5 research outputs found

    HOG-Like gradient-based descriptor for visual vehicle detection

    Full text link
    One of the main challenges for intelligent vehicles is the capability of detecting other vehicles in their environment, which constitute the main source of accidents. Specifically, many methods have been proposed in the literature for video-based vehicle detection. Most of them perform supervised classification using some appearance-related feature, in particular, symmetry has been extensively utilized. However, an in-depth analysis of the classification power of this feature is missing. As a first contribution of this paper, a thorough study of the classification performance of symmetry is presented within a Bayesian decision framework. This study reveals that the performance of symmetry-based classification is very limited. Therefore, as a second contribution, a new gradient-based descriptor is proposed for vehicle detection. This descriptor exploits the known rectangular structure of vehicle rears within a Histogram of Gradients (HOG)-based framework. Experiments show that the proposed descriptor outperforms largely symmetry as a feature for vehicle verification, achieving classification rates over 90%

    Drone-based Computer Vision-Enabled Vehicle Dynamic Mobility and Safety Performance Monitoring

    Get PDF
    This report documents the research activities to develop a drone-based computer vision-enabled vehicle dynamic safety performance monitoring in Rural, Isolated, Tribal, or Indigenous (RITI) communities. The acquisition of traffic system information, especially the vehicle speed and trajectory information, is of great significance to the study of the characteristics and management of the traffic system in RITI communities. The traditional method of relying on video analysis to obtain vehicle number and trajectory information has its application scenarios, but the common video source is often a camera fixed on a roadside device. In the videos obtained in this way, vehicles are likely to occlude each other, which seriously affects the accuracy of vehicle detection and the estimation of speed. Although there are methods to obtain high-view road video by means of aircraft and satellites, the corresponding cost will be high. Therefore, considering that drones can obtain high-definition video at a higher viewing angle, and the cost is relatively low, we decided to use drones to obtain road videos to complete vehicle detection. In order to overcome the shortcomings of traditional object detection methods when facing a large number of targets and complex scenes of RITI communities, our proposed method uses convolutional neural network (CNN) technology. We modified the YOLO v3 network structure and used a vehicle data set captured by drones for transfer learning, and finally trained a network that can detect and classify vehicles in videos captured by drones. A self-calibrated road boundary extraction method based on image sequences was used to extract road boundaries and filter vehicles to improve the detection accuracy of cars on the road. Using the results of neural network detection as input, we use video-based object tracking to complete the extraction of vehicle trajectory information for traffic safety improvements. Finally, the number of vehicles, speed and trajectory information of vehicles were calculated, and the average speed and density of the traffic flow were estimated on this basis. By analyzing the acquiesced data, we can estimate the traffic condition of the monitored area to predict possible crashes on the highways

    Drone-Based Computer Vision-Enabled Vehicle Dynamic Mobility and Safety Performance Monitoring

    Get PDF
    This report documents the research activities to develop a drone-based computer vision-enabled vehicle dynamic safety performance monitoring in Rural, Isolated, Tribal, or Indigenous (RITI) communities. The acquisition of traffic system information, especially the vehicle speed and trajectory information, is of great significance to the study of the characteristics and management of the traffic system in RITI communities. The traditional method of relying on video analysis to obtain vehicle number and trajectory information has its application scenarios, but the common video source is often a camera fixed on a roadside device. In the videos obtained in this way, vehicles are likely to occlude each other, which seriously affects the accuracy of vehicle detection and the estimation of speed. Although there are methods to obtain high-view road video by means of aircraft and satellites, the corresponding cost will be high. Therefore, considering that drones can obtain high-definition video at a higher viewing angle, and the cost is relatively low, we decided to use drones to obtain road videos to complete vehicle detection. In order to overcome the shortcomings of traditional object detection methods when facing a large number of targets and complex scenes of RITI communities, our proposed method uses convolutional neural network (CNN) technology. We modified the YOLO v3 network structure and used a vehicle data set captured by drones for transfer learning, and finally trained a network that can detect and classify vehicles in videos captured by drones. A self-calibrated road boundary extraction method based on image sequences was used to extract road boundaries and filter vehicles to improve the detection accuracy of cars on the road. Using the results of neural network detection as input, we use video-based object tracking to complete the extraction of vehicle trajectory information for traffic safety improvements. Finally, the number of vehicles, speed and trajectory information of vehicles were calculated, and the average speed and density of the traffic flow were estimated on this basis. By analyzing the acquiesced data, we can estimate the traffic condition of the monitored area to predict possible crashes on the highways

    Verificación de vehículos mediante técnicas de visión artificial

    Full text link
    En este trabajo, se proponen sistemas de verificación de vehículos mediante métodos basados en aprendizaje. En primer lugar se realiza un estudio del estado del arte para conocer los problemas actuales en la materia. Después, se muestra la arquitectura de los sistemas que se divide en dos etapas: extracción de características y clasificación. En la primera etapa se realiza una breve exposición de los tipos de características que se van a implementar (simetría, bordes, análisis de componentes principales (PCA) e histogramas de gradientes orientados (HOG)). La etapa de clasificación consiste en una explicación teórica de los clasificadores utilizados en nuestro sistema. Posteriormente, se realiza el desarrollo de estos sistemas, efectuando mejoras para cada uno de ellos. Para el sistema basado en simetría se plantean dos métodos diferentes, introduciéndose una mejora en el segundo método, que consiste en una diferenciación entre ejes compuestos por uno y dos píxeles, junto con una penalización en los valores de simetría para conseguir una mayor diferenciación entre las clases. Respecto al sistema basado en bordes, se utilizan únicamente bordes verticales, donde se analiza el uso de vectores reducidos. Por otra parte, se presenta el uso de la matriz de correlaciones para desarrollar el sistema basado en PCA. En el sistema basado en HOG se estudia qué parámetros son los adecuados para el descriptor en el caso particular de vehículos, proponiéndose descriptores eficientes basados en esta configuración, que pueden ser implementados en sistemas en tiempo real. Finalmente, con los resultados obtenidos en el paso previo se procede a un análisis para los distintos métodos presentando sus principales características y limitaciones.In this work, a vehicle verification systems using learning methods are proposed. First, a study of related work has been done. Afterwards, the arquitecture of these systems is explained. The arquitecure is divided in two stages: feature extraction and clasification. In the first stage, a brief summary of the different features that will be implemented (simmetry, edges, principal components analysis (PCA) and histograms of oriented gradients (HOG)) is given. The second stage is a theoretical explanation of the classifiers used in this system. Subsequently, the systems are developed with new improvements. Two different methods are proposed for the system based on symmetry. An improvement is introduced for the second method that is a differentiation between compounds axes by one and two pixels, also a penalty is introduced into the values of symmetry for greater differentiation between classes. Regarding the system based on edges, vertical edges are used, where the performance reducing the size of the vectors is analyzed. Moreover, the correlation matrix is used to develop the system based on PCA. In the system based on HOG, in the particular case of vehicles, appropiate parameters for the descriptor are studied, proposing efficient descriptors based on this configuration that can be implemented in real-time systems. Finally, the results obtained in the previous step are analyzed for each of the methods, and their main characteristics and limitations are described
    corecore