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Abstract— Testing systems-on-a-chigSOC) involves applying Test compression techniques can achieve better results if
huge amounts of test data, which is stored in the tester memory the test set is composed of test cubes (i.e. if the test set
and then transferred to the circuit under test (CUT) during g partially specified). In fact, some compression techniques

test application. Therefore, practical techniques, such as test . .
compressionand compaction are required to reduce the amount such as, LFSR-reseeding [1], [2], require the test vectors to

of test data in order to reduce both the total testing time b€ partially specified. Even those techniques which require
and the memory requirements for the tester. Test-setelaxation fully specified test data can benefit from unspecified bits in
can improve the efficiency of both test compression and test the test set. For example, variable-to-fixed-length coding [3]
compaction. In addition, the relaxation process can identifyself- 5,4 yariaple-to-variable-length coding [4], [5] are known to

initializing test sequences for synchronous sequential circuits. In ) L \

this paper, we propose an efficient test relaxation technique for perform better for Iong runs of 0's. He_nce' aSS|gn|ng. QS to
synchronous sequential circuits that maximizes the number of the don't care values in the test set will improve the efficiency
unspecified bits while maintaining the same fault coverage as the of these techniques. Similarly, run-length coding techniques
original test set. [6] can specify the don't care values in a way that will reduce
test vector activity (i.e. the number of transitions from 0 to

1 and vice versa), which in turn improves the compression

. efficiency.
RAPID advancement in VLSI technology has lead 10 @ yqgt compaction techniques can also benefit from a par-

new paradigm in designing integrated circuits where @, gpecified test. For example, when merging two test
system-on-a-chip (SOC) is constructed based on pre-desigueq onces using the overlapping compaction techniques de-

and pre-verified cores such as CPUs, digital signal processQSibed in [20], a don't care value, X, can be merged with
and RAMs. Testing these cores requires a large a mo one of the values: '0’, ', and 'X'. Therefore, increasing

of test data which is continuously increasing with the rapi e number of X's in a test set will reduce the number of

mcrt;ase ml the _complexny gf hSOC' This has a direct 'm?a%nflicts that may occur while merging two test sequences,
on the total testing time and the 'merri:ory reqwrer?ents of g hence, improves the efficiency of the compaction process.
testing equipment. Hence, reducing the amount of test data Isres_relaxation can also efficiently identify self-initializing
considered as one of the challenging problems in testing. (gt sequences, which have interesting applications in test
Test compresslon and Compacuqn techmque; ar(he W'_dg uence compaction for sequential circuits. A test sequence is
used to reduce the storage and test time by reducing the sizg afy 15 pe self-initializing if the values of the memory-elements
the test data. The objective of test set compression is to redycey o first time frame of the sequence are all X's. In other
the number of bits needed to represent the test set. SeVQIalys the values of the memory-elements of the first time
test compression techniques have been propo_sed [1]_[15_]fr1§}ne do not affect the faults detected by the sequence. Thus,
test compaction, the numt_)er of test vectors is reduced IrEtglf-initializing test sequences can be identified by finding
a smaller number that achieves the same fault coverage. g8k frames where the values of all memory-elements are not
compaction techniques can be classified into two categorigsy jired for fault detection. As will be shown in this paper,
dynamic compactioandstatic compactionDynamic COMPAC- g proposed test relaxation technique can identify circuit lines

tion schemes such as [16]-[19] try to reduce the number I‘Plfat have no effect on the detected faults.

test vectors during test vector generation. Static compaction, this paper, we propose an efficient test relaxation tech-

schemes, on the other hand, perform compa_ct|on on test ﬁfﬁ'ue for synchronous sequential circuits that maximizes the
quences after they are generated. Several static test compagliginer of unspecified bits while maintaining the same fault

techniques have been proposed for synchronous sequentiftlerage as the original test set. The rest of this paper is orga-

circuits. The techniques proposed in [20] use overlapping g, o a5 follows. Section 2 defines the targeted problem, and

