum lateral 

acceleration, the road curve radius is derived as follows. 

 
2

,

,

c
curvature ISO ACC c

lateral curve

v
r v

a
     (3.12) 

The smaller the radius of curvature of the road, the greater the curvature, 

which can be considered to be the wider the driving range. Therefore, by 

selecting the smaller value of the two curvature radii of the roads thus obtained, 

the road area with greater curvature is included as the region of interest. 

  , ,max ( ) ( )curvature curvature RDS c curvature ISO ACC cr r v r v  (3.13) 

As described above, we designed an anterior region of interest at the 1st, 2nd, 

and 3rd level using RDS. It is a method of estimating the range of roads that 

can be driven, provided that the vehicle is on the road. When defining the lateral 

range in Equation (3.9), it also applies to road curvature along the lane, as 

defined by a decent lane detection level. 
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3.1.1.2. Rear ROI Design  

The minimum perception range at the rear of the vehicle is designed in detail. 

In the case of basic level, it is not necessary to consider driving situations such 

as lane change and turn, so it is necessary to consider the situation in which 

own vehicle is a threat during lane-keeping driving. Consideration should be 

given to a lane change from the rear to a lane ahead of the ego vehicle. In the 

ADS of this study, the minimum recognition time is necessary to build up the 

tracking reliability for reliable recognition of the surrounding objects. Even if 

there is no lane change or turn motion, the minimum rear detection should be 

performed because the safety of the ego vehicle can be secured by monitoring 

the approaching vehicle from the rear side. Therefore, the rear ROI in normal 

driving conditions is designed, taking into account the characteristics of 

overtaking driving behavior. As with the design of the front ROI, the 

importance defines the ROI by dividing it into 1st level and 2nd level. 

 

Figure 3.10. Detailed design parameter of rear ROI. 
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In the case of the rear ROI, the lateral range and the radius of curvature of 

the road are calculated in the same way as the front, using the state variables of 

the ego vehicle, as described in Figure 3.10. Since the radius of the curve is 

determined by the speed of the vehicle, the same curvaturer  calculated earlier 

applies. The same applies to ,lat minL  and ,maxlatL  in (3.9) and (3.10) calculated 

from the lateral width of front ROI design. 

As mentioned earlier, monitoring of vehicles attempting to overtake from the 

rear is necessary, so this section considers how far perceptible the rear is in the 

longitudinal direction. The proper distances necessary for determining the 

minimum detection range of several rear longitudinal distances are calculated, 

of which an appropriate value is selected. 

Hegeman ('04) analyzed the maneuver characteristics of the overtaking 

vehicle through the majority of driving data of the over-taking vehicle. 

Overtaking strategies were performed based on the findings of Gordon ('70), 

who classified the characteristics of overtaking vehicles. Since the distance 

prior to the overtaking maneuver distribution for forward passing vehicles is a 

normal distribution, the 2-sigma range is used.  

 , ,2prior headway prior headway o prior headway oL m     (3.14) 

We used the prior headway among the time gap of prior headway for each 

strategy. 

  , , ,2maxpriorTGheadway c TG flying TG piggibacking TGL v m m m    (3.15) 
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where, , 2.503 ( 0.05)TG flyingm p  , , 2.805( 0.05)TG piggibackingm p  , 

,2 2.494( 0.05)TGm p   . 

Comparing the two values calculated so far, the , ,longi rear minL   and 

, ,maxlongi rearL  required for the rear 1st Level ROI can be defined as follows. 

   , , minlongi rear min prior headway priorTGheadway cL L L v  (3.16) 

   , ,max maxlongi rear prior headway priorTGheadway cL L L v  (3.17) 

 

3.1.1.3. Surrounding ROI Design  

So far, we have defined areas of interest for the front and rear of the vehicle. 

We decide the area to monitor the surrounding area that should be minimally 

recognized regardless of the vehicle status. 

The front and rear areas of interest defined so far are approaches for 

recognizing nearby objects or facilities according to the direction of the vehicle. 

This approach is appropriate for motorways, such as highways and arterial 

roads. However, in the urban environment, various objects, such as pedestrians 

and two-wheelers, exist in addition to vehicles and facilities, and an unexpected 

sudden situation may occur under various environmental conditions, and an 

expanded area of interest is required. Therefore, the third-level area of interest 

defines the surround ROI that always performs recognition regardless of the 

state of the vehicle. Since the driving direction of the vehicle is the front and 
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rear directions, an elliptical ROI having a major axis in the forward direction is 

proposed, as depicted in Figure 3.11. 

 

 

Figure 3.11. Detailed design parameter of ellipsoid based surrounding ROI. 

 

In equation (3.5), the result of calculating the minimum distance that should 

be secured in the longitudinal direction is set to the length of the long axis of 

the ellipse to be designed. 

 , , ,2Sur lat OT after headway OT after headwayL m     (3.18) 

It also considered the possibility of a running pedestrian appearing to 

determine the lateral range. In urban environments, there is a possibility that 

pedestrians may appear running from various directions, such as jaywalking, so 

we want to ensure sufficient monitoring of this situation. A statistical analysis 

of the place state according to the pedestrian velocity distribution shows that 
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the average speed of a running pedestrian is 6 m/s [Tordeux,'16, Oh,'19]. It is 

assumed that the Object tracking algorithm had a sufficient time of 4 seconds 

to recognize pedestrians and properly predict their behavior. Based on this 

information, we can calculate the minimum distance of the area to be monitored 

at all times and use it as the minor axis length of the surrounding ellipse. 

 
, , ,Sur longi ped running suff detectionL v t   (3.19) 

In Figure 3.12, the results of integrating the front, rear and surrounding areas 

of interest so far designed by importance can be seen. The speed adaptive ROI 

is designed when there is left lane information in general lane keeping driving. 

 

 

Figure 3.12. ROI integration scene for normal driving with reliable left lane. 
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3.1.2. ROI Design for Lane Change  

Previously, the ROI was designed in the basic driving mode, which maintains 

lanes and prevents front collisions. However, since not all roads are single-lane, 

lane changes are essential for safe and competent driving to the destination. In 

the case of Tesla's Autopilot currently on the road, if the driver commands the 

lane change signal through the direction indication lever, it checks whether the 

lane change behavior is safe and performs the lane change. Automated driving 

studies have been conducted to determine whether to change lanes in various 

situations and to perform lane change effectively. Suh proposed how to 

determine and perform a lane change decision when an autonomous vehicle 

needs to change lanes for efficient driving or to change lanes at a merger or 

branch road [Suh,'16]. If the automated driving system aims to change lanes in 

a specific direction, it is possible to determine if the lane change is possible and 

design an expanded area of interest to secure safety. Although similar to how 

ROI was designed for front and rear in normal driving situations in 3.1.1.1 and 

3.1.1.2, the areas of interest are extended to reflect additional considerations 

when changing lanes. 

A safe lane change requires avoiding collisions between vehicles in front 

lanes and vehicles in destination lanes. In normal driving, since the ego lane is 

the purpose lane for driving, the ROI is set as the area in which the vehicles in 

the ego lane or the potential for entering the ego lane exist. In the case of a lane 

change, the target lane is adjacent, not an ego lane, so it is essential to monitor 

the vehicles existing in the target lane and potentially entering vehicles. Figure 

3.13 shows the extended ROI design scheme in the front and rear of lane-change 
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driving. Figure 3.13 (a) defines the area of interest for changing lanes in the 

forward lane by reflecting the vehicle in the forward lane, the vehicle 

potentially entering the target lane, and the curvature of the road. Similarly, 

Figure 3.13 (b) shows the definition of a region of interest, taking into account 

the vehicle driving on the target lane, the vehicle potentially entering the target 

lane and the curvature of the road. Thus, the transverse required perception 

range extends one lane wider than the basic ROI. Both sides are expanded in 

Figure 3.13, but in a situation where the lane change direction is determined, 

the area is expanded only in the direction for efficiency. Figure 3.14 shows that 

the ROI expands as you change lanes from normal driving to lane change when 

you try to change lanes to the right. Also, the parameters used to determine ROI 

in the situation are shown. 
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(a) Front ROI for lane change driving 

 

(b) Rear ROI for lane change driving 

Figure 3.13. Designed ROI for lane change driving. 
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(a) Front ROI 

 

(b) Rear ROI 

Figure 3.14. Detailed design parameter for lane change driving. 
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First, when changing lanes, it is necessary to determine the recognition range 

of the target lane to calculate the required recognition range in the forward 

longitudinal direction. Based on the statistical analysis of lane-change driving 

data, the lane change distance and the spacing of the vehicle in front of the 

vehicle are determined by using the time required for lane change and the 

spacing characteristics of the vehicle in the front and side lanes [Toledo,'07]. 

 

, , ,

, ,

, , ,, 1

1

longi frontLC duration c LCduration total LC
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 (3.20) 

By comparing the distance thus calculated and the forward braking distances 

calculated in equations (3.6) and (3.7), the forward longitudinal distance 

required for lane change can be determined as follows. 

 
  

  

, , , , , , , ,

, , , , , , , ,

max , max ,

max , min ,

longi frontLC max longi front max longi frontLC duration longi frontLC spacing

longi frontLC min longi front min longi frontLC duration longi frontLC spacing

L L L L

L L L L





  (3.21) 

The rear longitudinal distance is considered for lag-read spacing to be 

obtained from the target lane during lane change. In addition, the distance is 

calculated to reflect the time the vehicle is changing lanes, assuming that the 

target lane vehicle is travelling at a slightly faster speed than the vehicle 

[Toledo,'07]. 
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The maximum value is used for the 1st ROI level by comparing the necessary 

distances to the rear calculated above. The 2nd ROI rear longitudinal range is 

decided to expand by 20% to ensure a greater recognition range for safety. 
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  (3.23) 

where, , ,longi rearLC Lag LeadspacingL   is the Lag-lead spacing and , ,minlongi rear distL   is 

minimum clearance set to 20m in this study.  

In the case of the transverse direction, as mentioned above, the transverse 

range extended by one lane width than the normal driving situation is 

determined in order to monitor a vehicle that may potentially enter the target 

lane for lane change. 
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 (3.24) 

The road curvature uses the result of Equation (3.13) calculated according 

to the speed of the vehicle in normal driving. 
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3.1.3. ROI Design for Intersection   

In this subsection, the minimum cognitive requirements in the intersection 

environment are designed in detail. Although the intersection environment can 

identify the shape of the intersection when using a map, this study proposes a 

method to cope with the situation without a map. The intersection environment 

is also designed to be safe enough within the range of urban driving speed 

according to the road design standard so that the basic ROI area defined in the 

above-mentioned normal driving is possible to some extent. At the intersection, 

however, there are situations in which the direction of travel of the own vehicle 

is different, and the angles close to 90 degrees should be considered. To safely 

enter and exit an intersection, an area of interest for further intersection driving 

before and after the intersection area is required. As shown in Figure 3.15, the 

ROI is designed to drive the intersection using the intersection angle, width, 

and length. Finally, Figure 3.16 shows that the ROI is additionally designated 

to the front and rear diagonal directions to the previously designed normal 

driving ROI. 

Although the size and shape of the region of interest may change depending 

on the situation, the integrated ROI shape is close to a circle based on the center 

of the own vehicle. It shows that omnidirectional cognitive performance is 

essential to ensure safety in complex environments, such as intersections. 
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Figure 3.15. Designed ROI at intersection. 

 

Figure 3.16. ROI integration for intersection driving. 

The design parameters of the ROI, which are additionally defined for 

intersection mapping in Figure 3.15 and Figure 3.16, can be seen in Figure 3.17. 

Figure 3.17(a) is the front diagonal direction of interest, and the unique point is 

designed using the maximum minimum angle to recognize the cars on the 

intersecting road. Figure 3.17(b) shows the ROI of the rear-side to counteract 

exit from the intersection. 
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Although the intersections where the compartments are well organized are 

installed at an angle of close to 90 degrees, many intersections actually have 

various intersecting angles, so countermeasures are required for these 

environments. The intersection is designed with a minimum angle of 60 degrees 

between the road entering and considering the driving ability and safety of the 

vehicle[Gattis,'98]. As shown in Figure 3.18, it is assumed that the intersection 

angle is located between 60 and 150 degrees and that the vehicle entering the 

intersection runs at a speed of about 20% higher than the own vehicle for safety. 

It is possible to calculate the distance required for emergency braking of the 

own vehicle, stopd , and the travel distance of another vehicle approaching the 

intersection, 
,cross cvd , during the time required for braking is traveling at 20% 

speed. Use this to calculate that collisions do not occur at the point where the 

vehicle is expected to be a potential crossing point. 

 

 

2
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d v t t l
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 (3.25) 

where 
crossv  is speed of vehicle entering intersection from a far side of minor 

road which is set to 120% of subject vehicle speed. 
vl  is the vehicle length set 

to 5 meters. 

The angle to detect the furthermost vehicle approaching the intersection from 

ego vehicle, min  , can be obtained using the geometry of the triangle. In 

addition, a second cosine formula can be used to calculate the ranged . 
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  2 2

, , min,2 cosrange stop cross cv stop cross cv InterSd d d d d        (3.27) 

where min,InterS   is minimum intersection angle in road design standards, 

which is set to 60 degrees in this research. 

 

 

(a) Forward ROI for intersection  (b) Rear ROI for intersection 

Figure 3.17. Detailed design parameters for intersection ROI. 
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Figure 3.18. Scheme of angle and distance calculation under collision 

assumption at the intersection. 

 

Using Equations (3.26) and (3.27), define the parameters needed to build 

an intersection ROI, as shown in Figure 3.17. 

In the forward direction, the width of the intersection road is defined as three 

times the lane width, and the minimum longitudinal range uses a value of (3.27). 

For safety, the extended 2nd level longitudinal range is designed to be 150% of 

the minimum longitudinal range. acute  is applied to min  obtained in (3.26), 

and obtuse   is fixed at 120 degrees, considering that the design angle of the 

intersection was at least 60 degrees, as previously noted. 

In the case of the rear direction, it is similar to the method of defining the 

front and rear ROI defined above. The ROI is defined by reflecting the 

longitudinal range, lateral range and curvature of the road. The difference is to 
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secure the rear region of interest by reflecting the angle to detect the vehicle in 

the relative lane crossed while driving at the intersection. In this study, the angle 

is set to 35 degrees. 

It is inefficient to activate regularly the intersection ROI designed above. 

Since the road design dictates that the diamond road marker is displayed before 

the intersection of the road, this marker recognition gives a reasonable 

prediction of the forward intersection situation. In this way, it is expected that 

safe and efficient ROI selection will be possible by extending the intersection 

response ROI in the situation where the intersection driving situation can be 

predicted in various ways such as V2X and traffic light recognition in the future. 

 

 

Figure 3.19. The diamond-shaped road marker indicating ahead intersection.  
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3.2. Data Processing based on Adaptive ROI   

 

The batch processing by applying the same weight to all surrounding 

information causes a large computational load on the entire system. In order to 

solve this problem, we propose a method to reduce the computational load 

without degrading the driving safety of the vehicle by applying the weight of 

each region designed in the previous Section 3.1. 

In the previous section, we designed an adaptive ROI by importance to 

ensure driving safety based on vehicle speed and detected lane information. 

This section deals with how to process environment information obtained from 

the lidar sensor using the constructed adaptive region of interest. Lidar 

information is acquired in the form of the point cloud and processed into a form 

that represents the surrounding environment necessary for motion planning. 

The processing of point cloud consists of voxelization, which typically 

performs data downsizing, and clustering, which classifies point group signals 

by object. In order to achieve more efficient and advanced performance, this 

section categorizes point cloud by Adaptive ROI prior to these processes and 

proposes processing methods that reflect the important characteristics of each 

region by using this result. The designed adaptive ROI-based data processing 

scheme is shown in Figure 3.20. 
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Figure 3.20. Scheme of point cloud processing based on adaptive ROI. 

