97,271 research outputs found
A Survey On Multi Trip Vehicle Routing Problem
The vehicle routing problem (VRP) and its variants are well known and greatly explored in the transportation literature. The vehicle routing problem can be considered as the scheduling of vehicles (trucks) to a set of customers under various side constraints. In most studies, a fundamental assumption is that a vehicle dispatched for service finishes its duty in that scheduling period after it returns back to the depot. Clearly, in many cases this assumption may not hold. Thus, in the last decade some studies appeared in the literature where this basic assumption is relaxed, and it is allowed for a vehicle to make multiple trips per period. We consider this new variant of the VRP an important one with direct practical impact. In this survey, we define the vehicle routing problem with multiple trips, define the current state-of-the-art, and report existing results from the current literature
Advanced Planning Concepts in the Closed-Loop Container Network of ARN
In this paper we discuss a real-life case study in the optimization of the logistics network for the collection of containers from end-of-life vehicle dismantlers in the Netherlands.Advanced planning concepts like dynamic assignment of dismantlers to logistic service providers are analyzed by a simulation model.In this model, we periodically solve a vehicle routing problem to gain insight in the long-term performance of the system.The vehicle routing problem considered is a multi depot pickup and delivery problem with alternative delivery locations.We solve this problem with a heuristic based on route generation and set partitioning.Reverse logistics;Closed-loop supply chain mmanagement;vehicle routing;set partitioning;distribution planning
Benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths
In this paper, the benchmark dataset for the Asymmetric and Clustered Vehicle Routing Problem with Simultaneous Pickup and Deliveries, Variable Costs and Forbidden Paths is presented (AC-VRP-SPDVCFP). This problem is a specific multi-attribute variant of the well-known Vehicle Routing Problem, and it has been originally built for modelling and solving a real-world newspaper distribution problem with recycling policies. The whole benchmark is composed by 15 instances comprised by 50–100 nodes. For the design of this dataset, real geographical positions have been used, located in the province of Bizkaia, Spain. A deep description of the benchmark is provided in this paper, aiming at extending the details and experimentation given in the paper A discrete firefly algorithm to solve a rich vehicle routing problem modelling a newspaper distribution system with recycling policy (Osaba et al.) [1]. The dataset is publicly available for its use and modification.Eneko Osaba would like to thank the Basque Government for its funding support through the EMAITEK and ELKARTEK
The Vehicle Routing Problem with Service Level Constraints
We consider a vehicle routing problem which seeks to minimize cost subject to
service level constraints on several groups of deliveries. This problem
captures some essential challenges faced by a logistics provider which operates
transportation services for a limited number of partners and should respect
contractual obligations on service levels. The problem also generalizes several
important classes of vehicle routing problems with profits. To solve it, we
propose a compact mathematical formulation, a branch-and-price algorithm, and a
hybrid genetic algorithm with population management, which relies on
problem-tailored solution representation, crossover and local search operators,
as well as an adaptive penalization mechanism establishing a good balance
between service levels and costs. Our computational experiments show that the
proposed heuristic returns very high-quality solutions for this difficult
problem, matches all optimal solutions found for small and medium-scale
benchmark instances, and improves upon existing algorithms for two important
special cases: the vehicle routing problem with private fleet and common
carrier, and the capacitated profitable tour problem. The branch-and-price
algorithm also produces new optimal solutions for all three problems
An ant colony algorithm for the mixed vehicle routing problem with backhauls
The Vehicle Routing Problem with Pickup and Delivery (VRPPD) is a variant of the Vehicle Routing Problem where the vehicles are not only required to deliver goods but also to pick up some goods from the customers. The Mixed Vehicle Routing Problem with Backhauls (MVRPB) is a special case of VRPPD where each customer has either a delivery or a pickup demand to be satisfied and the customers can be visited in any order along the route. Given a fleet of vehicles and a set of customers with known pickup or delivery demands MVRPB determines a set of vehicle routes originating and ending at a single depot and visiting all customers exactly once. The objective is to minimize the total distance traversed with the least number of vehicles. For this problem, we propose an Ant Colony Optimization algorithm with a new visibility function which attempts to capture the “delivery” and “pickup” nature of the problem. Our numerical tests to compare the performance of the proposed approach with those of the well-known benchmark problems reveal that the proposed approach provides encouraging results
A large neighbourhood based heuristic for two-echelon routing problems
In this paper, we address two optimisation problems arising in the context of
city logistics and two-level transportation systems. The two-echelon vehicle
routing problem and the two-echelon location routing problem seek to produce
vehicle itineraries to deliver goods to customers, with transits through
intermediate facilities. To efficiently solve these problems, we propose a
hybrid metaheuristic which combines enumerative local searches with
destroy-and-repair principles, as well as some tailored operators to optimise
the selections of intermediate facilities. We conduct extensive computational
experiments to investigate the contribution of these operators to the search
performance, and measure the performance of the method on both problem classes.
The proposed algorithm finds the current best known solutions, or better ones,
for 95% of the two-echelon vehicle routing problem benchmark instances.
Overall, for both problems, it achieves high-quality solutions within short
computing times. Finally, for future reference, we resolve inconsistencies
between different versions of benchmark instances, document their differences,
and provide them all online in a unified format
The Vehicle Rescheduling Problem
The capacitated vehicle routing problem is to find a routing schedule describing the order in which geographically dispersed customers are visited to satisfy demand by supplying goods stored at the depot, such that the traveling costs are minimized. In many practical applications, a long term routing schedule has to be made for operational purposes, often based on average demand estimates. When demand substantially differs, constructing a new schedule is beneficial. The vehicle rescheduling problem is to find a new schedule that not only minimizes the total traveling costs but also minimizes the costs of deviating from the original schedule. In this paper two mathematical programming formulations of the rescheduling problem are presented as well as two heuristic methods, a two-phase heuristic and a modified savings heuristic. Computational and analytical results show that for sufficiently high deviation costs, the two-phase heuristic generates a schedule that is on average close to optimal or even guaranteed optimal, for all considered problem instances. The modified savings heuristic generates schedules of constant quality, however the two-phase heuristic produces schedules that are on average closer to the optimum.vehicle routing;operational planning;vehicle rescheduling problem
- …