self-initializing test sequences. Four compaction techniqUg§mmarizes previous work. Section 3 illustrates our idea with
based on insertion, omission, selection and restoration hayg example. Section 4 formally describes our test relaxation
been proposed in [21], [22]. The technique in [23] compaciyqithm. Section 5 describes the selection criteria used by
test sequences by removing inert subsequences under cefigiechnique. Experimental results are given in section 6, and

conditions. section 7 concludes the paper.
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Time Framei

fully-specified one, has not been solved effectively in the o
literature. This problem, which is targeted in this paper, can
be defined as followsGiven a synchronous sequential circuit
and a fully specified test set, generate a partially specified
test set that maintains the same fault coverage as the fully
specified one while maximizing the number of unspecified bits
One obvious way to solve this problem is to use a bitwise-
relaxation technique, where we test for every bit in the test set a0 Time Framei+1
whether changing it to an "X’ reduces the fault coverage or
not. Obviously, this technique 8(nm) fault simulation runs,
wheren is the width of one test vector, amd is the number of

test vectors. Obviously, this technique is impractical for large
circuits.

A partially specified test set can also be obtained using
ATPG. It is known that any ATPG in generating a test for a.
fault generates test cubes including the required assignmen?'s '
to excite and propagate the fault. These test cubes are filled
with random values to allow the detection of other faults. If
the random filling is disabled, a relaxed test can be obtainégll represents one time frame in which the current states of
Using this approach to generate a relaxed test set has seviéilflip-flops become pseudo-inputg)( and the next states
disadvantages. First, to get a relaxed test it is not possibleP@come pseudo-outputs;}. So, we need to fault simulate the
take advantages of random test pattern generation. It is wélkcuit under the given test set to determine faults detected
known that random test pattern generation is an integratédevery time frame. Then, we can justify fault-free/faulty
phase of any ATPG as it can detect a large percentage of #aéues necessary to detect these faults starting from the last
faults (typically between 50 and 80 percent [24]) in combfime frame backwards. The justification process is performed
national circuits in a much faster time than deterministic te§@me by frame. In every time framg all fault-free/faulty
pattern generation. Disabling random test pattern generatksues necessary to detect a newly detected fault are justified
and random filling will certainly slow down the ATPG. Forstarting from primary-outputs towards primary-inputs and/or
sequential circuits, due to the complexity of the problem, maryemory-elements. If the fault-free/faulty value of a primary-
heuristics are used to obtain as high fault coverage as possifilgut is required to justify any one of the newly detected faults,
For example, genetic algorithm which is based on random téden the value of this primary-input should be specified in the
generation has been used in sequential ATPG. Such technic{igsé set. On the other hand, required values on the memory-
will not generate a relaxed test set. elements need to be justified when the next time fraimel,

The advantage of the proposed technique is that it is ATR&Processed. The general behavior of the proposed technique
independent. The ATPG can freely use all heuristics to achiggelllustrated by the following example.
the highest fault coverage in the least time. The generated tesample 1. Consider the iterative-array-model shown in
can also be compacted. Then, test relaxation is applied to relg. 1. This model represents two time frames of a syn-
the test set. chronous sequential circuit under two test vectars= 01

Recently, two test relaxation techniques for combinationahd¢;,; = 00. Assume that the only newly detected fault is
and full-scan sequential circuits were proposed in [25], [26]1/1, i.e., other faults are either previously detected by earlier
The main idea of both technigues is to determine logic valugsst vectors, or not part of the fault list. I, the fault A/1
in the fully-specified test set that are necessary to coverexcited and propagated to the memory elem@ny but is
(i.e. detect) all faults which are detectable by this test setot yet detected. Itt;,,, the fault A/1 is propagated to the
Unnecessary logic values are set to X's. However, as farimary-output,G4, where it gets detected. So, in order to
as synchronous sequential circuits are concerned, the ojistify this fault, it is enough to justify the fault-free/faulty
existing solution to the problem of relaxing a given test setlues on the primary-outputi4, in t;,.,. The assignment
is the bitwise-relaxation method. G4 = 1/0 can be satisfied by the two assignmes= X /0

