2 research outputs found

    New Techniques to Reduce the Execution Time of Functional Test Programs

    Get PDF
    The compaction of test programs for processor-based systems is of utmost practical importance: Software-Based Self-Test (SBST) is nowadays increasingly adopted, especially for in-field test of safety-critical applications, and both the size and the execution time of the test are critical parameters. However, while compacting the size of binary test sequences has been thoroughly studied over the years, the reduction of the execution time of test programs is still a rather unexplored area of research. This paper describes a family of algorithms able to automatically enhance an existing test program, reducing the time required to run it and, as a side effect, its size. The proposed solutions are based on instruction removal and restoration, which is shown to be computationally more efficient than instruction removal alone. Experimental results demonstrate the compaction capabilities, and allow analyzing computational costs and effectiveness of the different algorithms

    An Efficient Test Relaxation Technique for Synchronous Sequential Circuits

    Get PDF
    Testing systems-on-a-chip (SOC) involves applying huge amounts of test data, which is stored in the tester memory and then transferred to the circuit under test (CUT) during test application. Therefore, practical techniques, such as test compression and compaction, are required to reduce the amount of test data in order to reduce both the total testing time and the memory requirements for the tester. Test-set relaxation can improve the efficiency of both test compression and test compaction. In addition, the relaxation process can identify selfinitializing test sequences for synchronous sequential circuits. In this paper, we propose an efficient test relaxation technique for synchronous sequential circuits that maximizes the number of unspecified bits while maintaining the same fault coverage as the original test set
    corecore