 

3.2.1. Point Cloud Categorization by Adaptive ROI   

Recently, many automated vehicles utilize precision road maps constructed 

to process a large amount of lidar information. Using road areas such as roads 

and sidewalks on the map, the point cloud is classified by setting ROI only in 

areas where objects such as people or vehicles can exist. This approach is highly 

efficient on the premise that map information represents the actual road 

environment, but it can pose a significant risk if the degraded map information 

in the vehicle localization differs from reality, for example, due to climate, 

satellite conditions, and so forth. It is not applicable in areas where maps are 

not constructed, and if an unexpected situation occurs or the actual road repair 

or change is not updated on the map, improper ROI setting may cause problems 

with the performance of environment perception. 
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We classify point cloud acquired from the lidar sensor using the previously 

designed adaptive ROI. Since the shape and size of the region of interest vary 

depending on the driving condition of the vehicle and the reliability of the lane 

recognition, area-specific point cloud classification shall be carried out for each 

cycle. The goal is to achieve perception performance through efficient pre- and 

post-processing execution strategies because it is limited to performing all point 

cloud processing under limited resources. To secure the driving safety of 

automated driving vehicles by ensuring sufficient precision and accuracy 

without omission or distortion of the information recognized by the sensors, the 

process of classifying the point cloud by the designed adaptive ROI must 

precede. 

In most cases, areas of high importance are included in areas of low 

importance. Therefore, point cloud categorization is performed in the order of 

importance of the region of interest to increase computational efficiency. If the 

points exist within the region of interest, categorization is applied in such a way 

that an importance index is assigned to each point. In this study, the point cloud 

without the ROI importance index is considered as not necessary right away 

from the viewpoint of driving safety and is eliminated. In the future, if applied 

to hardware with higher cognitive module computational capability, the areas 

of perceived importance can be expanded by considering the eliminated points 

as the fourth area of importance. The results of point cloud categorization by 

ROI level are shown in Figure 3.21, Figure 3.22, and Figure 3.23. 
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Figure 3.21. Point cloud categorization result (Normal driving). 

 

 

Figure 3.22. Point cloud categorization result (Lane change to the right). 
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Figure 3.23. Point cloud categorization result (Intersection passing). 

 

3.2.2. Separated Voxelization   

Lidar's point cloud is very tightly spaced 3-D point cloud data, depending on 

the precision of the sensor. Since the raw data of the lidar point cloud, which 

includes sensor noise and surface, is very large, it should be downsized with 

minimal loss of environmental information to reduce computations. In general, 

a technique called voxelization, which defines the size of the smallest cell based 

on the Cartesian coordinate system, is applied. The voxelization consists of two 

processes: 

1) Quantizing end-points of the beams: Considering the object point set O , 

the quantization of  , ,X x y z , X O  is derived by following: 
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where jds  is the voxel size of j  direction, here chosen as Table 9 and 

.    denotes the floor function. This process converts the original values in 

O  to the quantized set O . 

2) Computing the occupancy cell values: The repeated elements in O  

denote points within the same cell. The occupancy value of a voxel is 

determined by counting the number of points in O  that have the same value. 

The output of this task is a list of voxels with the occupancy values of 

 N O U , X U  ,  , ,X x y z , X U  and  U unique O . 

The voxelization process, which performs the downsizing of the point cloud 

information, has a significant influence on the performance of the cognitive 

environment using lidar depending on the cell size setting. In general, most 

autonomous driving systems downsizing the same cell size for all point cloud 

information. As a result, the trade-off relationship between information loss and 

computational load occurs depending on the cell size. If the cell is too large, the 

loss of environmental information may occur, or if the cell is too small, the 

computational burden may be increased. 

In this study, by applying a separate voxelization to each point cloud group 
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classified by ROI level through point cloud categorization, sufficient cognitive 

information to secure the driving safety of autonomous vehicles is secured. As 

defined above, the ROI level represents the surrounding area in order of 

importance according to the driving state of the subject vehicle. A high-priority 

1st ROI is relatively significant in environment perception performance. 

Therefore, to minimize data loss to prevent collisions, the cell size is carefully 

set to use most raw data. Due to the relatively low importance in 2nd and 3rd 

order, the cell size was set to be large gradually, even if data loss is taken at 

some cost, to reduce the computational volume while maintaining the proper 

level of cognitive performance to increase efficiency. 

When voxelization is applied, down-sizing is generally performed in units of 

cube cells. However, in this study, the axial direction was different. The density 

of point cloud varies according to the size of the voxel in each direction, which 

causes the error of object recognition performance. From the driving control 

point of view, the recognition error caused by the quantizing in the x-direction 

can be coped with by setting a safety margin for the x-direction voxel size. The 

quantizing error in the y-direction can cause inaccurate problems in estimating 

and predicting the width or position of the object, such as a vehicle, which has 

a significant impact on the planning of the behavior of the surrounding objects 

in terms of motion planning. Thus, to minimize this problem, a relatively dense 

voxel size setting than the x-direction is required. To prevent the loss of 

environment information, various voxel sizes are applied to find the appropriate 

size through simulations. As a result, the longitudinal voxel size is confirmed 

to maintain the perception performance when setting up to twice as much as 
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that of the lateral direction. At the 1st level, 5 centimeters is determined through 

experiments as a standard to obtain the downsizing effect while maintaining the 

ability to detect even pedestrians or small objects. At the 2nd level, it is 

necessary to recognize an object, such as a bike or motorcycle, with the 

potential to enter the small and 1st ROI area than moving faster than someone 

vehicles, taking into account the size of these objects was estimating the y-

direction quantizing value to 20 centimeters. The 3rd level is less likely to affect 

driving immediately than the other areas. However, it is an area for continuous 

monitoring of objects such as vehicles with significant volume and dynamic 

capability, thus setting a reference value for the short length of the vehicle. 

In this way, the y-direction voxel size was determined for each ROI level, 

and the x-direction voxel .size was defined accordingly. Besides, Figure 3.24 

shows an example of the result of voxelization the point cloud classified 

according to ROI by level. 

 

Table 9. 2-D cell size by adaptive ROI for separated voxelization. 

Level of Adaptive ROI 
Cell Size [m] 

x y 

1st Level 0.10 0.05 

2nd Level 0.40 0.20 

3rd Level 0.80 0.40 
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Figure 3.24. Separated voxelization result with left lane information. 

 

3.2.3. Separated Clustering   

Since the point cloud data represents the precise surface on which the laser 

beam is reflected, the boundary is accurately detected. However, in order to 

estimate the state variables for each object, the process of clustering the point 

cloud data must be preceded. 

In the clustering process, graph-based clustering is conducted by applying a 

Euclidean Minimum Spanning Tree (EMST) technique. EMST is a spanning 

tree of a set of n points in a metric space, where the length of an edge is the 

Euclidean distance between a pair of points in the given point clouds. In this 

study, edge weights are calculated according to the definition of Euclidean 

distance, and breakpoints are determined. Then, a random sample consensus 

(RANSAC) technique is applied to distinguish the outlier between the edge 

weights. At the moment of detecting outlier, we determine to pass to the next 
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cluster is spanning tree concept. The derived cluster signal from the above 

procedure is used as a representative point of a detected object. 

 

       

Figure 3.25. Scheme of EMST based clustering. 

 

The clustering is typically performed on a point-to-point basis. Most 

environmental sensors, including lidar, acquire environmental information by 

transmitting and receiving signals radially. Because the vertical and horizontal 

angular resolution of lidar is fixed, the surface of an object that is close to the 

sensor, regardless of the size of the object, has a high density of point cloud 

distribution. On the contrary, the distance between adjacent beams increases as 

the distance from the sensor increases, resulting in a relatively low density of 

point cloud distribution. 

In Euclidean clustering, the performance of clustering is greatly affected by 

the distance threshold parameter, which is used to classify clusters, and the 

minimum point cloud number threshold, which is the size standard of lower 

limit point groups. The lower the distance threshold for precise clustering, the 

smaller the cluster are separated, resulting in a decrease in the state estimation 
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performance of the object because the same object is grouped into several parts 

according to the sensing geometry. The higher the distance threshold, the less 

likely it is to divide and cluster the same object, but there is a weakness that is 

difficult to distinguish when two or more objects are adjacent. Besides, the 

lower the minimum point cloud number threshold, the better the noise of the 

sensor is reflected in the clustering results, the higher the likelihood that the 로

cluster will fail to determine a signal with a low viscosity density as it is far 

from the sensor and object. In general, clustering with uniform parameters is 

applied to the entire point cloud, so clustering results are limited in properly 

reflecting the characteristics of the environmental signals obtained above. 

Therefore, to minimize the possibility of false recognition and maximize 

cognitive performance, a clustering strategy that reflects the geometric 

characteristics of the beam is required. Additionally, the voxel size of the 

voxelization process performed in the previous step also affects the point cloud 

density distribution and should be considered in the clustering process. 

So far, we have defined the adaptive ROI based on the vehicle's driving status 

information, classified the point cloud data accordingly, and individually 

downsizing according to the area characteristics and importance. As an 

extension of this approach, clustering processing is performed by ROI to 

improve clustering performance in this subsection. The minimum point cloud 

number threshold is inversely proportional to the distance between the lidar 

sensor and the object to achieve proper clustering according to the density of 

the point cloud. Thus, the threshold setting was improved by reflecting the 

geometrical characteristics of each region. 
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The proposed algorithm verified through the data-based simulation. Since it 

is difficult to compare all cluster results distributed in all directions, clustering 

performance is compared for objects that must be considered in terms of driving 

safety. We compared the cognitive results of objects in in-lane, left-lane, and 

right-lane under normal driving conditions. The results of each clustering 

application are applied to the multiple object tracking algorithm described in 

Section 4.3 to obtain the results of the recognition of the surrounding objects. 

Conventional uniform clustering and adaptive ROI-based separated clustering 

are applied to the same driving data. 

Figure 3.26 shows the number of valid targets for in-lanes and side lanes. 

There are a large number of recognized valid objects when the proposed 

separated clustering is applied throughout the simulation. It affects the 

prediction result based on the estimation of the state information of the object 

that can affect the driving of the vehicle, which has a positive effect on the 

motion planning performance to prevent collisions and the rapid response 

performance in case of accidents. Figure 3.27 compares the longitudinal 

distance to the most crucial front in-lane target in terms of control to avoid 

collisions. The conventional methods result in loss of in-lane target due to 

undetectable cluster loss in long-terminal resistance of approximately 75 m, but 

the proposed method can be found to be perceived as being up to approximately 

120 meters. 
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(a) SOM based processing (max longitudinal range: 60m) 

 

(b) SOM based processing (max longitudinal range: 120m)  

 

(c) Adaptive ROI based processing 

Figure 3.26. Comparison of the number of tracking targets. 

 

 

Figure 3.27. Tracking result of in-lane target by each perception algorithm. 
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Chapter 4 Environment Perception 

Algorithm for Automated Driving 

   

Automated driving requires a quick and accurate ability of the environment 

perception. The environment perception algorithm computes environmental 

information for safe driving by processing signals obtained through various 

sensors mounted outward to the vehicle. It is essential to identify the 

characteristics of the target sensors and target systems and to reflect them so 

that no distortion or omission of information occurs. There can be two main 

types of environment information of self-driving cars: road facility information 

such as lanes and curbs, and objects necessary to prevent collisions in driving 

environments such as vehicles and pedestrians. 

This chapter analyzes the characteristics of external environment sensors that 

are widely used in self-driving systems, and describes the environmental 

perception algorithms needed for the motion planning and control process by 

processing signals. All sensors and devices have latency in the process of 

sensing and transmitting information. These time delays occur in a series of 

processes related to information transmission, such as sensing, transmitting, 

and receiving, and the causes are complex. The time delay creates more 

distortion of the environmental information as the vehicle's behavior increases. 

Lidar sensor is widely applied to the automated driving system because it can 

precisely and accurately recognize the surrounding environment information 

compared to other sensors, but when information distortion occurs, it can cause 
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a decrease in perception ability. Therefore, in this study, we develop and verify 

the method to prevent information distortion of lidar information by analyzing 

and estimating the time delay characteristics of the target autonomous driving 

system and the mounted lidar sensor. Besides, an algorithm was proposed and 

verified to recognize the information on the road structures needed for the 

motion planning of the driving. Also, a method has been developed to estimate 

the status of dynamic objects that are essential to prevent collisions. In order to 

improve the limitation of model-based tracking (MBT), which determines and 

tracks the average model of a vehicle, the geometric model-free tracking 

(GMFT) is developed that can achieve tracking performance independent of the 

size or shape of an object by matching the point cloud information of object 

cluster. In particular, GMFT is applied to separated data processing based on 

adaptive ROI in Section 3.2 to recognize surrounding objects. 
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4.1. Time Delay Compensation of Environment 

Sensor 

 

Nowadays, various kinds of automated driving systems (ADS) have been 

suggested and progressed in order to improve driver’s safety. However, 

perceiving environment precisely is still challenging problem. The ADS have 

increasing demand for several sensor systems, which are not only 

complementary but also redundant. Much research has therefore been focused 

on high-level sensor fusion which requires reliable ability of each 

environmental sensor. Measurement of object with sensor such as laser scanner, 

radar, vision camera and so on, in driving area is crucial issue of ADS 

researches. 

The time-delay is the major cause of debased performance and instability of 

ADS system. The network and sensor introduces delays in addition to process 

and transmission delay that are prevalent in most digital systems [Halevi,'88]. 

The signal handling should be designed to compensate for these delays. The 

laser scanners are widely used in field of engineering, such as autonomous 

vehicle driving, because of their advantages of non-contact measurement and 

high precision in over a large working range. This is the reason why various 

laser scanners are installed in most of automated driving vehicles [De 

Cecco,'06]. Thus, the laser scanner is focused on this research. 

Besides, the system parameter uncertainties, it has been recognized that the 

time delay is also often the main cause of instability and poor performance of 
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systems [Malek-Zavarei,'87]. The filter design problems for uncertain time-

delay systems have been studied [Pila,'99, Wang,'02, Wang,'04, Sahebsara,'07]. 

Up to now, in most relevant literature, the time delay of sensor is mostly 

assumed to be deterministic [Kaempchen,'03]. To work with sensor delay 

systems, normally, stochastic delay or uncertainty information are transformed 

to a stochastic parameter of the system.  

Consequently, it is necessary to develop an algorithm which can minimize 

distance error due to time delay of measured object in driving area. To 

accomplish this task, a time delay of the laser scanner is analyzed and a delay 

compensation algorithm has been developed. The proposed algorithm was 

devised based on the ideas of forward estimation of movement state in posterior 

parietal cortex [Mulliken,'08]. The widely used transformation can be used to 

the model with a maximum of the one sampling delay, while the new proposed 

representation in this seection. The proposed delay compensation algorithm 

was verified via automated driving system in the open loop simulation. 

 

4.1.1. Algorithm Structure of Time Delay Estimation and Compensation   

To improve driver’s safety, more accurate environment perception is required. 

Due to processing latency of laser scanner, delay compensation is needed. 

Therefore, we developed the forward estimation of object algorithm as shown 

in Figure 4.1. The laser scanner data and ego vehicle’s chassis signals are used 

to compensate the sensor latency. Consequently, the proposed algorithm can 

lessen the sensor latency and modified object signals can be obtained. 

Figure 4.2 describes the proposed compensation algorithm scheme. The 



 79 

coordinate transformation using vehicle state obtained from vehicle filter is 

applied in order to correct the delayed sensor data. 

 

 

Figure 4.1. Block diagram of delay compensation process. 

 

Figure 4.2. Scheme of delay compensation. 

 

For the verification of the algorithm, vehicle tests in real road have been 

conducted. The proposed algorithm is implemented on test vehicle to confirm 

the process delay effect on automated driving. 

 

4.1.2. Time Delay Compensation Algorithm   

The vehicle’s current dynamic states are estimated with the Kalman filter. 

Then, the forward estimation is applied to object by using coordinate 
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transformation. The states of subject vehicle obtained from vehicle filter can be 

used in forward estimation. 