The techniques proposed in [25], [26] justify detected faulend G3 = 1/0. Next, we justify the assignmer2 = X/0.
based on fault-free values only, which may result in faukhis can be satisfied by the assignméit = X /0, which
masking. Each one of these techniques handles this probliemurn can be satisfied by either one of the two inpdt®r
in a different manner. In the first technique, when a fault effe@ (i.e one of these inputs can be relaxed). The assignment
is propagated to at least one input of a gate, then all inpu#8 = 1/0, on the other hand, needs to be justified through
of this gate are justified. The second technique, on the oth&s. SinceG5 is a memory-element, its fault-free/faulty values
hand, uses some rules based on fault-reachability analysishould be justified in the previous time framg)( Therefore,
avoid fault masking. we need to justify the faulty-free/faulty values 6% in time

Our proposed technique is based on fault-free/faulty valfimmet;. These values can be satisfied by the two assignments
justification. A synchronous sequential circuit can be repret = 0/1 and B = X/1. Since the fault-free/faulty values of
sented as a linear iterative array of combinational cells. Eabbth inputs are required, none of these inputs can be relaxed

Circuit of Example 1.



in this time frame. Fig. 2 shows an outline of the proposed test relaxation
techniqgue which consists of three phases. The first phase
initializes the seven lists.
[Il. PROPOSEDTECHNIQUE Fault simulation is performed in the second phase starting
. . . from the first time frame up to the last time frame The

Bef_ore de.sc.r.|b|ng the proposed technique, we give tli}‘ﬁtial states of all memory elements are assumed to be X'’s.
foIIow!ng_ definitions. The purpose of this process is to identify newly detected faults.

Definition 1: The good value of a gate g, denoted bypege tayits are stored POJustificationLigt] for every test
GoodValue(g), is the value of the gate under the fault-fregy.tor ;. During fault simulation, if a faultf propagates to
machine. one or more memory-elements, then these memory-elements

Definition 2: The faulty value of a gate g, denoted byogether with their faulty values and the corresponding time
Faultyvalue(g), is the value of the gate under the faultfame are added tBaultPropagationListf]. The information
machine. in this list will be used to compute faulty values of the circuit

Definition 3: The justify value of a gate g, denoted byduring the justification phase. Another important operation that
JustifyValue(g), is the fault-free/faulty assignment that neegs performed in this phase is to store logical values of the
to be justified by g. memory-elements into thePInputListfor all time frames.

Due to the nature of sequential circuits (i.e. feedback from The third phase starts from the last time fram& down to
memory-elements), a fault excited in one time frame migkite first one. In every time frame, the algorithm performs
propagate through several time frames before it gets detectg@ following. First, it logic simulates the circuit under the
Hence, several time frames need to be traced back to justiéist vectori to determine the good value of every gate. Then,
such faults. Therefore, we need to store enough informatipnchecks PPOJustificationLigt] for any fault that has not
about fault propagation, detection and justification in ord@een completely justified in time frame+ 1 and tries to
to perform the justification process frame by frame. Sevgustify it in the current time frame (i.e. time frami. Next,
lists are used to store the required informatid?OJusti- it checksPOJustificationLidt] for newly detected faults and
ficationList[1---n], PPOJustificationLis{1- - - n], MEJusti- justifies them. Justifying a faultf, involves two operations:
ficationList[1 - - - ], FaultPropagationLis{1 - - - ], PPInput- (1) Computing the faulty-values of the circuit under the fgult
List [1---n] [1--- D], EventList[1--- L], and RelaxedTest- and (2) Backward justification. These operations are described
Set[1---n][1--- NPI], wheren is the number of test vectorshelow.
to be relaxed,F' is the total number of faults in the given Local fault simulation is used to compute the faulty-values
circuit, L is the number of levels in the given circulN PI  of the circuit under a given faulf. The process starts by in-
is the number of primary inputs of the given circuit, afd jecting the faultf at its corresponding line in the circuit. Then,
is the number of memory-elements in the given circuit. Thesets the faulty-values of the memory-elements according to
purpose of each one of these seven lists is explained belothe faulty-values propagating from time frame- 1. These

