35,013 research outputs found

    Optimal transport for vector Gaussian mixture models

    Full text link
    Vector Gaussian mixture models form an important special subset of vector-valued distributions. Any physical entity that can mutate or transit among alternative manifestations distributed in a given space falls into this category. A key example is color imagery. In this note, we vectorize the Gaussian mixture model and study different optimal mass transport related problems for such models. The benefits of using vector Gaussian mixture for optimal mass transport include computational efficiency and the ability to preserve structure

    A multi-material transport problem and its convex relaxation via rectifiable GG-currents

    Full text link
    In this paper we study a variant of the branched transportation problem, that we call multi-material transport problem. This is a transportation problem, where distinct commodities are transported simultaneously along a network. The cost of the transportation depends on the network used to move the masses, as it is common in models studied in branched transportation. The main novelty is that in our model the cost per unit length of the network does not depend only on the total flow, but on the actual quantity of each commodity. This allows to take into account different interactions between the transported goods. We propose an Eulerian formulation of the discrete problem, describing the flow of each commodity through every point of the network. We provide minimal assumptions on the cost, under which existence of solutions can be proved. Moreover, we prove that, under mild additional assumptions, the problem can be rephrased as a mass minimization problem in a class of rectifiable currents with coefficients in a group, allowing to introduce a notion of calibration. The latter result is new even in the well studied framework of the "single-material" branched transportation.Comment: Accepted: SIAM J. Math. Ana

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows

    Manifold-valued Image Generation with Wasserstein Generative Adversarial Nets

    Full text link
    Generative modeling over natural images is one of the most fundamental machine learning problems. However, few modern generative models, including Wasserstein Generative Adversarial Nets (WGANs), are studied on manifold-valued images that are frequently encountered in real-world applications. To fill the gap, this paper first formulates the problem of generating manifold-valued images and exploits three typical instances: hue-saturation-value (HSV) color image generation, chromaticity-brightness (CB) color image generation, and diffusion-tensor (DT) image generation. For the proposed generative modeling problem, we then introduce a theorem of optimal transport to derive a new Wasserstein distance of data distributions on complete manifolds, enabling us to achieve a tractable objective under the WGAN framework. In addition, we recommend three benchmark datasets that are CIFAR-10 HSV/CB color images, ImageNet HSV/CB color images, UCL DT image datasets. On the three datasets, we experimentally demonstrate the proposed manifold-aware WGAN model can generate more plausible manifold-valued images than its competitors.Comment: Accepted by AAAI 201
    • …
    corecore