 

4.1.2.1. Vehicle Filter   

The Kalman filter is used to estimate present vehicle states like as 

longitudinal velocity, yaw rate, longitudinal acceleration and yaw acceleration 

from the vehicle sensor signals such as steering angle, yaw rate, longitudinal 

velocity and longitudinal acceleration under the assumption of the Gaussian 

white noise. As previously stated, the state vector x  is defined as following in 

order to represent the driver’s intention and the vehicle’s planar behavior: 

  
T

x v a   (4.1) 

where v   is the longitudinal velocity,    is the yaw rate, a   is the 

longitudinal acceleration and    is the yaw acceleration. The measurement 

vector is defined as following to reflect the available sensor information.  

 
T

fz v a       (4.2) 

where f   is the front wheel steering angle. Assumption of the time 

derivatives of the longitudinal acceleration and the yaw acceleration can be 

considered as process noise, the process model and measurement model are 

given by following form: 

        1x F x wk k k k     (4.3) 

      z k Hx k v k   (4.4) 
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where t  is the sampling time which taken as 0.1 second in this study, zI  

is the yaw moment of inertia, fC  and rC   are the front and rear wheel 

cornering stiffness, respectively fl  and rl  are the distances from vehicle’s 

center of gravity to front and rear axles. Two elements in 4th row of 

measurement matrix are determined from the bicycle model which is most well-

known lateral vehicle dynamics model [Rajamani,'11]. 

The process noise is assumed to be a white noise with associated covariance 

matrix, W . The measurement noise is also assumed to be a white noise with 

associated covariance, V . Note that measurement model, H , is time varying 

because there exist longitudinal velocity in the element of the matrix. Therefore, 

it should be re-calculated at each time step. With above process and 

measurement model, vehicle states are recursively estimated by using the 

Kalman filter which is a sequence of time and measurement update steps as 

following specific equations [Simon,'06]: 
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Time update 

    ˆ 1x k F x k  
  

(4.5)
 

    1 TM k F P k F W    
 

(4.6)
 

Measurement Update 

             x̂ k x k K k z k H k x k      (4.7) 

             
1

T T
K k M k H k H k M k H k V



    (4.8) 

       P k k I K k H k M k       (4.9) 

 

4.1.2.2. Forward Estimation   

In this study, forward estimation algorithm is proposed in order to correct 

object information as described in Figure 4.3. 

Under existence of process delay, the host vehicle moves for time period of 

sensor delay. Consequently, estimation of the previous host vehicle position that 

is the exact time of sensing is possible to diminish inaccuracy. 

The coordinate systems of host vehicle and object and the relations of them 

are defined as described in Figure 4.4. The current host vehicle frame is 

determined as {1}   and past host vehicle frame is defined as {0}  . Also, the 

frame of true object which measured in driving area was decided as {2}  and 

the frame of delayed measurement is determined as {3}  . The relation 10T  

indicates coordinate transformation of host vehicle during delayed period and 
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32T  presents frame transformation between true and delayed measurement. In 

this study, we assume that 32T  is nearly same as 10T  because the delay effect 

results from vehicle movement for the delay period.  

 

 

Figure 4.3. Schematic description of forward estimation. 

 

 

Figure 4.4. Definition of coordinate systems and their relations. 

 

The measurement vector is defined as following. 

 
, arg , arg 1

T

x t et y t etx p p     (4.10) 
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where , argx t etp , , argy t etp  are the object position relative to ego-vehicle. 

The compensated delay signal ˆ
compensatedx   is obtained multiplication of 

transition matrix 32T  and delayed measurement delayedx . 

 32
ˆ

compensated delayedx T x   (4.11) 

where, 

32
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t t
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where t  is process delay assumed,   is yaw rate and v  is longitudinal 

velocity of host vehicle, and DRN   is the split number of dead reckoning 

process which is taken as 10000 in this study. 

 

4.1.3. Analysis of Processing Delay   

First of all, the laser scanner’s processing latency has to be analyzed. 

Specification sheet of sensor provide us only sampling frequency, therefore we 

attempt to get its processing time-delay by conducting actual experiment. 

 

4.1.3.1. Configuration of the Test Vehicle  

The test vehicle as shown in Figure 4.5 is used for delay analysis and 
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verification of proposed algorithm. Laser scanner, radars, camera and vision 

sensor are installed on test vehicle to perceive driving environment. Also, auto 

box, ECU and PC are mounted in order to control ADS. Additionally, DGPS is 

also used to this test to determine reference object position. In this research, the 

4-layer laser scanner located in front of test vehicle is concerned. The proposed 

algorithm of this research is applied and tested to this vehicle in order to verify 

the process and transmit delay effect on automated driving situation. 

 

 

Figure 4.5. Sensor configuration of test vehicle. 

 

4.1.3.2. Test Scenario  

The vehicle tests have been conducted at the intersection of Intelligent 

Transportation System (ITS) test road in Korea Transportation Safety Authority. 

Descriptions of this test situation are given in Figure 4.6.  

The place of experiment is depicted in Figure 4.6-(a) and the specific test 
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scenario is described in Figure 4.6-(b). The test site is an intersection which has 

four traffic lights in each corner. In order to obtain the ground truth of given 

obstacles, the test vehicle measured the positions of traffic light poles while 

standing still at the stop line for 1 minute. The accumulated signal data at this 

process is assumed the actual true position of object. Secondly, the same poles 

under driving state are measured. By comparing these data obtained from the 

experiment, time delay of laser scanner can be investigated. 

 

  

(a) Test road condition       (b) Test scenario 

Figure 4.6. Test Situation Description of Intersection with traffic lights. 

 

4.1.3.3. Test Result  

From the test, time delay of sensor can be analyzed by comparing the position 

of four traffic poles on the intersection. The test result is shown in Figure 4.7. 

In Figure 4.7, the black circles which are obtained with halted vehicle located 

in intersection indicate reference position of traffic light poles. And the blue 

triangles represent the same pole signal on driving pass through the intersection 
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with 15kph vehicle speed. The measurement while driving was perceived as far 

object that are compared to true position. The difference between true object 

and delayed measurement is approximately 0.4 meters as shown in Figure 4.7. 

Due to 15kph vehicle velocity, we can roughly expect that around 100ms 

latency exists. 

From the result, when the vehicle is moving, the system measures the delayed 

objects which are far away from the true position. It means that distance error 

occurs due to time delay. Also, we can expect that the distance error of each 

object is proportional to relative motion between host vehicle and object. 

 

 

Figure 4.7. Comparison of global position of poles. 

 

Besides, experiments are conducted with different host vehicle speed in 
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0~30kph range as shown in Figure 4.8. The four cases of driving data are used 

for analysis. In Fig.8, the red diamond and magenta x marks indicate the 

distance error when test vehicle passes through the intersection with waiting in 

front of stop line. On the contrary, blue square marks and green triangle marks 

describe the distance error while passing through intersection with no stops 

under 15kph and 26kph. In Figure 4.8, we can find out that tendency that the 

distance error increased in proportion to relative velocity between host vehicle 

and obstacle. Also, the distribution of y-axis is assumed as the effect of sensor 

noise and obstacle width. 

If delayed measurement is used as an object information, the safety clearance 

becomes unreliable due to distance error. To secure driver’s safety, sensor’s 

process delay has to be estimated and compensated. 

The estimations are attempted under various process latency assumptions. 

The black circles which indicate true position of object and the blue triangles 

which represent delayed measurement under driving condition are marked in 

Fig.9. What one has to look at is the red square marks which represents the 

result of forward estimation. We applied 0.1s delay assumption in Figure 4.9-

(a) and also 0.15s in Figure 4.9-(b). Accordingly, it is easily noticed that forward 

estimation improves perception accuracy.  

The error between true and compensated object was defined as follows. 

   
2 21

ˆ ˆmin true truecompensated compensatedt
J x x y y

N

 
 
 

      (4.12) 

where truex , truey are the position of true object, ˆ
compensatedx , ˆ

compensatedy are 
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the position of compensated object and N is the number of object 

measurement.  

 

 

Figure 4.8. Measured global object position with 0~30kph range. 

 

 

(a) Assumed 0.1s delay (b) Assumed 0.15s delay 

Figure 4.9. Compensated signal of forward estimation with t =0.1s, 0.15s. 
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The assumed delay t , which minimize the error J, is the actual process and 

transmission delay of laser scanner. The error, J, is calculated by 0.001sec time 

interval as shown in Figure 4.9. Therefore, the minimum error occurs at 0.112s. 

From this result, the time delay of laser scanner was estimated as 0.112s and 

then, t is determined as 0.112s to compensate. The error probability is 

calculated in Figure 4.10. The distance error is highly decreased by applying 

compensation under delay 0.112s. This is the reason why assumption of 0.112s 

time delay is reasonable. 

 

Figure 4.10. Calculated error J by t . 

 

Figure 4.11. Comparison of distance error probability. 
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4.1.4. Test Data based Open-loop Simulation   

In previous section, the processing delay of our laser scanner which 

minimizes the distance error is derived as the value of 0.112s. The effect of 

presence of process delay compensation in vehicle control should be 

investigated. Therefore, test data based open-loop simulation has been 

conducted to validate the automated driving performance enhancement due to 

the proposed time delay compensation algorithm. 

The test data have been acquired for several automated driving tests at the 

internal road of Seoul National University as depicted in Figure 4.12 (a). The 

scheme of automated driving strategy is shown in Figure 4.12 (b). The system 

detect the preceding vehicle and perform the following driving with ensuring 

the safety distance from the measured obstacles. 

The given test roads have quite complicated environments to drive 

automatically. The lanes were hard to be distinguished because of faded paint. 

There are a lot of buses parked along the road as shown in Figure 4.13 (b). In 

Figure 4.13 (c), there exist non-vehicle obstacles such as pedestrian and 

guardrail to avoid. Also, we need to consider other traffic participants like 

oncoming and preceding vehicles as described in Figure 4.13 (d). 

The open loop simulation was conducted via logged data of our test vehicle 

by using MATLAB. In this simulation under open loop, our system calculated 

desired local path and steering angle to drive automatically. By comparing 

results which the proposed algorithm is applied and not applied, the effect of 

delay compensation will possibly confirmed. 

 



 92 

    

(a) Test road in SNU       (b) ADS configuration 

Figure 4.12. Description of test scenario. 

  

Finish

Start



 93 

 

(a) Inside of test vehicle  (b) Highly extreme condition 

 

(c) Non-vehicle obstacles (d) Other traffic participants 

Figure 4.13. Major scenes of test environment. 

 

From this simulation, desired steering angle is obtained while the proposed 

algorithm is applied to the automated driving system. The comparison plot of 

desired steering angle is depicted in Figure 4.15. In Figure 4.15, around 100 

and 108 seconds in horizontal time axis, it is confirmed that phase of desired 

steering commend has been moved forward due to the proposed compensation. 

When the forward estimation applied to the object signals, most of compensated 

signals are located closer to the host vehicle. Because of these compensation, 

safety clearance decreased and the system need earlier control to grantee the 

safety margin. Details at this critical situation are described in Figure 4.14 (b). 
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(a) No compensation      (b) Compensated 0.112s delay 

Figure 4.14. Scene comparison between non-compensation and applied 

compensation. 

 

 

Figure 4.15. Comparison of desired steering wheel angle. 
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Figure 4.16. Change of predicted vehicle motion with delay compensation. 
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4.2. Environment Representation 

 

Environment information that should be detected from an automated driving 

perspective consists largely of two types: road facility, such as lane, marker, 

road boundary, and surrounding objects information. Using lane and road 

boundary features, the pathways depending on the driving environment can be 

determined, and the route planning method is implemented to recognize the 

surrounding objects to prevent collision. This section proposes a detection 

algorithm for lane and road boundary information and static obstacles that 

should be preceded by motion planning for sensor-based automated driving. 

In general, it is assumed that the vehicle runs on the road. For this reason, a 

person determines the desired driving path of a vehicle by recognizing the 

facilities indicating the lanes and road boundaries such as road surfaces, lanes, 

and markers through vision. The route information to be driven through painted 

lanes on the road can be found. In the case of motorway, a guardrail or a median 

strip can be a kinds of road boundary. In the case of an urban road, the curb that 

separates sidewalk and road can be regarded as a road boundary. Because lanes 

and road boundaries are largely regular and continuous on most roads, this 

information can be used to determine the desired path of vehicle. In addition, a 

static obstacle map is constructed to utilize information on the stationary 

objects that are not standardized road facilities but still in the path planning. In 

this section, we propose lidar based detection algorithms of lanes, road markers, 

and road curbs, and static obstacle map construction approach. The proposed 
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algorithm is verified through experiments on roads that represent complex 

urban environments. 

Furthermore, the road information extracted in this section is a fixed facility 

that does not change unless artificial modifications are made, so it is included 

in the element of the high-definition map (HD map) currently constructed in 

the main section. Therefore, detected road facility information can be applied 

not only to route planning of sensor-based self-driving but also to Vehicle 

localization through map matching. 
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4.2.1. Static Obstacle Map Construction 

In the boundary extraction process for static objects, we apply a grid 

representation technique to confirm the signals that become an actual obstacle. 

Grid representation technique means dense raw data transformed into a 

representative grid cell described in Figure 4.17. Since raw static signals are 

large as inefficient in view of the memory system, data downsizing through grid 

representation is required to improve computational efficiency. 

A grid is fixed as a square, and representative grid points indicate that object 

boundaries can be expressed as configured grid size. Each grid of the map has 

the counter, which indicates how many points existed in that grid cell. If the 

counter value of the cell is higher than a certain designated threshold, the grid 

is considered occupied by the object. The set of occupied cells is considered a 

static obstacle map. To cope with the noisy measurement of lidar and guarantee 

minimum space in any case, a safety margin is determined by considering the 

sensor’s systematic error, statistical error, and designated minimum clearance. 

In the case of the candidates for moving objects, they are detected by 

comparing the current observation with estimated moving objects from MOT 

to be described in Section 4.3. If a point is entirely within the area of the 

estimated moving object, the point is considered as a part of the moving object. 

An example result of static obstacle map construction is shown in Figure 4.18. 

The sensing area of lidar is depicted as a cyan-colored region. Black points are 

the current observation of lidar, green squares are estimated static objects, and 

blue circles are moving objects. Also, red filled squares are the occupancy grid 

of static obstacles, and blue filled squares are the occupancy grid of moving 
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objects. It can also be seen that the performance of moving object estimation is 

sufficient to construct static occupancy cells. 

 

 

Figure 4.17. Transformation point cloud data into representative cell. 

 

 

Figure 4.18. Example result of static obstacle map construction.  
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4.2.2. Lane and Road Boundary Detection 

It is essential to recognize the road boundaries such as lanes and curbstones 

for collision-free driving in a narrow and complex urban environment. Road 

boundary information cannot only be used directly to establish a sensor-based 

desired driving path, but also to be used in the vehicle localization through map-

matching. Many researches [Schreiber,'13, Tao,'13], use lane marking data to 

build their digital map. The second most used feature is a curb [Schreiber,'13, 

Hata,'14b]. Curbs usually appear at the borders between streets and sidewalks. 

Therefore, this section presents ways to extract lane and curb information using 

lidar. 

 

4.2.2.1. Lidar based Curb and Lane Detection 

The lane marks close to the own vehicle can be reliably extracted by their 

corresponding intensity value of a lidar measurement [Isogai,'09]. The effect 

that dark road surface reflects significantly less laser light energy than the 

brighter lane marks was taken advantage of in that work to extract lane mark 

measurements by using an adaptive threshold on the intensity channel of the 

lidar sensor. 

In this research, four SICK LMS511-10100 are installed on the test vehicle. 

To detect lane marks on road surfaces, two lidar are located on the roof of the 

vehicle as depicted in Figure 4.19. 

The lidar layers are facing ground and are intersecting the road surface in 

distance of approximately 3 meters for the front bumper and 2 meters for the 

rear end of vehicle. Figure 4.19 shows two lidars we use for curb and lane 
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detection in red color circle and their view angle toward down. LMS511 

provides 190 degree field of view range with 0.25 degree angular resolution 

and its scan rate is up to 25 Hz. Their sensing maximum range reaches 80 meters 

with a 50 mm error and they also can output reflectivity values which called 

Received Signal Strength Indicator (RSSI). RSSI is the measurement of power 

received by the lidar. This value is generated for every measurement and has an 

arbitrary unit with a logarithmic characteristic. 