The purpose of th®OJustificationLisis to store newly de- values are stored in thBaultPropagationListin the second
tected faults in every time frame. These faults will be justifiegdhase. Next, the fault effects on the faulty-line and memory-
backwards starting from the time frames where they first gefements are forward propagated to determine the faulty-values
detected. During fault simulation, if a fauftpropagates to one of all gates in the circuit.
or more memory-elements, then these memory-elements, theiFig. 3 shows the justification process of a fayilin time
faulty values, and the corresponding time frame are addedftame ¢. In this algorithm, the event list is processed level
the FaultPropagationList The PPOJustificationLists used to by level starting from the maximum level. In each level, the
store faults that can’'t be completely justified during a certainequired values on a gatg(i.e. JustifyValueg)) are satisfied
time frame. Notice that if one or more memory-elementccording to the following procedure. First, the algorithm
are required to justify a faulf during some time frameé, determines the corresponding valueg/{:) on the input(s) of
then f can't be completely justified during this time framethe gateg. For example, if the required values on the output
Hence, the fault is added to tHePOJustificationLigt — 1] of aninverterare0/1, then the corresponding required values
and the memory-elements along with their required faulbn the input of this gate aré/0. The next step is to justify
free/faulty values are added kEJustificationLidtf], and the v, /v, through the input(s) of as follows.
justification of f will continue during time frame — 1. The If g is a primary-input PI), then we need to specify its
purpose of thePPInputListis to store logical values of the value whenever the required fault-free/faulty value is not "X’
memory elements in every time frame. This enables us toA requirement on a memory-elememKF) can't be justi-
perform logic simulation of any time frame independent dfed in the current time frame (e.g. time frane Therefore,
other time frames. Th&ventListkeeps track of the gates thatthe memory-element together with ilsistifyValueare added
need to be justified for a certain fault. Gates are inserténl MEJustificationLigtf], and the fault f is added to the
in event list according to their levels in the circuit. Thé?POJustificationLigt — 1].

RelaxedTestSeas the name indicates, represents the relaxedf g is an inverter OT) or a buffer BUF), then its input
test set. Initially, all the bits in this set are X's. However, more required to justifyv; /v5. Hence, the input of is added to
bits will be specified throughout the relaxation process in ordtte proper level in the event list. If the fault-free/faulty value
to justify the detected faults. of anXORor XNORgate is required, then the fault-free/faulty



Algorithm  Main()

/* initialization phase */
for every level, [, of the given circuitdo
EventLisf] < ¢
for every fault, f, in the fault list of the given circuitio
FaultPropagationLidtf] < ¢
MEJustificationLigtf] < ¢
for every test vector; do
PQOJustificationLidt] <« ¢
PPOJustificationLigt] < ¢
for every primary input; do
RelaxedTestdél[ j] «+ "X’
for every memory-elemeny do
PPInputLisf:][j] < 'X'

/* Fault simulation phase*/
for i — 1ton do
/* fault simulate the circuit under test vector/
for every fault, f, newly detected in do
/* add f to POJustificationLidt] */
for every fault f propagating to time framé+ 1 do
/* add all memory-elements reachable frgfn
together with their faulty values and the
corresponding time framéto FaultPropa-
gationLis{ f] */
/* store logical values of all memory-elements into
PPInputLisfi] */

/* Fault justification phase */

for i «— n downto 1 do
logic simulate the circuit under the test vecior
whilePPOJustificationLigt] # ¢ do

[* remove f from PPQJustificationLigt] */

[* compute faulty values of the circuit based on
the injected faulf and the fault propagation
stored inFaultPropagationLidtf] */

while MEJustificationLidtf]# ¢ do
/* remove memory-element from MEJusti-

ficationLisf f] */

/* let j be the input ofd & add j to Event-
List/level7)] */

Justify(f, )

whilePOJustificationLidt] # ¢ do
/* remove f from POJustificationLigt] */

/* compute faulty values of the circuit based on
the injected faultf and the fault propagation
stored inFaultPropagationLidtf] */

/* let j be a primary-output at which the fauft
gets detected & add to EventLisflevel5)] */

Justify(f, 1)

Fig. 2. Main algorithm.

