75,704 research outputs found

    Adaptive background subtraction technique with unique feature representation for vehicle counting

    Get PDF
    Vehicle detection is the first step towards a successful traffic monitoring system. Although there were many studies for vehicle detection, only a few methods dealt with a complex situation especially in traffic jams. In addition, evaluation under different weather conditions (rainy, foggy and snowy) is so important for some countries but unfortunately it is rarely performed. Presently, vehicle detection is mainly performed using background subtraction method, yet it still faces many challenges. In this thesis, an adaptive background model based on the approximate median filter (AMF) is developed. To demonstrate its potential, the proposed method is further combined with two proposed feature representation techniques to be employed in either global or local vehicle detection strategy. In the global approach, an adaptive triangle-based threshold method is applied following the proposed adaptive background method. As a consequence, a better segmented foreground can be differentiated from the background regardless of the different weather conditions (i.e., rain, fog and snowfall). Comparisons with the adaptive local threshold (ALT) and the three frame differencing methods show that the proposed method achieves the average recall value of 85.94% and the average precision value of 79.53% with a negligible processing time difference. In the local approach, some predefined regions, instead of the whole image, will be used for the background subtraction operation. Subsequently, two feature representations, i.e. normalized object-area occupancy and normalized edge pixels are computed and formed into a feature vector, which is then fed into the k-means clustering technique. As illustrated in the results, the proposed method has shown an increment of at least 10% better in terms of the precision and 4.5% in terms of F1 score when compared to the existing methods. Once again, even with this significant improvement, the proposed method does not incur noticeable difference in the processing time. In conducting the experiments, different standard datasets have been used to show the performance of the proposed approach. In summary, the proposed method has shown better performances compared to three frame differencing and adaptive local threshold methods

    Aerial Vehicle Tracking by Adaptive Fusion of Hyperspectral Likelihood Maps

    Full text link
    Hyperspectral cameras can provide unique spectral signatures for consistently distinguishing materials that can be used to solve surveillance tasks. In this paper, we propose a novel real-time hyperspectral likelihood maps-aided tracking method (HLT) inspired by an adaptive hyperspectral sensor. A moving object tracking system generally consists of registration, object detection, and tracking modules. We focus on the target detection part and remove the necessity to build any offline classifiers and tune a large amount of hyperparameters, instead learning a generative target model in an online manner for hyperspectral channels ranging from visible to infrared wavelengths. The key idea is that, our adaptive fusion method can combine likelihood maps from multiple bands of hyperspectral imagery into one single more distinctive representation increasing the margin between mean value of foreground and background pixels in the fused map. Experimental results show that the HLT not only outperforms all established fusion methods but is on par with the current state-of-the-art hyperspectral target tracking frameworks.Comment: Accepted at the International Conference on Computer Vision and Pattern Recognition Workshops, 201

    Illumination invariant stationary object detection

    Get PDF
    A real-time system for the detection and tracking of moving objects that becomes stationary in a restricted zone. A new pixel classification method based on the segmentation history image is used to identify stationary objects in the scene. These objects are then tracked using a novel adaptive edge orientation-based tracking method. Experimental results have shown that the tracking technique gives more than a 95% detection success rate, even if objects are partially occluded. The tracking results, together with the historic edge maps, are analysed to remove objects that are no longer stationary or are falsely identified as foreground regions because of sudden changes in the illumination conditions. The technique has been tested on over 7 h of video recorded at different locations and time of day, both outdoors and indoors. The results obtained are compared with other available state-of-the-art methods

    Measurement of noise events in road traffic streams: initial results from a simulation study

    Get PDF
    A key question for road traffic noise management is whether prediction of human response to noise, including sleep quality, could be improved over the use of conventional energy equivalent, or percentile, measures, by accounting for noise events in road traffic streams. This paper reports initial results from a noise-events investigation into event-based indicators over an exhaustive set of traffic flow, traffic composition, and propagation distance, conditions in unshielded locations in proximity to roadways. We simulate the time-varying noise level histories at various distances from roadways using a dynamic micro-traffic model and a distribution of sound power levels of individual vehicles. We then develop a comprehensive set of noise event indicators, extrapolated from those suggested in the literature, and use them to count noise events in these simulated time histories. We report the noise-event algorithms that produce realistic, and reliable, counts of noise events for one-hour measurement periods, then reduce redundancy in the indicator set by suggesting a small number of representative event indicators. Later work will report the traffic composition and distance conditions under which noise event measures provide information uncorrelated with conventional road traffic noise indicators — and which thus may prove useful as supplementary indicators to energy-equivalent measures for road traffic noise
    corecore