 

 

(a) Side view of four lidar sensors installation 

 

(b) Top view of four lidar and AVM 

Figure 4.19. Sensor configuration of test vehicle to detect curb and lane. 

 

First of all, each scan is processed individually. In Figure 4.20, where scan 

signal points are projected in the vehicle local coordinates in green color, it can 

be noticed that the center of the road is quite flat. Then, we tried to found a 
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polyline expression that best approximates the road scan data. By using 

Random Sample Consensus (RANSAC) algorithm, only two thresholds are 

necessary; the first one indicates the expected outlier rate in the points set, 

which is directly related to the iterations number, and the second one specifies 

the distance above which a point is considered as an outlier. The result of road 

boundary estimation which can be called as curb stone is presented in Figure 

4.20. Vertical magenta dashed line represent the extracted curb stone point 

using the RANSAC algorithm. It can be seen that the road is well extracted. 

With a correctly extracted ground and using the reflectivity data, we can also 

extract lane marks through a simple thresholding. Asphalt presents a much 

lower reflectivity than road marks so that threshold determination is quite easy 

[Dietmayer,'05]. Nevertheless, this approach can in some cases be less robust 

than image processing methods, as it highly depends on marking reflectivity, 

which is faster deteriorated than white painting. In Figure 4.20 and Figure 4.21, 

parallel red dashed line indicates adaptive RSSI threshold and blue dots are 

RSSI values of the road. In these figures, blue points which are exceed the RSSI 

threshold represent the extracted points of lane marks. As shown in Figure 4.20, 

it can be easily found that three points exceeding RSSI threshold are left, center 

and right lane of two-lane road. Also, Figure 4.21 shows the pattern painted on 

the crosswalk can be extracted. 
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(a) Front lidar       (b) Rear lidar 

Figure 4.20. Lidar based lane detection result using RSSI (Normal Road). 

 

 

(a) Front lidar       (b) Rear lidar 

Figure 4.21. Lidar based lane detection result using RSSI (Crosswalk). 

 

4.2.2.2. Test Results 

Vehicle tests were conducted at the driver’s license test course located in 

Incheon as show in Fig.8. The length of the designated path is about 600 meters 

long. The vehicle passed 90 degree course, S-curve course, and three 

intersections. The width of normal road is generally 3.5 m, but averagely 3.0 m 
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in target route. This is the reason why high accurate level of detection ability is 

fundamentally required to avoid collision accident of automated driving in 

complex urban road. 

 

 

Figure 4.22. Test site description of lane and curb stone detection. 

 

The road boundary and lane detection algorithm has been verified by real 

time automated vehicle on designated route. Figure 4.23 and Figure 4.24 show 

algorithm verification scenes during real-time vehicle test. In these figures, the 

blue and cyan dots express detected road boundaries with accumulation, and 

magenta and red dots indicate the extracted road lane with accumulation. 
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Figure 4.23. Vehicle test result of lane and curb stone detection (Crosswalk). 
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Figure 4.24. Vehicle test result of lane and curb stone detection (Intersection). 
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4.3. Multiple Object State Estimation and Tracking 

based on Geometric Model-Free Approach 

 

In this study, a novel approach is applied to enhance the performance of 

detection and tracking of moving objects (DATMO) by using a Geometric 

Model-Free Approach (GMFA) on our ADS system for real-time application. 

The proposed algorithm detects objects and estimates their states irrespective 

of feature shapes. The following are the major contributions of this study. 

▶ the proposed approach is robust against sparse point clouds, object shape 

due to long distance, sensor resolution, and partial occlusion leading to an 

increase in 𝐹1 score. 

▶ the estimated velocity and heading angle of objects depend on the motion 

between the corresponding point clusters with consecutive scans. In most 

typical driving scenarios for urban environment, the accuracy of velocity and 

heading angle estimation has been improved. 

The GMFA tracks the moving objects and estimates their states. In our 

approach, compared with previous studies, each point is depended on clustering 

using Euclidean distance. Since the correspondence between points is 

determined by the similarity of shape and the distance between the average 

position of the cluster, the correspondence between points in successive scans 

can be established even with a small computational load. After establishing the 

correspondence between the clusters, Iterative Closest Point (ICP) method is 

applied to perform a match for each cluster, and also the states of the moving 



 108 

objects are estimated through the Extended Kalman Filter (EKF) based on the 

movement direction and distance of the mean position of the cluster. 

The multiple object state estimation is conducted by using clusters obtained 

in grouping process. In order to estimate the motion states of the object, EKF 

is designed by utilizing processed signals as measurements and motion 

information of the target as output. The motion information of the vehicle was 

defined as filter input. The state vector and input vector for the filter were 

defined as follows: 

  , , , ,

T

n n x n y n n x n n x n
x p p v a    (4.13) 

  
T

xu v   (4.14) 

The coordinate systems and the seven states of filter are depicted in Figure 

4.25. In this study, we use two coordinate systems: a fixed global coordinate 

system, 
g g g

O x y , and a body fixed coordinate system moving around the rear 

axle of subject vehicle, 
e e e

O x y . The 
,n x

p , 
,n y

p  stand for the mean position of 

the cluster, and 
n

  indicates the heading angle of the object in respect of 

e e e
O x y  coordinate system. The 

,n x
v  denotes the vehicle velocity in the 

direction of 
g g g

O x y  frame. The 
n

 , 
,n x

a , and 
n

  describe the rate of 

heading angle, the acceleration, and the angular acceleration of subject vehicle 
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with respect to 
g g g

O x y , respectively. The 
x

v ,   stand for the velocity and the 

rate of heading angle of subject vehicle at the frame of 
g g g

O x y . 

 

 

Figure 4.25. States of moving object in GMFA 

 

4.3.1. Prediction of Geometric Model-Free Approach  

Each track is predicted through process update of the discrete-time EKF 

using the model as expressed in equation (4.15).  
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where  ,
n

x ua  is the state function; and w is the white Gaussian noise with 

covariance matrix 
k

W  , respectively. Also, the discretization of the process 

model has been accomplished [Kim,'15b]. The state and the observation 

functions are linearized, as shown in the following equations: 

   

 

 
,

i

i j

j

A
x





a
     (4.16) 

where A  is the Jacobian matrix of the state function. The track index n  is 

omitted for clarity. By neglecting the higher-order terms of the Taylor series, 

the priori state estimate and the covariance matrix can be given as follows: 

  
 1

1

,k k k

T

k k k k k

x x u

P A P A W

 









 

a
    (4.17) 

where 1kx


 , 1kP


 , and 1kx


  are the priori state at time k+1, the priori 

covariance at time k+1, and the posteriori state at time k, respectively. 

It is essential to transform the previous clusters to present step 
e e e

O x y  in 

accordance with the static assumption in order to initialize the tracks and 

evaluate the speed of moving objects. The clusters of the past step, [ 1]k Z , 

are transformed into the present step, [ 1]k Z , employing dead reckoning 

using velocity and yaw angle rate of subject vehicle under the static assumption. 
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4.3.2. Track Management 

The track management process can be divided into three categories: the 

cluster assignment in the present step to the predicted tracks from previous 

result, the initialization of the new tracks using clusters not yet assigned to the 

predicted tracks, and the termination of the tracks that have yet to be updated 

over a given period. The cluster assignment to the predicted object track is 

conducted through technique of Global Nearest Neighbor (GNN). For a 

comprehensive analysis of the track management in this research, the [ 1]k Z , 

[ ]kZ , and { [ ]}
n

kZ  are configured as follows. The [ 1]k Z  is composed of p 

clusters, 1 2{ , , , , , }i pY Y Y Y , and each iY  consists of 
i

n  two-dimensional 

points. The [ ]kZ  consists of q clusters, 1 2{ , , , , }, j qY Y Y Y , and { [ ]}
n

kZ  

also comprise N clusters, 1{ , , , , }n NZ Z Z . The feature vector, f , for each 

cluster A, in GNN is determined previously as shown in equation (4.18).  

 

min

min min

[ , , , ]

[ , ] ( )

[ , ] (cov( ))

T

MAX

MAX MAX

f x y

x y mean A

eig A when

 

   



 

  (4.18) 

The feature vector is a four-dimensional vector containing of a mean point 

position and eigenvalues of the cluster’s covariance matrix. The eigenvalues 

provide information of feature geometry regardless of rotation. A weighted 2-

norm is defined as a Euclidean distance in 4-D feature space. If the distance 
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between 
n

Z  and 
j

Y  is less than a predefined threshold, 
j

Y indicates a 

measured value of the n-th track 
n

Z . 

Once the assignment of the measurements to the predicted tracks is 

completed, the track initialization and interruption are performed. If the track 

is not continuously updated for more than 30% of the duration of life or for 

consecutive three steps, the track is dropped. The track initialization presents a 

new track generation by using clusters ( iY ,
j

Y ) that has not yet been assigned 

to a track. If the distance between 
iY  and 

j
Y  is less than the predefined 

threshold of distance, a corresponding relationship for creating a new track is 

established. The position, velocity, and heading angle of object are initialized 

through ICP based point matching, and the other elements are initialized to zero. 

 

4.3.3. Measurement Update 

The EKF structure is used to conduct the measurement update. Since the 

process model of the object was described in subsection 4.3.1, the measurement 

and the actual calculation of the assigned cluster for n-th track, 
n

Z , are 

discussed in this subsection. In this study, the three measurements collected via 

n
Z  include the x, y directional position and the heading angle of the target 

objects. When 
n

z  is a measurement vector of the EKF, nz  is expressed as a 

3D vector as following: 
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,1 ,2 ,3[ , , ]T

n n n nh h hz     (4.19) 

The three elements of 
n

z  express the mean position of point cloud cluster 

and yaw angle of the object at 
e e e

O x y , respectively. The position of the n-th 

track is considered the average of the matched 
n

Z  after matching 
n

Z  to 
n

Z  

by using ICP. The movement direction of the moving object represents the 

direction of the displacement vector from the mean position of ˆ [ 1]
n

k Z  to 

the mean position of matching 
n

Z . In Figure 4.26, these measurements are 

depicted with different colored dots, and the measurement model based on them 

is linear as derived in (4.20), assuming that the measured values associated 

with white Gaussian noise with a covariance matrix of 
n

V . 
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With this measurement, the state can be updated by calculating Kalman gain. 

The posteriori estimates can be given by: 
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   (4.21) 

where 1kK  , 1kx


  and 1kP


  are, respectively, the Kalman gain, the 

posteriori estimate, and the posteriori covariance. 

 

 

Figure 4.26. The measurement of n-th track from corresponded cluster. The 

triangle denotes mean point of each cluster. 

 

4.3.4. Performance Evaluation via Vehicle Tests 

The proposed object tracking algorithm has been verified by comparing to 

geometric model-based tracking (MBT) algorithm in respect of object detection 

and state estimation. The MBT is the representative tracking method among the 

detect before track approaches. MBT extracts the practically possible feature 

candidates of objects from the present point cloud signals, and tracks the shape 

candidates using the multiple hypothesis tracking structure proposed in 

[Cho,'14]. After clustering in the point clouds of present step, the shape 

candidates were extracted by using the scheme of bounding box and the virtual 

ray. The performance of state estimation accuracy was verified by comparing 

to MBT approach in regard to the standard deviation of the state estimation 



 115 

error. With the purpose of the error analysis, the driving data including situation 

of lane keeping and lane change were acquired at various relative positions 

using the RT-range. The data log of Seoul National University (SNU) Kwanak 

campus is used to determine the results. The test-driving road included a variety 

of urban environments such as intersections, crosswalks, and speed bumps. 

Each data frame was labeled with moving objects detected from a camera 

located in front windshield, and 540 number of moving objects were labeled 

including vehicles, buses, motorcycles and so forth. 

The results of target detection are shown in Table 10. As explained in Table 

10, the 𝐹1 score for the proposed approach was around 59% higher than that 

for MBT approach since both precision and recall had increased. The precision 

and recall were improved by 0.062 and 0.478 respectively. Increased precision 

indicates a decrease in the number of false alarms, and significantly 

improvement of recall indicates the reduction in the frequency of false negative 

results. 

 

Table 10. Comparison result of GMFA and MBT based on data log of SNU 

Kwanak Campus. 

Method 
Moving 

Objects 

Detected 

Objects 

Correctly 

Detected 
Precision Recall 𝑭𝟏score 

GMFA 540 568 486 0.856 0.900 0.877 

MBT 540 287 228 0.794 0.422 0.551 

 

As the performance of tracking was obtained without assumption of the 

moving objects’ shape, the efficient detection and tracking of diverse moving 
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objects faced in the urban situation were successfully performed. The speed and 

heading angle of the vehicle were estimated with a high degree of confidence 

through points correlation in consecutive scans. 
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Chapter 5 Computational Load 

Management 

         

The automated driving system consists of perception, positioning, decision-

making, and control, and the real-time stability of the system must be secured 

for safe driving. For the whole system to operate normally, a designated 

calculation cycle must be ensured based on the evaluation of hardware 

capabilities and algorithm performance. The computational load of the 

environment perception algorithm is very high in terms of real-time stability 

since the computational load of the perception module that processes 

environment information takes up a large portion of all resources. Therefore, 

this study focuses on lidar-based environmental recognition technology and 

proposes a computational load management strategy to ensure real-time 

reliability of environment recognition systems for automated driving. 

The adaptive ROI-based environment perception algorithm designed in 

Chapter 3 and 4 has improved efficiency, scalability, and accuracy compared to 

the existing algorithm. Although this improves efficiency, there is still a 

possibility that the operation fails within a given period, so this design cannot 

guarantee that real-time stability is achieved. To improve the real-time stability 

of the target algorithm, it is necessary first to identify and efficiently use the 

resources allocated to the cognitive algorithm in the target system. In terms of 

practical application, the computational load is regarded as the computation 

time. The lower processing module constituting the environment-aware 
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algorithm must complete the operation within the allocated period for smooth 

operation. Data that senses the surrounding environment using lidar correlates 

with the amount of data and the point cloud data depending on the road structure 

and traffic conditions, and the deviation can be quite significant. Unlike most 

algorithms with fixed input and output sizes, lidar-based environment 

recognition algorithms have variable input and output data sizes. In order to 

reflect these data characteristics and the characteristics of the entire system, a 

computational load management strategy is established based on the data 

analysis of the target automated driving system implemented on the vehicle. 

The structure of the automated driving system developed in this laboratory is 

shown in Figure 5.1. Lidar-based algorithms applied in this system are mounted 

along with motion planning on PC devices shown in shades of blue in Figure 

5.1. 

To determine sampling cycle of system, various factors should be considered: 

hardware capability and requirement of system performance. The automated 

driving system required to be able to understand the real-time traffic 

environment and react to it fast enough. However, the actual performance 

requirement for automated driving system is still largely undefined. According 

to previous work in ADAS, the reaction time of ADS is determined by two 

factors: frame rate and processing latency. The frame rate determines how fast 

the sensor data can be fed into the process engine, and the processing latency 

of perceiving scenes and making operational decisions determines how fast the 

system can react to the acquired sensor information. Human drivers take 

varying amount of time to respond based on the level of expectation and action 
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chosen. The fastest possible action by a human driver takes 100-150ms 

[Newell,'85, Thorpe,'96]. To secure better vehicle safety, automated driving 

systems must be able to react faster than human drivers, which recommends the 

processing latency should be within 100 milliseconds [Lin,'18]. To react 

quickly to the constantly changing traffic condition, the system should be able 

to react faster than human reaction time, which suggests a frequency of once 

every 100 milliseconds. This processing frequency aligns with the industry 

standards of Mobileye [Shalev-Shwartz,'16] and the design specifications of 

Udacity [Udacity,'17]. In consideration of the system performance constraint 

determined above, target hardware specification and the sensor's performance, 

the sampling cycle is designed at 10Hz. 

