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ABSTRACT 

The Vehicle Routing Problem with Backhauls (VRPB) is a variant of the Vehicle Routing Problem 

where the vehicles are not only required to deliver goods but also to pick up some goods from the 

customers. In the mixed VRPB (MVRPB) each customer has either a delivery or a pick-up demand 

to be satisfied and the customers can be visited in any order along the route. Given a fleet of 

vehicles and a set of customers with known pick-up or delivery demands MVRPB determines a set 

of vehicle routes originating and ending at a single depot and visiting all customers exactly once. 

The objective is to minimize the total distance traversed with the least number of vehicles. A 

maximum route length restriction may also be imposed on the vehicles.  

 From a practical point of view MVRPB models situations such as distribution of bottled 

drinks, chemicals, LPG tanks, etc. In the case of the bottled drinks for instance, full bottles are 

delivered to customers and empty ones are brought back either for re-use or for recycling. In the 

chemicals case, some hazardous materials may need to be returned for safe disposal. Regulations or 

environmental issues may also force companies to take responsibility for their products throughout 

their lifetime. For this problem, we propose an Ant Colony Optimization (ACO) approach utilizing 

a new visibility function which attempts to capture the “delivery and pick-up” nature of the 

problem. We perform an extensive experimental study to compare the performance of the proposed 

approach with those of the well-known benchmark problems from the literature.  Our numerical 

tests show that the proposed approach provides encouraging results.  

 

Keywords:, vehicle routing with backhauls, ant colony optimization, metaheuristics 

 

 

INTRODUCTION 

The Vehicle Routing Problem with Pickup and Delivery (VRPPD) is a variant of the Vehicle 

Routing Problem where the vehicles are not only required to deliver goods but also to pick up some 

goods from the customers. Customers requiring a given demand quantity to be delivered from the 

depot are called linehauls while customers requiring a given supply quantity to be picked up and 

transported to the depot are called backhauls. The objective is to minimize the total distance 

traveled by the vehicles and/or the number of vehicles used subject to vehicle capacity constraint.  

Nagy and Salhi (2005) classify the VRPPD into three categories:  

i. Delivery First, Pickup Second (VRPB): the vehicles pick up goods after they have delivered 

their goods;  

ii. Mixed Delivery and Pickup (MVRPB): linehauls and backhauls can occur in any sequence 

on a vehicle route; and  

iii. Simultaneous Delivery and Pickup (VRPSPD): the vehicles simultaneously deliver and 

pickup goods.  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Sabanci University Research Database

https://core.ac.uk/display/11740142?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 2 

In MVRPB and VRPSPD the objective and constraints are the same as in VRPB except the 

servicing order of the customers, which makes the former two problems more complicated because 

of the fluctuating load on the vehicle along the route. In VRPB, the loads of linehaul customers and 

backhaul customers can be checked separately during the delivery route and pickup route, 

respectively, to ensure that the vehicle capacity is not exceeded. In MVRPB, however, the decrease 

or increase on the vehicle load at each customer must be checked depending on whether the 

customer is a linehaul or backhaul customer, respectively. 

In this paper, we address MVRPB where the goods are transported by a fleet of homogeneous 

vehicles. The delivery and pickup items are identical in the sense that each unit consumes the same 

amount of vehicle capacity. Each customer has either a delivery or a pickup demand to be satisfied. 

Items to be delivered are loaded at the depot while picked up items are transported back to the 

depot. The customers can be visited in any order along the route but they must be serviced exactly 

once. The objective is to determine a set of vehicle routes visiting all customers such that total 

distance traversed is minimized. An implicit primary objective is to utilize the minimum number of 

vehicles. In some cases, a maximum route length restriction may also be imposed on the vehicles. 

Although the classical VRPB has been intensively studied in the literature there are very few 

papers attacking MVRPB. Since our focus is MVRPB we omit the discussion on the VRPB 

literature and refer the interested reader to Goetschalckx and Jacobs-Blecha (1989), Halse (1992), 

Toth and Vigo (1997), and Brandão (2006) for details and references. 

Casco et al. (1988) propose a load-based insertion method for MVRPB utilizing a penalty cost 

based on delivery load after the pickup. Salhi and Nagy (1999) extend this method by proposing the 

cluster insertion of backhauls rather than one insertion at each iteration. They also investigate the 

case with multiple depots. Nagy and Salhi (2005) first find a solution to the VRP by allowing 

infeasibilities then modifies this solution to make it feasible for the MVRPB. The proposed 

approach is also capable of solving multi-depot problems. Recently, Ropke and Pisinger (2006) 

develop a unified heuristic for a large class of VRPPD based on a large neighborhood search. The 

proposed heuristic provides very good results. 