Algorithm  Justify(f,3)
for every level, [, of the given circuitdo
while EventLisfl]# ¢ do
/* remove gateg from the EventLisfl] */
(v1,v9)«—JdustifyValuég)
if g is (NOT|NAND|NOR) then
(v1,v2) « (v1,02)
casey is
(1) PI:
if v1 X then
RelaxedTestSeél] g]«— v1
else ifvy #X’ then
RelaxedTestSel] g]«— v-
(2) DFF:
/* add f to PPOJustificationLigt — 1] */
/* add g and JustifyValug¢g) to MEJustifica-
tionList f] */
(3) BUF|NOT:
/* let j be the input ofg */
JustifyValuéj)—(vy, v2)
/* add j to EventLisflevel;)] */
(4) XOR|XNOR:
for every input, 7, of ¢ do
(v1,v2) < (GoodValugj), FaultyValugy))
JustifyValu€j) < (v, v2)
/* add j to EventLisflevel;)] */
(5) AND|OR|NAND|NOR:
if v; andwvy are controlling values of then
/* find an input, j, of g that satisfies;; */
[* find an input, k, of g that satisfies, */
if 7=k then
JustifyValu€j)«—(vy,v2)
else
JustifyValu€j)«—(v1,’X")
JustifyValugk)—( X', v3)
/* add j to EventLisflevel;)] */
/* add k to EventLisflevelk)] */
else ifv; is a controlling value ofy then
/* find an input, j, of g that satisfyv; */
JUStifyva.|Uéj)<—(1)1,’l)2)
/* add j to EventLisflevel;)] */
for every input k& of g such thatk # j do
JustifyValuék)«—('X", vs)
/* add k to EventLisfleve(k)] */
else ifvy is a controlling value ofy then
/* find an input, j, of g that satisfyv, */
JustifyValu€j)«(v1,v2)
/* add j to EventLisflevely)] */
for every input £ of g such thatk # j do
JustifyValuék)«—(vy,X")
/* add k to EventLisflevelk)] */
else
for every input, j, of g do
JustifyValugj)«—(vy,v2)
/* add j to EventLisflevely)] */

Fig. 3. Justify algorithm.



Time Frame 1

values on every input of the gate are required as well.
If g is anAND, OR, NAND or NORgate, then we have four @32
different possibilities. First, both; and v, are controlling
values ofg. In this case, the algorithm searches for an input
that satisfies both values and adds it to the event list, /by
can't be satisfied by a single input, then it will be justified
through two different inputs. In case only is a controlling
value ofg, the algorithm will find an inpug with a fault-free
value that satisfies;. Sincewvs is a non-controlling value (or
an 'X"), then all inputs ofg are required to justify this value.
Therefore, inpuyg is added to the event list to justify the value
vy /ve, While other inputs are added to the event list to justify
the value Xi». In the third case, only, is controlling value
of ¢g. This can be handled exactly as done in the previous
case except that, is justified through one input, while,
is justified through all the inputs qf. Finally, if neitherv,
nor v, is a controlling value of;, then all the inputs of; are
required to justify the value, /vs. Hence, all inputs of; are
added to the event list.

Time Frame 2

(5, 7/4)

(5, 714)

Fig. 4. Circuit of Example 2.

IV. SELECTION CRITERIA

When justifying a controlling value through the inputs othat a stem can justify several required values. In general, the
a given gate, there could be more than one choice. In thihout-based cost functions provide better selection criterion
case the priority is given to the input that is already selectégan the regular cost functions. However, there are some cases
to justify other gates. Otherwise, cost functions are used ighere the regular cost functions can perform better than the
guide the selection. Cost functions give a relative measure famout-based cost functions [26]. To take advantage of both
the number of primary inputs required to justify a given valugost functions, a weighted sum cost function of the two cost
Hence, they can guide the relaxation procedure to justify thenctions was proposed in [26]. The combined cost functions
required values with the smallest number of assignments gfe defined as shown below, whereis the weight of the
the primary inputs. regular cost function and@ is the weight of the fanout-based
The cost functions proposed in [26] combine tlegular cost function.
recursive controllability cost functions [24] with new cost
functions calledanout-basedost functions. The regular cost Co(g) = A+ Crego(9) + B - Crano(g) (®)
functions are computed as follows. For every gateve com- C1(g9) = A+ Cregi(9) + B - Crani(9) (6)
pute two cost functiong’,.,0(g) andC,..41(g). For example,
if g is an AND gate withi inputs {I1, I, ---, I;}, then the
cost functions are computed as:

In synchronous sequential circuits, the controllability values
of the circuit in one time frame depend on the controllability
values computed in the current time frame as well as the

Crego(g) = min Crego(1;) (1) values computed in the previous time frames. Therefore,
’ the controllability values should be computed in an iterative
Creg1(9) = Z Creg1 (1) @) manner starting from the first time frame up to the last time

frame. However, the iterative computation of the controllability
These costs functions are computed for other gates in a similatues may cause the regular cost to grow much faster than
manner. The fanout-based cost functions can be computhd fanout-based cost such that the effect of the second cost
for an AND gate as follows. Leyy be an AND gate with in the weighted sum becomes negligible. This is illustrated in

i inputs {I, I», ---, I;}. Let F(g) denote the number of the following example.
fanout branches of. Then, the fanout-based cost functionExample 2: Consider the iterative model shown in Fig. 4.
are computed as: The controllability values of each gate are shown as a tuple of
min; C (I) two values. The first value represents the regular cost, while
1 Y fan0\41
Cano(9) = T (3) the second value represents the fanout-based cost. Let the
S C g (1) regular and fanout-based costs of all primary inputs equal to 1.
Ctani(9) = Lui Zfanl i) (4) Assume that the regular and fanout-based costs of the memory-
F(g) element in the first time frame equal to 1 and respectively.

It is important to point out here that the cost of a primary-inputhen, in the first time frame, the regular and fanout-based
is assumed to be 1 in the regular cost function apé'(g) costs of (3 = 1) are4 and 1.5 respectively. After 10 time

in the fanout-based cost function. The regular cost functioframes, the regular cost ofs8 = 1) becomes3070, while the

are accurate for fanout-free circuits. However, when fanoutnout-based cost becom%%% ~ 2.

exist, regular cost functions do not take advantage of the factThe huge difference between the two costs in the previ-



TABLE |
BENCHMARK CIRCUITS.

Circuit No. No. No. No. No. No. No.
Name I/IPs | O/Ps | FFs | Gates | TVs CFs DFs
s1423 17 5 7 490 150 1515 723