Due to the interlocking characteristics of the LabVIEW and MATLAB 

software applied, environment awareness and motion planning are designed to 

perform serial operations in our ADS. Since the sum of the execution time of 

two modules on the same hardware should not exceed a predetermined period, 

the resource allocated to the environment recognition algorithm is calculated 

using the relatively small variation in the computational load of the motion 

planning module. By applying multiple linear regression to the driving data of 

the target system, the computational load of the main functions of the 

perception algorithm is estimated before the algorithm is executed. In order to 

prevent execution time from being exceeded based on the expected processing 

time, processing time reduction is performed in which the data used for 

processing is reduced sequentially based on ROI. Nevertheless, when the actual 

execution time of the algorithm continuously exceeds the allocation criteria, the 
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driving control ability is partially limited to ensure driving safety and real-time 

stability of the proposed system. 

The performance of the proposed algorithm is verified through data-based 

simulation with driving logs. It is shown that the perception module's 

computation efficiency performance can be significantly enhanced. 

 

 

Figure 5.1. Scheme of processing time estimation and reduction. 
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5.1. Processing Time Analysis of Driving Data 

 

In order to ensure the real-time stability of the proposed algorithm under 

given conditions, it is necessary to identify the allocated resources and 

effectively use them accurately. The ability of the algorithm to keep a proper 

execution cycle under given execution conditions is a criterion for evaluating 

the algorithm's real-time computational stability. For the real-time performance 

of the algorithm proposed in this study, we must first identify the resources 

allocated to the algorithm. 

The main modules of the automated driving system we are developing are 

composed of PC and Autobox, as shown in Figure 5.1. Among them, algorithms 

such as environment perception and motion planning are installed on PC. Since 

the resources are shared among the algorithms of the same device, resources 

must be allocated individually for each algorithm. As mentioned above, in the 

recognition algorithm using the environment sensor information, the dimension 

of input and output data is variable, and the deviation is significant. On the other 

hand, the calculation time required for motion planning and other algorithms is 

relatively small because the variation of operation time by cycle is relatively 

small. By performing statistical analysis on the actual driving data of the target 

system, the processing time required for algorithms other than recognition can 

be obtained. Using this, it calculates the resources that can be used by the 

proposed environmental awareness algorithm while guaranteeing the 

performance of other algorithms in the PC environment. 
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Motion planning is the most computationally loaded algorithm in PC, 

excluding the environment recognition algorithm. Therefore, to obtain the 

maximum resources available in perception computation, an analysis of the 

motion planning algorithm should be preceded first. Motion planning is 

performed using all information, including environmental recognition results. 

The motion planning of the automated driving system applied in this study is 

designed based on MPC. The primary process consists of four steps, as shown 

in Figure 5.2. The safety envelope is determined using the environmental 

cognition results, maps, and localization results, and the ego vehicle model for 

the MPC is determined. Motion optimization is finally performed through mode 

decision on lane keeping and lane change. 

 

 

Figure 5.2. Algorithm flow of motion planning after environment perception. 



 123 

Using the actual driving data of the subject automated vehicle, the 

computation time of the functions that make up the motion planning depicted 

in Figure 5.2 are analyzed. Figure 5.3 shows the result of analyzing the 

calculation time of MPC-based motion planning functions using driving data. 

Figure 5.3 (a) shows the computation time for each configuration function. In 

other functions except for LK/LC decision, it is possible to see that the 

operation time is constant regardless of the situation, considering intermittent 

noise. On the other hand, the LK/LC decision function can see some variation 

in computations depending on the driving situation, but the deviation is not 

significant. Figure 5.3 (b) shows the processing time of motion planning over 

time by accumulating the result of Figure 5.3 (a). Except for some occasional 

noise, it can be seen that the total computing time and proportion are constant. 

Figure 5.3 (c) shows the histogram of the time required for each function. Many 

functions have small standard deviations, but as mentioned earlier, LK/LC 

decision shows significant variations in computational time depending on the 

situation. The algorithms of this automated driving system on PC are designed 

in LabVIEW and MATLAB software in the Windows OS environment. Since 

the real-time performance guarantee is not an optimal development 

environment, the intermittent noises showed in Figure 5.3 (a) and (b) plots are 

presumed to be due to such limitations. Figure 5.3 (d) shows the execution time 

in overall motion planning. The green dashed line represents the total 

computation time set in the PC. The dashed blue line represents the maximum 

computation time, and the red dashed line represents the minimum computation 

time. In view of reflecting all these characteristics in order to secure real-time 
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stability in the target environment, the maximum time is determined as the 

acquisition time for the smooth execution of motion planning. 

 

(a) Processing time by each motion planning function 

 

(b) Stacked processing time by each motion planning function 

 

(c) Histogram of motion planning function time 
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(d) Total motion planning processing time 

Figure 5.3. Processing time analysis of motion planning based on driving data. 

 

Data analysis has been conducted on the processing time of the functions 

required to perform the remaining functions in the PC device. The computation 

time of the remaining functions was analyzed to reflect the actual system 

characteristics, although the computations are relatively small compared to the 

motion planning and perception algorithm. Figure 5.4 (a) is a cumulative plot 

of the computation time, and the shaded color expresses the ratio of 

computation time for each function. Figure 5.4 (b) shows the histogram of the 

time required for each function. In most cases, it takes about 1 or 2 milliseconds. 

The processing time for the motion planning and other functions analyzed 

earlier, based on the total allocated time, is depicted in Figure 5.5. The area 

filled in yellow is the time required for motion planning, and the area filled in 

cyan is other processing time, which is relatively small. As mentioned above, 

to take into consideration the performance characteristics of the H/W and S/W 

intermittently, the decision is made based on the worst case. Thus, as shown by 
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the red dashed line in Figure 5.5, 50.29 milliseconds of the total time of 100 

milliseconds can be allocated to an algorithm that is lidar-based. 

 

 

(a) Stacked Processing time by other major function 

 

(b) Histogram of each motion planning function 

Figure 5.4. Processing time analysis of other function except motion planning 

based on driving data. 
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Figure 5.5. Evaluation result of remained processing time for perception. 
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5.2. Processing Time Estimation based on Multiple 

Linear Regression 

 

From the results in Section 5.1, the resources allocated to lidar-based 

cognitive algorithms in the target system were identified in terms of 

computation time. The algorithm should be designed to perform operations 

within allocated resource conditions to increase the real-time reliability of the 

target algorithm. The adaptive ROI-based environmental cognition algorithm 

designed in Chapter 3 has improved efficiency, scalability, and accuracy 

compared to the existing algorithm. Although the efficiency is improved, there 

is still a possibility that the operation fails within a given period. Therefore, it 

is necessary to reduce processing load to ensure real-time stability. To manage 

computational load of the system, this section proposes computational time 

prediction techniques in functional units that constitute the algorithm. 

Through data analysis, the lidar-based perception algorithm of the automated 

driving system correlates with the characteristics of input/output data, 

processing results of the previous cycle, and processing time of the current 

cycle. A processing time estimation model is constructed for clustering and 

multi-object tracking, which are functions that are highly resource-intensive to 

secure real-time computational reliability. As shown in Figure 5.6, the factors 

that account for a large proportion of the computation of the two functions were 

selected among the variables in the perception algorithm. By fitting the various 

regression models, an appropriate processing time prediction model was 
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determined. Multiple linear regression models were selected to reflect the 

algorithm and execution environment of the target system by applying them to 

many driving data as well as statistical fitting results. 

The strategies for estimating computation time prior to actual processing 

using the processing time prediction model obtained in this section to determine 

whether execution can be performed normally with the allocated resources and 

preventing failures will be covered in the next section. 

 

 

Figure 5.6. Scheme of processing time estimation based on multiple linear 

regression. 

 

5.2.1. Clustering Processing Time Estimation 

In this subsection, we predict the processing time of the clustering process 

that requires considerable computational power among the lidar-based 

cognitive algorithms applied to autonomous driving systems. By analyzing the 

actual driving data of the target autonomous driving system, we extract the main 

factors affecting the clustering process and determine the relationship by 

applying the linear regression technique. By predicting the processing time 

based on only the information of the main factor before operating, it is expected 
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that it is possible to determine in advance whether a successful operation can 

be performed with the resources allocated to the lidar-based perception module. 

The clustering refers to a process of grouping point cloud data into adjacent 

group units by considering scattered point cloud data such as Euclidean 

distance. In subsection 3.2.3, clustering processing was described in detail. For 

the distributed point cloud to be classified as a group, the point-to-point 

Euclidean distance must be smaller than the distance set as the threshold. In the 

process of clustering in this way, the distance between each point must be 

calculated one by one. An intuitive method is to perform sequential iterations 

of points in the entered point cloud, where a point is determined, and the 

distance to the remaining points is compared based on that point. Another 

method is to calculate the distance between all points to be processed in a vast 

matrix form and extract the point-to-point relationship through the processing 

process. In both methods, it can be determined that the number of operations 

and the dimension of the matrix are determined according to the size of the 

input data. Therefore, clustering processing has a performance characteristic 

that depends on the dimension of the input point cloud under the condition that 

hardware specifications and software characteristics are similar. This 

relationship is confirmed by the data distribution between the input point cloud 

size and the clustering processing time, as shown in Figure 5.8 (b). 

As mentioned above, it can be seen that the input point cloud size is 

intuitively proportional to the clustering processing. However, to construct a 

processing time prediction model with only one factor, the margin of error due 

to the distribution of the point cloud can be quite large. To find out the factors 
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related to the clustering operation, we analyzed the relationship between the 

parameters in the algorithm and various signals and processing time. Road 

facilities, such as walls, guardrails, and buildings, do not move, and treating 

them as moving objects reduces not only recognition accuracy but also 

increases the computational load. Boundary information of clusters exceeding 

a specific vehicle size is applied to construct a static obstacle map, and it is 

classified as an object that cannot move in the clustering process and is not used 

for MOT. However, as the cluster size increases during the clustering process, 

the correlation between already clustered points and the remaining points needs 

to be checked, and thus, it is estimated that a considerable computational load 

occurs. Therefore, the majority of data that is not determined to be a valid 

cluster moving in the clustering results are named as rejected point cloud 

because they are dropped from the cluster because they are huge objects causing 

computational load. Figure 5.8 (c) shows the relationship between the cluster 

output rejected point cloud and the clustering time. The relationship between 

the clustering processing time and the two main factors has a constant tendency, 

as shown in Figure 5.7. 
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Figure 5.7. 3-D scatter plot of clustering time with P.C. size and rej. P.C. size. 

 

 

(a) 3-D Scatter plot of clustering time  (b) P.C. size – Clustering time (XZ) 

  

(c) Rej. P.C. size – Clustering time (YZ) (d) P.C. size – Rejected P.C. size (XY) 

Figure 5.8. Scatter plots of clustering time affecting factors. 
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Two major factors were selected from several factors related to clustering 

computational complexity: point cloud size and rejected point cloud size. Since 

the update frequency of the environmental information acquired by the lidar 

sensor is generally about 10 to 25 Hz, the scan period is short. Therefore, it can 

be reasonably assumed that a similar signal distribution exists between the 

scans without a large environmental change. In this way, the rejected point 

cloud size of the previous cycle can be applied to the current cycle because the 

results processed in the previous cycle have a distribution that is quite similar 

to the results of the current cycle. We apply these two factors to multiple linear 

regression to determine the clustering time prediction model. 

To determine the most reasonable model using the lidar environmental signal 

log stored in driving data, it is necessary to combine the data and the appropriate 

model. Table 11 shows the characteristics of driving data to perform multi-

linear regression. 

 

Table 11 Data description for multiple linear regression of clustering. 

Variable Min. Max. Median Mean 
Standard 

deviation 

Clustering Time 

[ms] 
4.3489 53.1293 9.3084 12.3478 7.5718 

Point Cloud Size 236 801 355 391.7945 100.0276 

Rejected Point 

Cloud Size 
48 732 225 257.8151 106.8280 
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A reasonable regression model form is required for proper fitting. Referring 

to the data distribution in Figure 5.8, four models are selected as candidates as 

shown in (5.1). 
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  (5.1) 

Models C1 and C2 are simple linear regression models for each factor. C3 is 

a multiple linear regression model consisting of the sum of two main factors. 

Fitting was performed on the data described in Table 11 and the four regression 

models in Equation (5.1). The results are shown in Table 12. 

 

Table 12 Multiple Linear Regression Result of Clustering Time 

Estimation by models. 

Model RMSE 2R  Adjusted 
2R  

F-statistic vs. 

constant model 

C1 3.46 0.792 0.792 1.16e+04 

C2 3.52 0.783 0.783 1.11e+04 

C3 3.08 0.835 0.835 7.73e+03 

C4 2.88 0.856 0.856 6.05e+03 

 

To select the most reasonable model among the four regression models, we 

applied the data to the target data and compared the output with the reference 

data and evaluated the difference. Root Mean Square Error (RMSE) represents 
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the sum of the squares of the residuals and the least error of the C3 and C4 

models. 
2R  is the coefficient of multiple determination, and since the model 

represents the ratio representing the data, it can be said that the larger the data 

is reflected. 

Figure 5.9 illustrates the fitting results of models C1 through C4. Figure 

5.10(a) shows a plot comparing the results of the clustering time by the model 

with the actual data (black-colored solid line) over time. Figure 5.9(a) shows 

intuitively that multiple linear regression models C3, C4, rather than C1, C2, 

which are simple linear regression models that only consider the single receiver 

variable, fit the actual data well. Figure 5.9 (b) through (e) shows a model-

specific Residual histogram, where, as in the RMSE shown in Table 12, the 

response of Model C4 shows better results than other models. 

 

(a) Clustering Time Estimation Result (C1~C4) 

 

(b) Density distribution of the residual error of model C1 



 136 

 

(c) Density distribution of the residual error of model C2 

 

(d) Density distribution of the residual error of model C3 

 

(e) Density distribution of the residual error of model C4 

Figure 5.9. Multiple linear regression result of four clustering time models (C1-

C4). 

 

Based on the above results, we determined that the C4 model is the best 

among the four models for selecting the clustering time estimation model. 

0 1 int 2 int , 3 int int ,4: cluster Po Cloud Po Cloud rej Po Cloud Po Cloud rejC T N N N N      (5.2) 
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Table 13 shows the analysis of the regression of the selected model C4. 

Figure 5.10 consists of the histogram of the residual and the normal probability 

plot of C4. The selected model is used in the computational load assessment to 

ensure the real-time stability of the algorithm. 

 

Table 13 Properties of selected clustering time prediction model based on 

multiple linear regression. 

 Estimate( i ) SE tStat p-Value 

(Intercept) 1.0211 0.59458 1.7173 0.0086028 

intPo CloudN  0.010224 0.0017011 6.0104 2.0699e-09 

int ,Po Cloud rejectedN  -0.011104 0.0022955 -4.8374 1.3807e-06 

int

int ,

:Po Cloud

Po Cloud rejected

N

N
 9.2179e-05 4.3736e-06 21.076 3.5058e-92 

 

 

(a) Histogram of Residuals 
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(b) Normal Probability Plot of Residuals 

Figure 5.10. Residual plots of Selected Model C4. 

 

5.2.2. Multi Object Tracking (MOT) Processing Time Estimation 

In this subsection, we determine a model that estimates the computation time 

for the process of performing multiple object tracking (MOT) with clustering 

results in the recognition algorithm. Similar to the previous subsection, we 

extract the main factors that affect the operation of the MOT and apply the 

driving data-based linear regression technique. The practical MOT computation 

time can be predicted from an integration perspective by reflecting the hardware 

specifications and software characteristics because the actual target system data 

is used. Similarly, since the processing time is predicted using only the 

information input to the MOT algorithm, it is expected to be effectively used to 

determine and cope in advance whether normal execution is possible within the 

allocated computation time. 
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The MOT of the lidar-based cognitive algorithm proposed in this study is 

described in detail in previous Section 4.3. GMFA-based MOT performs EKF-

based object state estimation using the ICP matching result of point cloud 

constituting a cluster. ICP matching and individual EKFs are applied as many 

as the number of tracks created by the MOT structure. Therefore, the 

computational complexity is increased in proportion to the number of object 

tracks created in the previous operation cycle. These relationships are shown in 

Figure 5.12 (c). Besides, since the cluster generated by the clustering process is 

used to estimate the status of objects moving in the environment, the association 

process with the existing object tracks is performed as many clusters input to 

the MOT. For this reason, the number of input clusters can also be a significant 

factor in the MOT operation time. The relationship between the number of 

clusters and the MOT operation time is shown in Figure 5.12 (b). 