In this paper, we propose an Ant Colony Optimization (ACO) algorithm for the MVRPB 

introducing a new visibility function which attempts to capture the “delivery and pickup” nature of 

the problem. To our knowledge, the only ant colony based approach previously proposed for this 

problem is in Wade and Salhi (2001). This preliminary work uses the Ant Colony System (ACS) 

approach of Dorigo and Gambardella (1997); however, the computational results are rather poor 

compared to those in the literature. 

The remainder of the paper is organized as follows: In Section 2, the problem is depicted and a 

mathematical model formulation is provided. Section 3 is devoted to the introduction of ant systems 

and the discussion of the proposed algorithm. Section 4 describes the experimental study and 

discusses the numerical results. Finally, concluding remarks and future research directions are 

presented in Section 5. 

 

PROBLEM DESCRIPTION 

The problem deals with a single depot distribution/collection system servicing a set of customers 

using a homogeneous fleet of vehicles. Each customer has either a delivery (linehaul) or a pickup 

(backhaul) demand to be satisfied and is visited exactly once. Goods to be delivered are loaded at 

the depot and goods picked up are transported back to the depot. The critical feature of the problem 

is that the customers can be visited in any order along the route. The main reasoning behind visiting 

backhaul customers after all linehaul customers in VRPB is due to the fact that linehaul customers 

have precedence over backhaul customers in many real world cases and vehicles are often rear 

loaded. The latter causes problems when rearranging the items on the vehicle, thus prevents the 

mixed routes. However, the improved design of vehicles allows side loadings, making the mixed 

routes a more practical option since that would provide shorter routes. 
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From a practical point of view MVRPB models situations such as distribution of bottled drinks, 

chemicals, LPG tanks, etc. In the case of the bottled drinks for instance, full bottles are delivered to 

customers and empty ones are brought back either for re-use or for recycling. In the chemicals case, 

some hazardous materials may need to be returned for safe disposal. Regulations or environmental 

issues may also force companies to take responsibility for their products throughout their lifetime.  

Mathematically, MVRPB is described by a set of homogenous vehicles V, a set of linehaul 

customers L, a set of backhaul customers B, and an undirected graph G (N, A). N = {0, …, n+m} 

denotes the set of nodes where L = {1,2, …, n}, B = {n+1, n+2, …, n+m}, 0 is the depot. Each 

vehicle has capacity Q and each customer (node) i is characterized by its geographical location and 

its delivery or pickup requests Di and Pi, respectively. A = {(i, j): i, j∈N, ji ≠ } denotes the set of 

arcs that represents connections between the depot and the customers and among the customers. A 

cost/distance cij is associated with each arc (i, j). Finally, Q, Di, Pi, cij are assumed to be non-

negative integers. The objective of MVRPB is to determine a set of routes such that: 

i. each vehicle travels exactly one route; 

ii. each customer is visited only once by one of the vehicles completely satisfying its demand or 

supply; 

iii. the load carried by a vehicle between any pair of adjacent customers on the route must not 

exceed its capacity; and 

iv. the total distance given by the sum of the arcs belonging to these routes is minimal. 

 

Following the mathematical model of VRPSPD in Dethloff (2001) the 0-1 mixed integer linear 

programming formulation of MVRPB is as follows: 

 

Decision variables   

Lj load of vehicle after having serviced customer j∈NC 

πj subtour elimination variable  
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otherwise   ,  0
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In the formulation above, NC denotes the set of customers (N \{0}) and M  is a sufficiently large 

number ( e.g. 
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),(max ). The objective function (1) minimizes the total 

distance traveled. Constraint sets (2) and (3) assure servicing each customer exactly once. 

Constraints (4) make sure that if a vehicle arrives at a customer, then the same vehicle departs from 

it. The load after servicing the first customer is defined with constraints (5) while the load “en 

route” is limited with constraints (6). Constraint sets (7) and (8) ensure that the load when leaving 

the depot and “en route”, respectively, does not exceed the vehicle capacity. Constraints (9) are 

subtour elimination constraints. Constraints (10) are the non-negativity constraints and constraints 

(11) define the binary variables. 

We can prove that MVRPB is NP-hard in the following way: let Pi = 0 for all i∈B, i.e. B = ∅. 