51488 8 19 6 550 | 1245 | 1506 | 1453
51494 8 19 6 558 | 1170 | 1486 | 1444
s3271 | 26 | 14 | 116 | 1035 | 709 | 3270 | 3238
s3330 | 40 | 73 | 132 | 815 | 578 | 2870 | 2103
s3384 | 43 | 26 | 183 | 1070 | 161 | 3380 | 2996
s4863 | 49 | 16 | 104 | 1600 | 518 | 4764 | 4633
s5378 | 35 | 49 | 179 | 1004 | 912 | 3231 | 1372
ous example is due to the reconverging fanout branches| afis850.1s| 237 | 310 | 374 | 9772 | 8478 | 11725 | 16618
G5. Therefore, the regular cost of a memory-element with s38417s | 518 | 596 | 1146 | 22179 | 7526 | 31180 | 25282
reconverging fanout branches should be adjusted to reduce|thesgssas | 361 | 627 | 1103 | 19253 | 11353 | 36303 | 28348
difference between the two costs. This can be done as follows.
Let ¢ be a memeory-element with fanout branches. Assume
thatm out of then fanout branches reconverge at some gate {B| number of gates, the number of applied test vectors, the
the circuit, then the regular co;t _of every one of these branch&snper of collapsed faults (CFs), and the number of detected
equals to the regular cost gfdivided bym. The cost of the ¢5,t5(DFs), respectively. It is important to point out here that
othern—m non-reconverging branches will be the regular coge |ast three circuits are partially scanned using OPUS [27]
of g. In Fig. 2, both branches of the flip-flof5 reconverge (4 increase their testability. Up to 30% of the flip-flops are
at the gate(3. Therefore, the regular cost of each branch igeaned based on SCOAP testability measures after breaking
computed as the regular cost of the memory-element dividg(l the |0ops in the circuit. The experiments were run on a
by 2. After adjusting the regular costs on the fgnout br.anchgebN Ultra60 (UltraSparc Il 450MHz) with a RAM of 512MB.
of G5, the regular cost of¢3 = 1) becomes3 in the first \ye have used test sets generated by HITEC [28]. In addition
time frame anck1 in the 10th time frame. to that, we have used the fault simulator HOPE [29] for fault
The cost functions described so far compute the controllgzniation purposes.
pility va_lues of a gate assuming general values on the ggtqn Table 1l, we compare the proposed test relaxation tech-
inputs, i.e., the cost of 1 ano_l _the cost of 0 on all inputs Kique with the bitwise-relaxation method. The two techniques
a;sumed to .be 1. Controllability values computed based S compared in terms of the percentage of X’s extracted, and
this assumption are less accurate than those computed b?ﬁgdCPU time taken for relaxation. It is important to point
on the actual logical values as illustrated in Example 3. NOI: here that in order to have a fair comparison between
that if a pr_im_ary input has a logic value 1((.))’ then the_cost Bur techniqgue and the bitwise-relaxation method, we have
0(2) for this input _based on t.he gctual Ioglpal \{aluesds constrained the bitwise-relaxation method such that all faults
Example 3: Consider the circuit shown in F'g: 5. If we etected at a particular time frame remain detected in the
compute the cost of 1f;) for each gate assuming genera'Eame time frame after relaxation. However, the results obtained
values on the input lines, then we get the following valueﬁ'y both constrained and unconstrained bitwise-relaxation are
Cl(Gl) = 3, C1(G2) =1, Cl(G?)) = 2, and Cl(G4) = 1. shown in Table ILI.

;Lr;gzeh\guv(\a/rs]iciu?egsislis tI?] tjrl:rsetgyasﬂs]ie nﬁ;ﬁgr‘;ﬁ}ﬁ]: fimar Itis clear that, for all the circuits, the CPU time taken by our
in utsg Now. if we comoute the contgr]ollabilit valuespbase%cmique is less than that of the bitwise-relaxation method by
pu'S. T P y val several orders of magnitude. The bitwise-relaxation method
on the actual logical values, then we get the following Valuerséquires enormous CPU times, and hence is impractical for
C%(Gl) =3, Cl(G2)_ =3,C1(G3) = 2,_an<_jcl(G4) :_2. In large circuits '
this case,G3 = 1 will be selected to justify the assignment The percentage of X's obtained bv our techniaue is also
G4 = 1. This assignment requires only two assignments or|1 tp h 9 N oy b¥ ined b tr? bitwi
the primary inputs. Close to the percentage of X's obtained by the bitwise-
In our work, cost functions are computed based on the acurj}%‘axatlon method fo,r most of the circuits. The difference in
values the percentage of X's ranges between 1% and 7% (3% and
' 11% when compared with the unconstrained bitwise-relaxation
method), while the average difference is about 3% (6% when
V. EXPERIMENTAL RESULTS compared with the unconstrained bitwise-relaxation method).
In order to demonstrate the effectiveness of our proposkdshould be observed that the bitwise-relaxation method im-
test relaxation technique, we have performed some expggiicitly chooses the output for detecting a fault that maximizes
ments on a number of the ISCAS89 benchmark circuits showhre number of X’s according to the order used. However, our
in Table I. The first column gives the hame of the benchmat&chnique does not do any optimization in selecting the best
circuit. Columns 2 to 8 give the number of primary inputs, theutput for detecting a fault. This can be investigated in future
number of primary outputs, the number 6f flip-flops, the waork. In addition to that, the unconstrained bitwise-relaxation

Fig. 5. Circuit of Example 3.




TABLE I
TEST RELAXATION COMPARISON BETWEEN THE PROPOSED TECHNIQUE AND THE BITWISEELAXATION METHOD.