Since the ICP algorithm estimates the state information of objects through 

ICP matching of the point cloud, it is expected that the number of point groups 

included in each cluster can be a regressor variable. However, no real 

correlation with MOT calculation complexity was found through analyzing the 

actual data. As noted in previous subsection 5.2.1, clusters extracted for 

application to MOT are already limited in the point cloud count for each cluster 

input into the MOT process, since classification is preceded by size 

considerations in the clustering process. For this reason, the point cloud size for 

each cluster could not be adopted as a regressor variable. Therefore, the 

regressor variable to obtain the estimation model of MOT computation time 

was determined by the number of clusters and the number of tracks.  
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Figure 5.11. 3-D scatter plot of MOT time with point cloud size and rejected 

point cloud size. 

 

(a) 3-D Scatter plot of MOT time (b) Number of clusters – MOT time 

 

(c) Number of tracks – MOT time  (d) Number of clusters – Number of tracks 

Figure 5.12. Scatter plots of MOT time affecting factors. 
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Among the many factors related to MOT computational complexity, two 

main factors were chosen: the number of clusters and the number of tracks. 

Therefore, we apply these two factors to multiple linear regression to determine 

the MOT time prediction model. 

To select the most rational model using the driving data, the data and the 

appropriate model combination candidates are needed. Table 14 shows the 

characteristics of regressor variables related to the MOT operation of driving 

data for performing multi-linear regression. 

 

Table 14 Data description for multiple linear regression of MOT. 

Variable Min. Max. Median Mean 
Standard 

deviation 

MOT Time [ms] 1.0400 43.0951 17.4848 17.2600 73.4342 

Number of Clusters 1 27 12 11.5132 3.7018 

Number of Tracks 0 20 9 9.0287 3.7131 

 

A reasonable regression model form is required for proper fitting. Referring 

to the data distribution in Figure 5.12, four models are selected as candidates as 

shown in (5.3). 
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Models M1 and M2 are simple linear regression models for each factor. M3 

is a multiple linear regression model consisting of the sum of two main factors. 

In the track association process of the MOT, the multiplication term has a 

practical meaning because the correlation between the existing tracks and the 

input clusters is determined through the iterative operation. The fitting was 

performed on the data described in Table 14 with the four regression models in 

(5.3), and the results are shown in Table 15. 

 

Table 15 Multiple linear regression result of MOT time estimation by models. 

Model RMSE 2R  Adjusted 2R  

F-statistic vs. 

constant 

model 

M1 5.27 0.498 0.498 3.03e+03 

M2 3.78 0.741 0.741 8.76d+03 

M3 3.78 0.741 0.741 4.38e+03 

M4 3.76 0.744 0.744 2.96e+03 

 

To select the most reasonable model from the fitting results in Table 15, the 

outputs obtained by applying the models to the target data were compared with 

the actual reference. RMSE represents the sum of the squares of the residuals, 

and the M1 model is the largest. The coefficient of multiple determination, R2, 

represents the ratio at which the model represents the data, so the larger it is, 

the better the data is reflected. R2 shows that M2, M3, and M4 are models that 

reflect about 74.1% of data. 

Figure 5.14 depicts the fitting results for models M1 through M4. Figure 
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5.14(a) is a plot comparing MOT time estimation results by the model with 

actual data. In the simple linear regression model considering only the single 

regressor variable, M1 did not fit adequately compared to M2. It indicates that 

the computational complexity is highly dependent on the number of tracks due 

to the structure of the MOT algorithm. In addition, it can be seen intuitively in 

Figure 5.14 (a) that M2 and M3 and M4, which are multiple linear regression 

models, are better suited to actual data than M1. Figure 5.14 (b) through (e) 

shows the residual histogram for each model, where the residuals of models M2, 

M3, and M4 show better results than the M1 model, as shown in RMSE of Table 

16. 

 

 

(a) MOT Time Estimation Result (M1~M4) 

 

(b) Density distribution of the residual error of model M1 
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(c) Density distribution of the residual error of model M2 

 

(d) Density distribution of the residual error of model M3 

 

(e) Density distribution of the residual error of model M4 

Figure 5.13. Multiple linear regression result of four MOT time models (M1-

M4). 

 

From the above results, the fitting performance evaluation of M2, M3, and 

M4 except for M1 has been similarly derived. When the three models are 

applied to data not used for fitting, the error of the M4 model is calculated to 

be the smallest. It is because the regression model of M4 is appropriately 
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composed of the items reflecting the characteristics related to the MOT 

calculation load. Therefore, it is determined that the M4 model is most suitable 

as the MOT time estimation model. 

0 1 2 34: cluster Cluster Track Cluster TrackM T N N N N       (5.4) 

Table 16 shows the analysis of the regression of the selected model M4 and 

Figure 5.14 consists of the histogram of the residual and the normal probability 

plot of M4. The selected model is applied to the computational load assessment 

to ensure the real-time stability of the algorithm. 

 

Table 16 Properties of selected MOT time model based on multiple linear 

regression. 

 Estimate( i ) SE tStat p-Value 

(Intercept) -0.49918 0.42539 -1.1735 0.02407 

ClusterN  0.2419 0.048676 4.9696 7.0771e-07 

TrackN  1.9656 0.056395 34.854 2.0655e-224 

:Cluster TrackN N  -0.024085 0.0042215 -5.7054 1.2719e-08 

 

 

(a) Histogram of Residuals 
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(b) Normal Probability Plot of Residuals 

Figure 5.14. Residual plots of selected model M4. 

 

5.2.3. Validation through Data-based Simulation 

In the previous two subsections, we determined a model that predicts the 

processing time of clustering and MOT functions that takes up the large 

computational load of lidar-based cognitive algorithms. In this subsection, the 

determined models are applied to the target perception system and evaluated by 

comparing the actual processing time with the estimated processing time. The 

results applied to the beltway at Seoul National University's Kwanak campus 

are described in Figure 5.15. Although there are some differences from the 

actual data, it can be seen that the estimation results are similar to the actual 

data. For detailed error analysis, residuals are shown as histograms in Figure 

5.16, and the probability density function is also shown for clarity. Figure 5.16 

(a) shows that the predicted time of the MOT tends to be slightly larger than the 
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predicted time of the clustering. Table 17 shows the RMSE of the results of 

clustering and MOT processing time estimation. By comparing the RMSE 

values, it can be said that clustering has a higher accuracy of the regression 

model than the MOT. 

 

 

(a) Clustering time estimation 

 

(b) MOT time estimation 

 

(c) Total perception time estimation 

Figure 5.15. Simulation result of processing time estimation. 
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(a) Comparison of error distribution of clustering and MOT time estimation 

 

(b) Error distribution of total perception time estimation 

Figure 5.16. Error analysis of processing time estimation simulation. 

 

Table 17 RMSE analysis of processing time estimation of clustering and 

MOT. 

Function Clustering MOT 

RMSE [ms] 4.9680 5.8616 
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5.3. Computational Load Management 

 

Conventional lidar-based cognitive algorithms not only process point cloud 

data of limited area but also apply uniform processing to all data. When the 

surrounding environment is simple and the detection signal data is small, it is 

executed smoothly. When the surrounding environment is simple and the 

detection signal data is small, it is executed smoothly. Otherwise, the operation 

fails sometimes within the allotted calculation time, and thus the operation 

result of the algorithm is not normally transmitted to the next module. If the 

actual operation time of the module exceeds the allotted period, the operation 

results are not updated. Therefore, it can be said that the ability to respond 

immediately is reduced from the viewpoint of the entire system. 

In Chapter 3, a method of performing adaptive ROI-based point cloud 

processing was proposed. It is more efficient and environmentally aware than 

existing processing techniques that process all point clouds in a batch or use 

map information to define areas of interest. However, there is still a possibility 

of exceeding the time limit due to the computational load depending on the 

running conditions of the system and the surrounding environment. Therefore, 

this section proposes a computational load management method to prevent such 

a failure. The concept of optimization in computer engineering means 

maximizing performance by improving algorithms in a limited hardware 

environment. There are a variety of software optimization techniques such as 

optimization of function call speed, optimization of operation speed, 
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optimization of control statements, and code optimization to reduce memory 

usage. Since this section focuses on the algorithm's execution cycle adherence, 

not on the code optimization, we develop a computational load management 

strategy by applying computational assessment of perception algorithm. 

The computation load management proposed in this study is ultimately 

aimed at reducing execution time. If the predicted processing time exceeds the 

given execution time, it should be reduced, as mentioned earlier, since the size 

of the point cloud to be handled is the most significant cause due to the 

algorithm characteristics. The number of point clouds to be processed should 

be reduced by reducing the required perception ROI. The previously designed 

ROI can be reduced in two ways: area selection based on importance and 

reduction of overall design area due to deceleration control. These two methods 

are critical components of computational load management with processing 

time reduction and restriction of driving control, as shown in Figure 5.17. 

 

 

Figure 5.17. Scheme of proposed computation load management. 
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Sequential processing in processing time reduction is a method that excludes 

areas of low ROI importance step by step if the predicted computation time is 

not appropriate. The ROIs classified as 1st, 2nd, and 3rd are dropped from the 

3rd ROI in the lowest order, and are sequentially executed until the prediction 

execution time satisfies the criteria. In addition, voxelization, which is 20% 

looser than the default, is applied before dropping the ROI. 

Restriction of the driving condition is a method to increase the real-time 

computational reliability by limiting the behavior of the vehicle by utilizing the 

vehicle behavior according to the level characteristics of the adaptive ROI and 

the subject vehicle speed-dependent ROI characteristics. In cases where 

sequential processing is heavily applied, it may not be appropriate to expand 

the area for lane-change, thus limiting the choice that results in zone expansion 

for safety reasons. Besides, ROI is reduced by limiting the top speed on the 

road, which leads to a decrease in the number of point clouds. Since excessive 

limits on driving capability can cause degradation of driving performance, 

reasonable criteria are established and designed to be applied only if necessary. 

 

5.3.1. Sequential Processing to Computation Load Reduction 

In Section 3.1, the adaptive ROI by level is defined and applied to lidar 

processing. The 1st level ROI is the most essential and essential area, and its 

weight decreases toward the 3rd level ROI. In Section 3.2, the processing is 

applied differently in each area to reflect these design characteristics to 

maximize efficiency. Section 5.1 analyzes and identifies the resources allocated 

to the algorithm in a given execution environment. Nevertheless, the 
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environment is so complex that the allocated execution time may be exceeded 

if there is a lot of input data. Therefore, processing time reduction is performed 

by designing sequential steps using the method of estimating the algorithm 

execution time in advance in the previous section 5.2. 

The sequential steps are constructed, as shown in Figure 5.18, using the ROI 

importance level concept defined in Chapter 3. The 1st level ROI is the area of 

the highest importance and must be recognized — the lower the level, the lower 

the importance. The process of computations using all the data inside the three-

step ROI was proposed in Section 3.2. The processing time is reduced by 

reducing the size of data to be processed by sequentially excluding the lower 

regions except for the 1st ROI. 

 

 

Figure 5.18. Flow chart of sequential processing time reduction. 
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Before applying sequential processing, it is necessary to determine the 

suitability of the input data using the predicted processing time. The blue 

diamond-shaped block illustrates this process in Figure 5.18. The criteria for 

appropriate predictive processing time are established and applied, taking into 

account the allocation time obtained in Section 5.1 and the RMSE error in each 

function's processing time estimation results in Section 5.2. 

Sequential processing consists of three main stages: the point cloud ROI 

selection, the track and cluster ROI selection, and loose voxelization. In Section 

5.2, the processing time reduction for the two computational processes has been 

performed because clustering and MOT take up most of the computational load 

in the lidar-based environment perception algorithm. Since the calculation time 

for each function can be individually reduced by changing the input data for 

each function, ROI selection was performed in two stages. Point cloud ROI 

selection directly reduces the input of the clustering function, and track and 

cluster ROI selection reduce the input of the MOT function. Besides, a cell 

configuration that is looser than the existing downsizing condition is applied to 

correspond to the case where the calculation time is exceeded even though the 

ROI selection is performed. In this study, a 20% increase in the size of the 

voxelization cell in subsection 3.2.2 is applied. In Figure 5.18, sequential 

processing is designed as a total of seven steps, and processing time prediction 

is performed immediately after applying each step to determine the suitability 

of the input data size. 
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5.3.2. Restriction of Driving Control 

Exceeding the execution time of the modules constituting the system may be 

regarded as a failure from the system's point of view. According to the technical 

report containing the framework for test cases and scenarios of automated 

driving systems published by National Highway Traffic Safety Administration 

(NHTSA) of United States [Thorn,'18], system failure modes are classified as 

follows: Sensing and communication, perception, navigation and control, and 

Human-Machine Interface (HMI). In this case, the application consists of 

sensor processing, localization, and world modeling, and the item that 

corresponds to the objective of this study is sensor processing. The failure is 

summarized in the following three ways. 

1)     No data – Information is absent altogether. 

2)     Inadequate quality data – Information is of poor or degraded quality. 

3)     Latent data – Information is delayed or old. 

If the cognition algorithm proposed in this study is not executed within the 

allotted period, failure of the above type may occur. The NHTSA report 

classifies failure mitigation into two strategies for failure: fail-operational (FO) 

and fail-safe (FS). FS strategies are for cases where the ADS cannot continue 

to operate due to a significant failure, and FO strategies are for cases where the 

ADS could continue to operate even in the face of failure. Since we design 

processing time reduction for failure release purposes from a system 

perspective, we have a similar orientation to the FO strategy. Among the 

mechanisms of FO, this study refers to degraded operations. Degraded 
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operation is one of the strategies to keep the system functioning in a confined 

environment even after a failure and limits the following items: top speed, 

automation level, Operational Design Domain (ODD), maneuver, and Object 

and Event Detection and Response (OEDR). Among these, restriction of the 

maneuver related to lane change and limitation of the top speed related to ROI 

dependent on speed, are considered in the algorithm development. Restriction 

of driving control is activated when certain conditions are met throughout the 

sequential processing and perception algorithms, as shown in Figure 5.19. 

 

 

Figure 5.19. Scheme of restrict driving condition. 

 

The restriction of driving control utilizes the level characteristics of adaptive 

ROI and the ROI characteristics dependent on the subject vehicle speed. 

Sequential processing excludes low-level ROI data when the predicted 

computation time is exceeded. At this point, the area was expanded in 
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subsection 3.1.2 to conduct safe lane changes. Lane change requires more ROI 

than normal driving conditions. If area reduction is already applied in sequential 

processing, it should be limited because there is no resource space to cope with 

area expansion. For example, if up to 2nd ROI is eliminated and only 1st ROI 

of data is processed, environment awareness of the three-lane area from the 

lane-keeping situation to both sides is performed. For safe lane changes, the 

environment must be extended to at least the area next to the second lane. 

Therefore, if only 1st ROI is selected during sequential processing, lane change 

is limited for reliable real-time operation of the system. 