Then the problem reduces to VRP, which is known to be NP-hard. Thus, MVRPB is also NP-hard 

since VRP is a special case of MVRPB. 

 

DESCRIPTION OF THE PROPOSED ANT COLONY APPROACH 

ACO is based on the way ant colonies behave to find the shortest path between their nest and food 

sources. In the real world, initially all ants wander randomly. When they find food they return to 

their nest laying down a chemical substance, called pheromone, on their path. If other ants sense the 

pheromone on a path, they are likely to follow it rather than traveling at random, thus reinforcing 

the path. Greater level of pheromone on a path will increase the probability of ants following that 

path.  

On the other hand, the pheromones evaporate over time, reducing the chance of other ants to 

follow the path. The longer the path between the nest and the food source the more the pheromones 

have to evaporate whereas the shorter the path the faster it is traversed and the more the 

pheromones are deposited. Thus, the pheromone levels remain higher on the short paths. As a 

consequence, the level of pheromone laid is basically based on the path length and the quality of the 

food source. 

ACO simulates the above behavior of real ants to solve combinatorial optimization problems 

with artificial ants. Artificial ants find solutions in parallel processes using a constructive 

mechanism guided by artificial pheromone and a greedy heuristic known as visibility. The amount 

of pheromone deposited on arcs is proportional to the quality of the solution generated and 

increases at run-time during the computation.  

The Ant System (AS) is the first ACO algorithm which was applied for solving the Traveling 

Salesman Problem (Colorni et al., 1991). Some other early applications include the elitist strategy 

for Ant System (EAS) proposed by Dorigo et al. (1996), rank-based version of Ant System (ASrank) 

by Bullnheimer et al. (1999), Max-Min Ant System (MMAS) by Stützle and Hoos (1997), and Ant 

Colony System (ACS) by Dorigo and Gambardella (1997).  

Since its first application many implementations of ACO have been proposed for a variety of 

combinatorial optimization problems such as quadratic assignment problem, scheduling problem, 

sequential ordering problem, vehicle routing problem and its variants, etc. We skip further 

discussion of the ACO and refer the interested reader to Dorigo and Stützle (2004) for a complete 

review and details. Next, we describe our ACO implementation for MVRPB. 
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Initialization  

An initial amount of pheromone τ0 is deposited on each arc. Dorigo and Gambardella (1997) 

observed that τ0=n/L0, where L0 is the length of an initial feasible route and n is the number of 

customers, can generate good routes. We also adopt this initialization of pheromone levels in our 

algorithm. The initial route is constructed using the nearest-neighbor heuristic: start at the depot and 

then select the not yet visited closest feasible customer as the next customer to be visited regardless 

of whether it is a linehaul or backhaul customer. A customer is infeasible if it violates the vehicle 

capacity. If no feasible customer is available then the route is terminated at the depot and a new 

route is initiated. 

 

Heuristic Information 

In the classical ACO approach the visibility value (heuristic information) between a pair of 

customers is the inverse of their distance. So, if the distance between two customers i and j is long, 

visiting customer j after customer i (or vice-versa) will be less likely. In our approach, the visibility 

function consists of two distinct components. The first component is the Clarke and Wright (1964) 

savings function as proposed by Doerner et al. (2002) for solving the classical VRP:  

 

ijjiij ddd −+= 00

1η  (1) 

 

where dij (di0) denotes the distance between customers i and j (the depot). We incorporate in our 

visibility function this savings value achieved by serving two customers i and j on the same route 

instead of serving them on different tours. Since a high value of savings indicates that visiting 

customer j after customer i is a desired choice the tour length is expected to be shorter if the 

probability of moving from customer i to customer j increases with 1

ijη . 

The second component depends upon whether the next customer to be visited is a linehaul or a 

backhaul. In the case of linehaul (backhaul) our visibility is equal to the ratio of delivery to (pickup 

from) customer j to the average value of all deliveries (pickups) if total deliveries (pickups) of the 

vehicle so far exceed half of the vehicle capacity; and is equal to 1 otherwise. The idea is to 

basically give more chance of selection to customers requiring larger delivery (pickup) quantities. 

