7,223 research outputs found

    AutonoVi: Autonomous Vehicle Planning with Dynamic Maneuvers and Traffic Constraints

    Full text link
    We present AutonoVi:, a novel algorithm for autonomous vehicle navigation that supports dynamic maneuvers and satisfies traffic constraints and norms. Our approach is based on optimization-based maneuver planning that supports dynamic lane-changes, swerving, and braking in all traffic scenarios and guides the vehicle to its goal position. We take into account various traffic constraints, including collision avoidance with other vehicles, pedestrians, and cyclists using control velocity obstacles. We use a data-driven approach to model the vehicle dynamics for control and collision avoidance. Furthermore, our trajectory computation algorithm takes into account traffic rules and behaviors, such as stopping at intersections and stoplights, based on an arc-spline representation. We have evaluated our algorithm in a simulated environment and tested its interactive performance in urban and highway driving scenarios with tens of vehicles, pedestrians, and cyclists. These scenarios include jaywalking pedestrians, sudden stops from high speeds, safely passing cyclists, a vehicle suddenly swerving into the roadway, and high-density traffic where the vehicle must change lanes to progress more effectively.Comment: 9 pages, 6 figure

    A Learning-based Stochastic MPC Design for Cooperative Adaptive Cruise Control to Handle Interfering Vehicles

    Full text link
    Vehicle to Vehicle (V2V) communication has a great potential to improve reaction accuracy of different driver assistance systems in critical driving situations. Cooperative Adaptive Cruise Control (CACC), which is an automated application, provides drivers with extra benefits such as traffic throughput maximization and collision avoidance. CACC systems must be designed in a way that are sufficiently robust against all special maneuvers such as cutting-into the CACC platoons by interfering vehicles or hard braking by leading cars. To address this problem, a Neural- Network (NN)-based cut-in detection and trajectory prediction scheme is proposed in the first part of this paper. Next, a probabilistic framework is developed in which the cut-in probability is calculated based on the output of the mentioned cut-in prediction block. Finally, a specific Stochastic Model Predictive Controller (SMPC) is designed which incorporates this cut-in probability to enhance its reaction against the detected dangerous cut-in maneuver. The overall system is implemented and its performance is evaluated using realistic driving scenarios from Safety Pilot Model Deployment (SPMD).Comment: 10 pages, Submitted as a journal paper at T-I

    Multilayer Graph-Based Trajectory Planning for Race Vehicles in Dynamic Scenarios

    Full text link
    Trajectory planning at high velocities and at the handling limits is a challenging task. In order to cope with the requirements of a race scenario, we propose a far-sighted two step, multi-layered graph-based trajectory planner, capable to run with speeds up to 212~km/h. The planner is designed to generate an action set of multiple drivable trajectories, allowing an adjacent behavior planner to pick the most appropriate action for the global state in the scene. This method serves objectives such as race line tracking, following, stopping, overtaking and a velocity profile which enables a handling of the vehicle at the limit of friction. Thereby, it provides a high update rate, a far planning horizon and solutions to non-convex scenarios. The capabilities of the proposed method are demonstrated in simulation and on a real race vehicle.Comment: Accepted at The 22nd IEEE International Conference on Intelligent Transportation Systems, October 27 - 30, 201

    A Comparison Between Coupled and Decoupled Vehicle Motion Controllers Based on Prediction Models

    Get PDF
    In this work, a comparative study is carried out with two different predictive controllers that consider the longitudinal jerk and steering rate change as additional parameters, as additional parameters, so that comfort constraints can be included. Furthermore, the approaches are designed so that the effect of longitudinal and lateral motion control coupling can be analyzed. This way, the first controller is a longitudinal and lateral coupled MPC approach based on a kinematic model of the vehicle, while the second is a decoupled strategy based on a triple integrator model based on MPC for the longitudinal control and a double proportional curvature control for the lateral motion control. The control architecture and motion planning are exhaustively explained. The comparative study is carried out using a test vehicle, whose dynamics and low-level controllers have been simulated using the realistic simulation environment Dynacar. The performed tests demonstrate the effectiveness of both approaches in speeds higher than 30 km/h, and demonstrate that the coupled strategy provides better performance than the decoupled one. The relevance of this work relies in the contribution of vehicle motion controllers considering the comfort and its advantage over decoupled alternatives for future implementation in real vehicles.This work has been conducted within the ENABLE-S3 project that has received funding from the ECSEL Joint Undertaking under Grant Agreement No 692455. This work was developed at Tecnalia Research & Innovation facilities supporting this research

    DEVELOPMENT OF A NOVEL VEHICLE GUIDANCE SYSTEM: VEHICLE RISK MITIGATION AND CONTROL

    Get PDF
    Over a half of fatal vehicular crashes occur due to vehicles leaving their designated travel lane and entering other lanes or leaving the roadway. Lane departure accidents also result in billions of dollars in cost to society. Recent vehicle technology research into driver assistance and vehicle autonomy has developed to assume various driving tasks. However, these systems are do not work for all roads and travel conditions. The purpose of this research study was to begin the development a novel vehicle guidance approach, specifically studying how the vehicle interacts with the system to detect departures and control the vehicle A literature review was conducted, covering topics such as vehicle sensors, control methods, environment recognition, driver assistance methods, vehicle autonomy methods, communication, positioning, and regulations. Researchers identified environment independence, recognition accuracy, computational load, and industry collaboration as areas of need in intelligent transportation. A novel method of vehicle guidance was conceptualized known as the MwRSF Smart Barrier. The vision of this method is to send verified road path data, based AASHTO design and vehicle dynamic aspects, to guide the vehicle. To further development research was done to determine various aspects of vehicle dynamics and trajectory trends can be used to predict departures and control the vehicle. Tire-to-road friction capacity and roll stability were identified as traits that can be prevented with future road path knowledge. Road departure characteristics were mathematically developed. It was shown that lateral departure, orientation error, and curvature error are parametrically linked, and discussion was given for these metrics as the basis for of departure prediction. A three parallel PID controller for modulating vehicle steering inputs to a virtual vehicle to remain on the path was developed. The controller was informed by a matrix of XY road coordinates, road curvature and future road curvature and was able to keep the simulated vehicle to within 1 in of the centerline target path. Recommendations were made for the creation of warning modules, threshold levels, improvements to be applied to vehicle controller, and ultimately full-scale testing. Advisor: Cody S. Stoll
    • …
    corecore