Figure 5.20 through Figure 5.22 show the results of processing at the actual 

driving speed for the same driving data, and the results processed according to 

the ROI constructed when the speed was set by 10kph and 20kph slower than 

the driving speed. While a decrease in speed does not always guarantee a 

decrease in ROI, the point cloud size that is processed tends to decrease, as 

shown in Figure 5.20. The execution time for each function can be seen in 

Figure 5.21. From that figure, the ROI change due to the reduced speed has a 

more significant impact on the clustering operation time than the MOT. The 

total computation time is depicted in Figure 5.21 (c), and a histogram in Figure 

5.22 for statistical analysis. The fitting parameters are shown in Table 18 for 

fitting with a log-normal distribution. 
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(a) Total point cloud size after ROI categorization 

 

(b) Total point cloud size after separated voxelization 

Figure 5.20. Input data comparison by applying speed restriction [-10kph, -20kph]. 

 

(a) Clustering time 

 

(b) MOT time 
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(c) Total perception time 

Figure 5.21. Processing time comparison by applying speed restriction. 

 

 

Figure 5.22. Density distribution of actual processing time by applying speed 

restriction [-10kph, -20kph]. 

 

Table 18 Lognormal distribution properties of perception time by top 

speed restriction. 

Speed Restriction Type  (mu)  (sigma) 

No restriction 3.26558 0.356428 

-10kph 3.15659 0.337481 

-20kph 3.06129 0.350763 
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Despite the application of computational load management up to now, the 

actual execution time of the module is possible to be exceeded due to various 

reasons. As mentioned above, the computation load of the lidar processing is 

required to reduce the ROI because it is proportional to the input data size. The 

reduction of computation time of the perception algorithm according to the 

speed reduction setting was confirmed through the simulation above. The speed 

limiting method has a direct effect on the vehicle's behavior, and if applied 

indiscriminately, it is likely to be inefficient and inadequate in terms of normal 

driving control. In the case of self-driving systems and ADAS, there is not only 

a delay for each module that makes up the system, but the actuator delay is large, 

particularly for automobiles. If not an extreme contingency, intermittently 

exceeding the running time may not be serious in terms of vehicle control. 

Therefore, in this study, real-time performance of the perception module is 

ensured through a top speed limit when continuous exceedance of execution 

time occurs. 

 

5.3.3. Validation through Data-based Simulation 

The performance of the proposed sequential processing has been evaluated 

through driving data-based simulation. Figure 5.23 shows the simulation result 

of applying sequential processing to the driving data. Figure 5.23 (a) shows 

when sequential processing is applied and not applied to the same data. The 

solid green line represents the allocation maximum execution time of the 

perception algorithm obtained in Section 5.1, and the solid magenta line is the 

criterion to consider the processing time prediction error. In Figure 5.23 (a), the 
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execution time without the computational load reduction indicated by the solid 

black line frequently exceeds the allotted time. With the computational load 

reduction in blue dashed line, the execution time does not exceed the allocation 

time most of the time. Figure 5.23 (b) shows the switch flag when processing 

time reduction is activated when the prediction processing time of the 

perception algorithm exceeds the criteria using adaptive ROI-based processing 

results. The reduced prediction processing time when computational load 

management is applied is shown in Figure 5.23 (c). The histogram is shown in 

Figure 5.24 for statistical analysis of the execution time of Figure 5.23 (a). 

Figure 5.23 (d) shows top speed restriction flag when actual processing time 

exceeds continuously even computational load management is applied. Figure 

5.24 shows that the computational load used by existing algorithms over 40ms 

can be reduced to less than 40ms by applying computation load reduction, 

which in almost all cases results in a successful operation within the allocated 

cycle. These results demonstrate that the processing time reduction based 

computational load management proposed in this section is effective in 

reducing the execution time of the environment perception algorithm. 
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(a) Comparison of perception time between w/ and w/o processing load management 

 

(b) Applied stage of computation load reduction and lane change restriction flag 

 

(c) Actual processing time difference between w/ and w/o processing time reduction 

 

(d) Top speed restriction flag  

Figure 5.23. Simulation result of computational load management. 
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(a) Without processing time reduction 

 

(b) With processing time reduction 

 

(c) Comparison of fitted lognormal distribution 

 

(d) Comparison of fitted cumulative lognormal distribution 

Figure 5.24. Density distribution of actual and estimated processing time. 
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Chapter 6 Vehicle Tests based 

Performance Evaluation 

  

The proposed algorithm is evaluated through test-data based computer 

simulations and actual vehicle tests. The test-data based simulation is 

constructed using the commercial vehicle software, MATLAB/Simulink with 

collected driving data. Data is collected under various driving conditions while 

driving on urban city roads. The automated driving system of test vehicle is 

configured and executed on the LabVIEW, MATLAB, and Simulink 

environment. The vehicle tests have been carried out on a section of the Nambu 

beltway of Seoul, with regular vehicles driving together. The designated test 

route is suitable as a test environment for evaluating algorithms because it can 

be considered to represent a typical urban driving environment: it includes 

representative facilities such as intersections, crosswalks, and median dividers 

and has a large amount of traffic during the day. The experimental results 

demonstrated that automated driving vehicle with perception algorithm based 

on the proposed strategy in this study successfully drives the test route. 
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6.1. Test-data based Simulation 

 

Analyzing the vehicle test result of the automated driving system applying 

the previous method, which used the batch application, it was confirmed that 

the operation results are not updated or delayed due to intermittent system 

timeout. The previous method is an approach to reduce the amount of 

computation by downsizing the entire data, and it is difficult to cope with the 

computational load due to various environmental changes. It cannot guarantee 

reliable operation of the system, and vehicle safety cannot be guaranteed due to 

the problems by applying the previous method. Vehicle safety must be 

guaranteed because it is directly related to human life. In this study, we 

proposed an algorithm that ensures system operational stability and vehicle 

safety at the same time by acquiring cognitive performance first by weighting 

the area considering the result of the automated driving plan and managing 

computing load. In this section, we verify that these problems can be effectively 

improved by applying the proposed method to two representative situations 

where the performance degradation of the system occurred due to the 

computational load problem. The performance is improved by comparing the 

target acceleration calculated from the clearance, TTC, and the perception result 

of the front driving area. 

Figure 6.1 and Figure 6.3 show the results of the offline simulation by 

applying the method proposed in this study to the experimental data applying 

the previous method. Subfigure (a) shows the execution time of the entire 

system when the existing method is applied, and the timeout occurrences are 
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shown in subfigure (b). The result of applying the proposed computational load 

management method is shown in subfigure (c), and the variation of the 

computational load is relatively smaller than that of subfigure (a). Subfigure (d) 

shows a comparison of system runtime distributions. 

Figure 6.2 shows the case where the braking command was delayed due to a 

delayed update of the detection result due to a continuous eight-step timeout. 

Figure 6.4 also shows the situation where the update of the cognitive results 

fails and affects vehicle control. It indicates that braking command may be 

delayed by not being able to make a cut-in vehicle detection quickly, resulting 

in a real crash or a decline in ride quality due to a late braking command with 

a large degree. The proposed method can be adequately reflected in control by 

performing fast and accurate environment perception as indicated by the blue 

dashed line in Figure 6.2 by effectively managing the computational load. 

Besides, using the vehicle-related safety indices, Figure 6.5 shows that the 

proposed method achieves more reasonable risk assessment and management 

by accurately and reliably performing object perception than the previous 

method. 
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(a) Execution time of entire system for previous approach 

 

(b) System timeout flag of previous approach 

 

(c) Execution time of entire system for proposed approach 

 

(d) Comparison of execution time distribution of system 

Figure 6.1. The 1st simulation result by execution time analysis. 
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Figure 6.2. Result analysis when perception update delayed due to continuous 

system timeout for several cycles. 
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(a) Execution time of entire system for previous approach 

 

(b) System timeout flag of previous approach 

 

(c) Execution time of entire system for proposed approach 

 

(d) Comparison of execution time distribution of system 

Figure 6.3. The 2nd simulation result by execution time analysis. 
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Figure 6.4. Result analysis when perception update failed due to continuous 

system timeout for several cycles. 
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(a) Histogram of front clearance changes through proposed approach  

 

(b) Clearance-Time to collision (TTC) plane 

Figure 6.5. Simulation results of vehicle safety assessment. 
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6.2. Vehicle Tests: Urban Automated Driving 

 

6.2.1. Test Configuration 

Vehicle experiments have been conducted at the Nambu Beltway of Seoul. 

The details of test roads are depicted in Figure 6.6. The designated test route is 

5km long and has quite complicated environments to drive automatically. Other 

traffic participants should be considered because traffic on the given road is 

very heavy during most of the day. In addition, there are various road 

environments such as intersection, crosswalk, and median strip, and so forth, as 

shown in subfigures of Figure 6.6. 

 

Figure 6.6. Configuration of test route in Nambu beltway (5km). 
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6.2.2. Motion Planning and Vehicle Control 

The automated driving system that we are currently developing consists of 

environment perception, motion planning, and vehicle control. In this study, we 

dealt with research on strategies and algorithms for environment perception. To 

apply and operate the proposed perception strategy-based algorithm, it is 

implemented with an algorithm that plans and controls the vehicle behavior 

using perception results. This section briefly introduces the built-in motion 

planning and control algorithms implemented in our ADS. 

The motion planning algorithm of ADS comprises three layers: dynamic 

environment representation, static environment representation, and motion 

planning optimization, as shown in Figure 6.7. 

Based on the environment representation results from the perception module, 

the moving objects are classified, and behavior prediction is performed 

according to the characteristics of the classified objects. More accurate 

decisions and safer control can be performed through improved object behavior 

prediction.  

The result of object behavior prediction and the constructed static obstacle 

map define the drivable area boundary: the free space boundary, and the 

drivable corridor. The free space boundary utilizes a lidar-based static obstacle 

map to represent the physical boundaries of the occluded area. The drivable 

corridor is the boundary for safe driving in traffic situations surrounding the 

ego vehicle. All environment information is represented on the same plane and 

is used to redefine the drivable corridor from the initial guess. 

Based on the dynamic and static environment representation, the desired 



 173 

longitudinal acceleration and desired path are determined using the Model 

Predictive Control (MPC) approach. Safety, dynamics, and actuator constraints 

are simultaneously considered to optimize the desired motion of the vehicle. 

We use the linear MPC based on the particle motion model. The optimal states 

determined by MPC are used as the desired path. The optimal acceleration input 

of the first prediction sampling is used as the desired acceleration. 

When the desired motion of the ego vehicle is determined, the desired 

acceleration is applied to test the SCC module of the test vehicle to control 

longitudinal motion. Besides, the path-tracking controller determined the 

required overlay steering wheel torque to track the optimal trajectory [Jung,'14]. 

The required overlay steering wheel torque is applied to the MDPS system of 

the test vehicle. 

 

 

Figure 6.7. Architecture of motion planning algorithm of our automated driving 

system. 
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6.2.3. Vehicle Tests Results 

Vehicle tests have been conducted several times at the Nambu beltway in 

Seoul, depicted in Figure 6.6. The configuration of the test vehicle was 

described in the previous subsection 6.2.1. The proposed algorithm mainly 

utilizes six multi-layer lidars, in-vehicle sensor, and front vision sensor. The 

proposed lidar-based environment perception algorithm operates on the 

LabVIEW/ MATLAB/Simulink environment of a computer installed in the test 

vehicle. The proposed environment perception algorithm has shown 

satisfactory performance, and the test results are given in Figure 6.8 through 

Figure 6.10. 

As shown in Figure 6.8, the subject vehicle drives on urban roads with other 

regular traffic participants. Figure 6.8 is plotted in a body-fixed coordinate 

system centered on the subject vehicle marked with a blue vehicle. The areas 

colored in red, yellow, and green represent adaptive ROI areas for each level 

designed using vehicle information, road design standards, and lane 

information. Black dots indicate the raw data of lidar, and the point cloud data 

processed based on adaptive ROI is indicated by a circle of color according to 

the ROI area. The information representing the boundaries of the various 

installations and objects from the lidar sensor is extensive, as represented by 

scattered point clouds. The results of the proposed adaptive ROI-based 

processing can be confirmed to be effectively processed without distortion or 

loss of the boundary of the object by comparing raw data and processed points 

based on adaptive ROI. Objects estimated by the point cloud processing are 

represented by blue arrows as default and classified into In-lane objects (red 
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arrow), side-lane object (orange arrow), and oncoming object (violet arrow) 

according to the position of each object. 

Figure 6.8 (a) shows the normal driving situation of the experimental vehicle 

along with other vehicles on a three-way road. The ROI is designed using valid 

lane information detected from the front vision. In the presence of a significant 

number of vehicles and facilities around the ego vehicle, efficient and accurate 

environment perception ability is required. The environment recognition result, 

as shown in Figure 6.8 (a), confirmed that the surrounding monitoring for safe 

driving is well performed. In addition, the 3rd ROI of the fan shape on the front 

of the vehicle can be seen acting as a backup to the forward recognition area 

regardless of lane information. Among the numerous point clouds acquired, the 

processing of data within the ROI area has shown that objects are effectively 

tracked. Figure 6.8 (b) describes the situation in which the vehicle in the next 

lane is cut-in to ego lane. Due to the high importance of processing objects near 

the ego lane under lane-keeping driving conditions, rapid response to the cut-

in vehicle has been demonstrated. The data at 12 seconds in Figure 6.10 (a) and 

(b) show that the cut-in vehicle recognition results are applied to motion 

planning and vehicle control to achieve longitudinal control to maintain a safe 

distance. If there is no lane, the region of interest is designed, as shown in 

Figure 6.8 (c). Due to the lack of information on the surrounding road 

environment owing to the absence of lanes, a relatively wider area is defined 

than Figure 6.8 (a), and processing for this area is applied. In-lane targets 

marked with red arrows, as well as oncoming targets in opposite lanes marked 

with purple arrows, were correctly recognized. 
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Figure 6.9 consists of subfigures that analyze the experimental results of the 

automated driving system applied to the test vehicle in terms of execution time 

evaluation. Figure 6.9 (a) shows the results of adaptive ROI based point cloud 

categorization and separated voxelization in Section 3.2. The processed data 

size for each ROI level was summed up, and as a result, downsizing was 

performed successfully at about 1/8 ratio. The processing stages based on the 

processing time estimation in Section 5.2 and computational load management 

in Section 5.3 are shown in Figure 6.9 (b). The higher the level, the lower the 

ROI, and the smaller the data to be processed. Figure 6.9 (c) indicates how 

much time the actual operation has decreased compared to the time previously 

predicted when processing time reduction is applied. Figure 6.9 (d) depicts the 

computation time of clustering and MOT functions that constitute the 

perception algorithm. It can be seen from Figure 6.9 (e) that the execution time 

of the environment representation algorithm to which the proposed adaptive 

ROI strategy is applied does not exceed the allocated time. Figure 6.9 (f) and 

(g) shows the execution time of the motion planning and the rest of the 

algorithms that comprise ADS in addition to perception. The distribution and 

sum of the execution time of the three major algorithm parts are shown in 

Figure 6.9 (h) and (i). As a result, the computation of the algorithm within the 

allocated computation time has been performed successfully.  

Figure 6.10 shows the results of the vehicle motion planning and vehicle 

control in several states of the vehicle by using the environment result while 

driving. Using the front clearance shown in Figure 6.10 (a), motion planning 

calculates the target acceleration and inputs it to the vehicle's longitudinal 
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control module, which is depicted in Figure 6.10 (b). In the 12 seconds time 

point, the deceleration control due to the cut-in vehicle was applied and 

decelerated. Also, in 23 to 30 seconds, the control for the deceleration and stop 

was applied due to the stop of the front vehicle. Based on the desired path 

calculated by the motion planning algorithm, the result of applying the proper 

range of steering control for lane-keeping can be seen in Figure 6.10 (d). In 

Figure 6.11, the result of driving risk management on clearance-time to 

collision (TTC) plane through collision risk assessment is shown in black 

squares. As indicated by the red arrow, the risk of collision with the front object 

increases as it goes to the lower left, and appropriate driving control reduces 

the risk of collision as indicated by the green arrow. 