Our motivation in doing so stems from the “put first larger items” approach used for the Bin 

Packing Problem. The reason why we start employing this approach after half of the vehicle 

capacity is used up is to not adversely affect the influence of the first component. The computation 

of the second visibility value is as follows: 
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>

=
∑
∈

otherwise    ,      1

2
if    ,      

2

Q
P

P

P

qVk

k

j

ijη  

(2) 

 

Here, D  ( P ) is the average delivery (pickup) and Vq is the set of customers already visited by the 

associated vehicle q. Note that the first component is static whereas the second depends on the 

current load of the vehicle. 
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Route Construction 

The route construction process is similar to the pseudo-random proportional rule introduced in 

ACS. An ant is positioned at each customer and each ant constructs its own route by successively 

selecting a customer from the feasible candidate customers set Ni
k
. For each ant k at each customer i 

the candidate set Ni
k
 is formed by taking not yet visited customers that do not violate the vehicle 

capacity and having the largest attractiveness value. The size of the candidate set is a parameter s.  

If Ni
k
 is empty then the ant returns to the depot and starts a new route. This procedure is repeated 

until all customers are serviced.  

The choice of the next customer is based on its attractiveness value, which is a function of the 

pheromone information (intensity) and heuristic information (visibility):  

 

[ ] [ ] [ ] 21 21 ββα ηητϕ ijijijij =  (3) 

 

where α, β1, and β2 are parameters to control the relative weight of trail intensity τij and visibility 
1

ijη  

and 2

ijη . An ant k located at customer i may either visit its most favorable customer or randomly 

select a customer using the following selection rule: 
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where  z is  a random  variable  drawn  from  a  uniform  distribution  U [0,1] and  z0 (0 ≤ z0 ≤ 1) is a 

parameter to control exploitation versus exploration. J
k
 is selected according to the following 

probability distribution: 

 









∈

= ∑
∈

otherwise    ,                 0

 if     ,        k

i

Nl

il

ij

k

ij

Nj

p
k
i

ϕ

ϕ

 (5) 

 

Pheromone Update  

The pheromone update includes two steps: pheromone evaporation and pheromone reinforcement. 

The pheromone evaporation refers to uniformly decreasing the pheromone values on all arcs. The 

aim is to prevent the rapid convergence of the algorithm to a local optimal solution by reducing the 

probability of repeatedly selecting certain customers. The pheromone reinforcement process, on the 

other hand, increases the pheromone values on the arcs belonging to the tour of the best performing 

ant(s) at each iteration as well as from previous iterations. The aim is to increase the probability of 

selecting the arcs frequently used by the ants that construct short tours.  

In our pheromone update process we adopt a rank-based MMAS strategy. In this strategy, w 

best-ranked ants of each iteration along with the best-so-far ant are used to update the pheromone 

trails. The pheromone reinforcement of each ant is proportional to its rank. Our pheromone update 

rule is as follows: 
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ijijij wrw τττρτ ∆+∆−+−← ∑
=1

1  (6) 

 

In this formulation, ρ (0 < ρ ≤ 1) is the pheromone evaporation parameter and rr

ij L/1=∆τ  for all 

arcs (i, j) belonging to the tour built by the r
th
 best ant where L

r
 is the length of the corresponding 

tour. bs denotes the best-so-far ant.  

Furthermore, if the pheromone level on any arc drops below an explicit lower limit or exceeds an 

explicit upper limit it is set equal to that limit. In other words, if any τij<τmin (τij>τmax) then τij=τmin 

(τij=τmax). The aim in using this MMAS approach is to reduce the risk of a premature convergence. 

 

Local Search  

After an ant has constructed its tour, a local search is performed in an attempt to further improve the 

solution. In our algorithm we use the 2-opt and swap procedures sequentially. In 2-opt two 

customers are exchanged whereas in swap a customer is removed and inserted into a another arc. 

These procedures are applied both within routes and between different routes. 

The outline of our algorithm is given in Figure 1.  

 

compute visibility1 

initialize pheromone levels 

while (maximum number of iterations is not reached) 

for (each ant) 

while (the tour is not completed) 

compute visibility2 and attractiveness 

select the next customer to visit 

update vehicle capacity and candidate list 

end while 

apply local search 

end for 

save the best-so-far solution 

update pheromone levels 

end while 
 

Figure 1 - Outline of the proposed algorithm 

 

EXPERIMENTAL STUDY 

To test the performance of our algorithm we consider the benchmark problems proposed by 

Goetschalckx and Jacobs-Blecha (1989). This data set consists of 63 instances with the number of 

customers varying from 25 to 150 and was utilized by Wade and Salhi (2001) as well to test their 

ant algorithm.  

The algorithm is coded using C++. The parameters were set according to initial experimental 

runs as: z0=0.5, α=1, β1=4, β2=1, ρ=0.1, τmax=(n+m)/ρL
bs
, and τmin= τmax/4. The number of best ants 

used for the pheromone reinforcement and the size of the candidate list used in the selection of the 

next customer to be visited are proportional to the number of ants and the number of customers, 

respectively, and their values are set w=(n+m)/10 and s=(n+m)/5, respectively. Note that the 

number of ants is equal to the number of customers. For each problem instance we performed 10 

runs, each carried on for 100 iterations. 

Table 1 details the results. For comparison, we only use 25 instances for which Wade and Salhi 

(2001) provided benchmark results for their ant system algorithm. In this table, n1 and n2 denote the 
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number of linehaul and backhaul customers, respectively, and Q denotes the vehicle capacity. The 

results show that our algorithm significantly outperforms that of Wade and Salhi (2001) in all 

instances. The average improvement is 11%. On the other hand, our average performance is slightly 

inferior compared to the results of Halse (1992), with an average deviation of 0.66%. Nevertheless, 

our algorithm improves 10 best-known solutions. We observe that the performance deteriorates as 

the problem size increases. We also observe that our algorithm is robust in the sense that the 

average deviation of the average distances from the best achieved distances is 0.86%.  

 
Table 1 – Comparison of computational results 

 

        Our Algorithm Wade & Salhi % Halse % 

Problem n1 n2 Q Avg Best Best Dev Best Dev 

a1 20 5 1550 223748 223088 248049 11.19 227725 2.08 

a2 20 5 2550 169500 169500 179744 6.04 169497 0.00 

a3 20 5 4050 142058 142034 148775 4.75 142032 0.00 

b1 20 10 1600 231756 230813 254091 10.09 233950 1.36 

b2 20 10 2600 179348 179258 200828 12.03 182326 1.71 

b3 20 10 4000 145702 145702 153377 5.27 145699 0.00 

c1 20 20 1800 240781 238103 266925 12.10 242931 2.03 

c2 20 20 2600 198409 197448 223760 13.33 197276 -0.09 

c3 20 20 4150 165849 164891 180704 9.59 167663 1.68 

e1 30 15 2650 222918 220742 250594 13.52 222518 0.80 

e2 30 15 4300 191318 191160 204624 7.04 190048 -0.58 

e3 30 15 5225 182598 181941 195635 7.53 187793 3.22 

g1 45 12 2700 305805 299656 346971 15.79 304106 1.49 

g2 45 12 4300 236326 234718 265551 13.14 235220 0.21 

g3 45 12 5300 214104 212841 231016 8.54 213757 0.43 

g4 45 12 6400 204003 202570 218414 7.82 201875 -0.34 

h1 45 23 4000 242001 239586 283141 18.18 235269 -1.80 

h2 45 23 5100 219180 216684 238738 10.18 215649 -0.48 

h3 45 23 6100 208776 207130 239088 15.43 202971 -2.01 

j1 75 19 4400 365833 358946 395709 10.24 337800 -5.89 

j2 75 19 5600 323929 317785 362307 14.01 298432 -6.09 

j3 75 19 8200 300586 297300 313187 5.34 280070 -5.80 

l1 75 75 4400 426154 416515 467021 12.13 412278 -1.02 

l2 75 75 5000 384298 380137 424729 11.73 362399 -4.67 

m1 100 25 5200 390029 383243 456046 19.00 372840 -2.71 

Average             10.96   -0.66 

 

 

CONCLUSION AND FUTURE RESEARCH DIRECTIONS 

In this paper, we address the MVRPB using an ACO algorithm equipped with a new visibility 

function. The experimental analysis reveals promising results compared to the benchmark results 

published in the literature. Particularly, our algorithm outperforms the ant system approach of Wade 

and Salhi (2001). Although we utilize some special mechanisms of ant systems it is worth noting 

that these results are preliminary in an attempt to gain insights about the structure of the problem, as 

is the case in Wade and Salhi (2001) as well.  

Although a comparison of the computational effort cannot be made we observe that our 

computation times are quite large: varying from 2.25 seconds for the 25 customer problems to 33 

minutes for the 150 customer problems. We can speed up the algorithm in a few ways, e.g. by 
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reducing the number of ants, by performing a selective local search based on the quality of solution 

generated. 

Future work in this area may be dedicated to investigate the visibility function for this special 

class of VRP, to develop more efficient local search heuristics to improve the solution quality, and 

to fine tune the algorithm parameter. Moreover, this approach may be easily applied to VRPSPD 

since it handles both delivery and pickup capacity checks at each customer and to VRPB with little 

effort. 
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