 

 

(a) Normal driving with dense traffic 
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(b) Cut-in vehicle 

 

(c) No lane markings 

Figure 6.8. Test scenes based on adaptive ROI processing. 
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(a) Sizes of point cloud by applied process 

 

 (b) Applied computation load management level  

 

(c) Time reduction due to computation load management 

 

(d) Processing time for each function 
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(e) Actual processing time and allocated time for perception 

 

(f) Processing time of motion planning by each function 

 

(g) Processing time of other algorithms by each function 
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(h) Distribution of actual execution time 

 

(i) Execution time summation of primary algorithms 

Figure 6.9. Test results of actual processing time. 
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(a) Front clearance for detected in-lane object 

 

(b) Longitudinal acceleration 

 

(c) Actual longitudinal velocity 

 

(d) Steering wheel angle 

Figure 6.10. Test results of vehicle control. 



 183 

 

Figure 6.11. Risk management on clearance-Time to collision (TTC) plane. 
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Chapter 7 Conclusions and 

Future Works 

 

This dissertation has proposed an efficient environment perception algorithm 

for a fully automated driving system that is capable of automated driving on 

urban roads with guaranteed safety. In this study, we focused on developing an 

environment perception algorithm by considering the interaction between 

configured modules in terms of entire system operation to secure the stable and 

high performance of an automated driving system. The proposed algorithm 

consisted of the following three steps: adaptive ROI design and processing, 

environment perception, and computational load management strategy. In a 

design of adaptive ROI, vehicle driving status and driving control solution 

based rational area construction has been developed. Based on defined adaptive 

ROI, the regional processing method, which consists of categorization, 

voxelization, and clustering, has been developed. With pre-processed data, 

environment perception algorithms for automated driving, which include time 

delay compensation, environment representation, and multiple object tracking, 

have been developed. In computational load management strategy, an analysis 

of allocated time for the entire automated driving system, computation load 

estimation based sequential processing time reduction, and driving restriction 

in terms of fail prevention have been developed. The developed perception 

algorithm computes the appropriate and sufficient environment information to 
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secure safe driving control.  

The effectiveness of the proposed algorithm has been evaluated via test-data 

based simulations and actual vehicle tests. In adaptive ROI-based processing, 

it is found that separated processing can increase cognitive performance while 

reducing computational load, depending on the reasonably designed level of 

ROI. Moreover, motion-planning results computed for automated driving 

control are considered in the ROI design in order to guarantee the practical 

vehicle safety of the automated vehicle. The characteristics analysis of the 

environmental sensors is reasonably performed and experimentally verified that 

time delay compensation is appropriately performed to increase sensing 

accuracy. It is confirmed that the required environment information output from 

the algorithms developed for each recognition target is appropriate. In 

consideration of the system performance constraint determined by using human 

reaction time and industry standards, target hardware specification and the 

sensor's performance, the appropriate sampling time for automated driving 

system is determined to enhance safety. Resources were reasonably allocated 

for each configurated function through a driving data analysis that reflected the 

actual operating environment characteristics. To predict the computation time 

of complex algorithms in the target environment, multiple linear regression is 

performed based on the actual vehicle data, and the appropriate processing time 

prediction model is determined. Furthermore, it has been demonstrated that the 

proposed algorithm could keep the allocated execution period by applying 

processing time management with processing time prediction models. Based on 

the results, it has been shown that the proposed algorithm enhances execution 
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stability with respect to efficient processing. 

Although the approach presented in this study has significantly improved the 

performance of environmental data processing, there are still elements to 

improve. It can be determined that the proposed approach has the potential for 

development. In this study, we designed ROI for rational processing under the 

assumption that the road surface is flat, and based on this; it performed area-

specific processing and computation load management. Besides, in urban 

environments, various road environments, such as unformatted intersections, 

roundabout, and parking lots, exist, so the scope of the algorithm can be 

extended if these environmental characteristics are reflected in the ROI design. 

Although the ROI for typical driving modes has been designed and applied in 

this study, it is expected that a more reasonable ROI design is possible if the 

driving behavior characteristics for the various driving tasks, such as U-turn, 

joins, branches, stops, slow turns, and so forth, are reflected. In addition, if the 

additional environment information, such as HD map and stereo vision, 

obtained from other sensors is utilized, the performance may be improved by 

being specialized in those driving environment. Besides, in the development 

environment optimized for parallel operation, it is expected to maximize 

processing performance in terms of reduction time through not only perception 

and motion planning module separation but also simultaneous processing by 

ROI level. In addition, by analyzing various sensors and driving conditions, the 

optimum sampling cycle of the perception system is defined to achieve 

satisfactoryperformance. It is expected that the recognition and overall system 

performance will be improved through a variable sampling system applied to 
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the derived sampling period. Enhancing and verifying the proposed algorithm 

in the above way to achieve a high level of automated driving by extending to 

cover complex situations on urban roads are the topics of our future research. 
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초    록 

 

자율 주행 시스템의 차량 안전을 위한  

적응형 관심 영역 기반 효율적 환경 인지 
 

 

전 세계적으로 자동차 사고로 120 만 명이 사망하기 때문에 교통 

사고에 대한 기본적인 예방 조치에 대한 논의가 진행되고 있다. 

통계 자료에 따르면 교통 사고의 94 %가 인적 오류에 기인한다. 

도로 안전 확보의 관점에서 자율 주행 기술은 이러한 심각한 

문제를 해결하는 방법으로써 관심이 높아졌으며, 연구 개발을 통해 

단계적 상용화가 이루어지고 있다. 주요 자동차 제조업체는 이미 

차선 유지 보조장치 (LKAS: Lane Keeping Assistant System), 적응형 

순항 제어 시스템(ACC: Adaptive Cruise Control), 주차 보조 시스템 

(PAS: Parking Assistance System), 자동 긴급 제동장치 (AEB: Automated 

Emergency Braking) 등의 첨단 운전자 보조 시스템 (ADAS)을 

개발하고 상용화하였다. 또한 Audi의 Audi AI Traffic Jam Pilot, Tesla의 

Autopilot, Mercedes-Benz의 Distronic Plus, 현대자동차의 Highway 

Driving Assist 및 BMW의 Driving Assistant Plus 와 같은 부분 자율 

주행 시스템이 출시되고 있다. 이러한 부분 자율 주행 시스템은 

여전히 운전자의 주의가 수반되어야 함에도 불구하고, 안전성을 
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크게 향상시키는 데 효과적이기 때문에 지속적으로 그 수요가 

증가하고 있다. 

최근 몇 년간 많은 수의 자율주행 사고가 발생하였으며, 그 

빈도수가 빠르게 증가하여 사회적으로 주목받고 있다. 차량 사고는 

인명 사고와 직접적으로 연관되기 때문에 자율 주행 차량의 

사고들은 자율 주행 기술 신뢰성의 저하를 야기하여 사회적인 

불안감을 키운다. 최근 자율 주행 관련 사고들로 인해, 자율주행 

차량의 안전성의 보장이 더욱 강조되고 있다. 따라서 본 연구에서는 

자율 주행 차량의 거동 제어를 고려하여 자율 주행 시스템 

관점에서 차량의 안전성을 우선적으로 확보하는 접근 방식을 

제안한다. 

또한 자율주행 기술 개발은 단순하게 운전을 대체하는 기술이 

아니라, 첨단기술의 집약 체로써 산업적으로 매우 큰 파급력을 

가진다고 전망된다. 현재 자율주행 시스템은 기존 자동차 산업의 

고전적인 틀에서 확장되어, 다양한 분야의 관점에서 주도적으로 

개발이 진행되고 있다. 자율 주행은 다양한 기술의 복합적인 

결합으로 구성되기 때문에, 현재 각기 다른 다양한 환경에서 개발이 

진행 중이며, 아직 표준화되어 있지 않은 실정이다. 대부분 각 모듈 

단위의 지엽적인 성능향상을 추구하는 경향이 있으며, 구성 모듈 간 

관계가 고려된 전체 시스템 단위의 접근방식은 미흡한 실정이다. 

세부 모듈 단위의 지엽적인 연구 개발은 통합 시, 모듈 간 

상호작용으로 인한 영향으로 시스템 관점에서 적절한 성능을 

확보하기 어려울 수 있다. 각 모듈의 성능만을 고려한 일방적인 

방향의 연구는 한계가 명확하며, 연관된 모듈들의 특성을 고려하여 
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반영할 필요가 있다. 따라서 자율주행 전체 시스템의 관점에서, 

차량 안전을 우선적으로 확보하고 전체 성능을 극대화하는 

효과적인 접근 방식을 본 연구에서 제안하고자 한다. 

본 연구는 자율 주행 시스템의 안정적이고 높은 성능을 확보하기 

위해 전체 시스템 작동 측면에서 구성된 모듈 간의 상호 작용을 

고려하여 효율적인 환경 인식 알고리즘을 개발하는데 중점을 둔다. 

실질적인 관점에서 효과적인 정보 처리를 수행하고 차량 안전을 

확보하기 위해 적응형 관심 영역 (ROI) 기반 계산 부하 관리 전략을 

제안한다. 차량의 거동 특성, 도로 설계 표준, 추월 및 차선 변경과 

같은 주변 차량의 주행 특성이 적응형 ROI 설계 및 주행 상황에 

따른 영역 확장에 반영된다. 또한, 자율 주행 차량의 실질적인 

안전을 보장하기 위해 ROI 설계에서 자율 주행 제어를 위한 거동 

계획 결과가 고려된다. 보다 넓은 주변 영역에 대한 환경 정보를 

확보하기 위해 라이다 데이터는 설계된 ROI별로 분류되며, 영역별 

중요도에 따라 연산 과정이 분리되어 수행된다. 목표 시스템을 

구성하는 모듈 별 연산 시간이 측정된 데이터 기반으로 통계적으로 

분석된다. 운전자의 반응 시간, 산업 표준, 대상 하드웨어 사양 및 

센서 성능을 기반으로 결정된 시스템 성능 조건을 고려하여, 

안전성을 확보하기 위한 자율 주행 시스템의 적절한 샘플링 주기가 

정의된다. 데이터 기반 다중 선형 회귀 분석은 인식 모듈을 

구성하는 함수 별 실행 시간을 예측하기 위해 적용되며, 안정적인 

실시간 성능을 보장하기 위해 적응형 ROI를 기반으로 자율 주행 

안전에 필요한 데이터를 선택적으로 분류하여 연산 부하가 

감축된다. 연산 부하 평가 관리에서 환경 인지 모듈과 전체 
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시스템의 연산 부하가 대상 환경에서의 적절성을 평가하고, 연산 

부하 관리에 문제가 있을 때 자율 주행 차량의 거동을 제한하여 

시스템 안정성을 유지함으로써 차량 안전성을 확보한다. 

제안된 자율주행 인지 전략 및 알고리즘의 성능은 데이터 기반 

시뮬레이션 및 실차 실험을 통해 검증되었다. 실험 결과를 통해 

제안된 환경 인식 알고리즘은 자율 주행 시스템을 구성하는 모듈 

간의 상호 작용을 고려하여 도심 도로 환경에서 자율 주행 차량의 

안전성과 시스템의 안정적인 성능을 보장할 수 있음을 확인하였다. 

 

주요어: 자율 주행 시스템, 적응형 관심 영역, 라이다 프로세싱, 

환경 인지, 차량 안전, 연산 부하 관리 

 

학  번: 2014-22484 


	Chapter 1 Introduction
	1.1. Background and Motivation
	1.2. Previous Researches
	1.3. Thesis Objectives
	1.4. Thesis Outline

	Chapter 2 Overall Architecture
	2.1. Automated Driving Architecture
	2.2. Test Vehicle Configuration

	Chapter 3 Design of Adaptive ROI and Processing
	3.1. ROI Definition
	3.1.1. ROI Design for Normal Driving Condition
	3.1.2. ROI Design for Lane Change
	3.1.3. ROI Design for Intersection

	3.2. Data Processing based on Adaptive ROI
	3.2.1. Point Cloud Categorization by Adaptive ROI
	3.2.2. Separated Voxelization
	3.2.3. Separated Clustering


	Chapter 4 Environment Perception Algorithm for Automated Driving
	4.1. Time Delay Compensation of Environment Sensor
	4.1.1. Algorithm Structure of Time Delay Estimation and Compensation
	4.1.2. Time Delay Compensation Algorithm
	4.1.3. Analysis of Processing Delay
	4.1.4. Test Data based Open-loop Simulation

	4.2. Environment Representation
	4.2.1. Static Obstacle Map Construction
	4.2.2. Lane and Road Boundary Detection

	4.3. Multiple Object State Estimation and Tracking based on Geometric Model-Free Approach
	4.3.1. Prediction of Geometric Model-Free Approach
	4.3.2. Track Management
	4.3.3. Measurement Update
	4.3.4. Performance Evaluation via vehicle test


	Chapter 5 Computational Load Management
	5.1. Processing Time Analysis of Driving Data
	5.2. Processing Time Estimation based on Multiple Linear Regression
	5.2.1. Clustering Processing Time Estimation
	5.2.2. Multi Object Tracking (MOT) Processing Time Estimation
	5.2.3. Validation through Data-based Simulation

	5.3. Computational Load Management
	5.3.1. Sequential Processing to Computation Load Reduction
	5.3.2. Restriction of Driving Control
	5.3.3. Validation through Data-based Simulation


	Chapter 6 Vehicle Tests based Performance Evaluation
	6.1. Test-data based Simulation
	6.2. Vehicle Tests: Urban Automated Driving
	6.2.1. Test Configuration
	6.2.2. Motion Planning and Vehicle Control
	6.2.3. Vehicle Tests Results


	Chapter 7 Conclusions and Future Works
	Bibliography
	Abstract in Korean


<startpage>12
Chapter 1 Introduction 1
 1.1. Background and Motivation 1
 1.2. Previous Researches 6
 1.3. Thesis Objectives 11
 1.4. Thesis Outline 13
Chapter 2 Overall Architecture 14
 2.1. Automated Driving Architecture 14
 2.2. Test Vehicle Configuration 19
Chapter 3 Design of Adaptive ROI and Processing 21
 3.1. ROI Definition 25
  3.1.1. ROI Design for Normal Driving Condition 30
  3.1.2. ROI Design for Lane Change 50
  3.1.3. ROI Design for Intersection 56
 3.2. Data Processing based on Adaptive ROI 62
  3.2.1. Point Cloud Categorization by Adaptive ROI 63
  3.2.2. Separated Voxelization 66
  3.2.3. Separated Clustering 70
Chapter 4 Environment Perception Algorithm for Automated Driving 75
 4.1. Time Delay Compensation of Environment Sensor 77
  4.1.1. Algorithm Structure of Time Delay Estimation and Compensation 78
  4.1.2. Time Delay Compensation Algorithm 79
  4.1.3. Analysis of Processing Delay 84
  4.1.4. Test Data based Open-loop Simulation 91
 4.2. Environment Representation 96
  4.2.1. Static Obstacle Map Construction 98
  4.2.2. Lane and Road Boundary Detection 100
 4.3. Multiple Object State Estimation and Tracking based on Geometric Model-Free Approach 107
  4.3.1. Prediction of Geometric Model-Free Approach 109
  4.3.2. Track Management 111
  4.3.3. Measurement Update 112
  4.3.4. Performance Evaluation via vehicle test 114
Chapter 5 Computational Load Management 117
 5.1. Processing Time Analysis of Driving Data 121
 5.2. Processing Time Estimation based on Multiple Linear Regression 128
  5.2.1. Clustering Processing Time Estimation 129
  5.2.2. Multi Object Tracking (MOT) Processing Time Estimation 138
  5.2.3. Validation through Data-based Simulation 146
 5.3. Computational Load Management 149
  5.3.1. Sequential Processing to Computation Load Reduction 151
  5.3.2. Restriction of Driving Control 154
  5.3.3. Validation through Data-based Simulation 159
Chapter 6 Vehicle Tests based Performance Evaluation 163
 6.1. Test-data based Simulation 164
 6.2. Vehicle Tests: Urban Automated Driving 171
  6.2.1. Test Configuration 171
  6.2.2. Motion Planning and Vehicle Control 172
  6.2.3. Vehicle Tests Results 174
Chapter 7 Conclusions and Future Works 184
Bibliography 188
Abstract in Korean 200
</body>