Percentage ofX's CPU Time (seconds)

Bitwise- Proposed Bitwise- Proposed

Circuit Relaxation Technique Diff. Relaxation | Technique
s1423 69.922/74.392| 63.020 6.902/11.37 943 1.750
51488 76.154/81.090| 72.244 3.910/8.846 12553 2.417
1494 76.295/82.962| 72.741 3.554/10.22 13146 3.100
s3271 83.894/85.527| 81.908 1.986/3.619 87726 8.033
s3330 87.738/90.082| 85.506 2.232/4.576| 115585 5.633
s3384 78.579/81.655| 77.755 0.824/3.900 16549 2.533
s4863 84.832/87.542| 81.735 3.097/5.807| 162894 7.800
s5378 87.738/88.969| 86.056 1.682/2.913| 218137 20.35
s$15850.1s - 90.195 - - 513.7
$38417s - 93.988 - - 1648
$38584s - 92.272 - - 1764

method relaxes the test sequence in such a way that each fabl26% forsl423and 7.706% fors4863under the weights

is detected by the last possible detecting test sequence. s = 1, B = 90}. The average difference between the
increases the number of X's extracted as easy to detect fapiéscentage of X’s obtained using the actual values and those
are detected by test sequences generated for hard-to-detétained using the general values is more than 5%.

faults. As shown in [30], the time complexity of our proposed test

Table Il shows the effect of varying the weights of thé€laxation technique i®(nx F'xG); wheren is the number of
regular and fanout-based cost functions on the percentdggt vectors/” is the number of faults, and is the number
of X’s. Note that weightA is for the adjusted regular costof gates in the given circuit. This is the same as the time
function and weightB is for the fanout-based cost function.complexity of fault simulation. Also, the space complexity is
As can be seen from the table, the use of cost functions reséitgr x D x F'); whereD is the number of memory-elements in
in higher percentage of X’s. Also, it is worth mentioning heréhe given circuit. Note that this worst case complexity occurs
that neither the adjusted regular cost function nor the fanodthen all faults are excited in the first time frame, propagated
based cost function consistently performs better for all th@ every time frame through all memory-elements, and not
circuits. However, when both cost functions are combineéétected until the last time frame. However, in practice, a fault
better results are obtained. The table, also, shows that a weigPagates through a portion of the time frames and through
of 1 for the adjusted regular cost function and a weight of g fraction of the memory-elements.
for the fanout-based cost function seems to be a good heuristidable VI compares the space complexity and the actual
as it gives the highest percentage of X's on average. memory usage of the proposed technique for the considered
Table IV shows the percentage of X's obtained usin jrcuits. As can be seen from this table, the memory usage

unadjusted cost functions with different weights. The resul our tSSt relaxathn tecf:nlﬁueh IS Ijlgg)nlflcgntly Igstsh t?a:;:
obtained for most of the circuits are close to those in Table [f]€ WOrst case t;equwertnerr\]._ shou b € Od ser\éeb ? me
except for the circuits1488and s1494 These two circuits Memory usage by our technique can be reduced by storing

show inconsistent results as compared to the other circuits.gf'yy information about propagated faults from the time of

see this clearly, let's consider the percentage of X's obtaingbe" excitation until their detection. Currently, our technique
using the weigﬁts{A —0,B=1}and{A =1, B = 50} stores all faults that get excited and propagated even if they are

While the weights{A — 1, B — 50} result in an enormous not detected or propagated to a primary output. Furthermore,

drop in the percentage of X's for these two circuits, theﬁhe memory requirement can be reduced significantly by

improve the results obtained for the remaining circuits. Th artitioning the fault list and performing test relaxation for

inconsistency occurs because the regular cost function in th égt T] pgrttlt|on ?epar?i(rally. Tlhe [jeItaX(ted ftest ;13 th(:.r;_ obtzmte d
two circuits grows much faster than the fanout-based c € Intersection of Ihe relaxed test of each partition. Note

function. This problem can be avoided by adjusting the regul t test relaxation for different fault partitions can be done in
cost function to account for reconverging fanouts in memorﬂ?ra”el_’ henc_e, spe_edmg up the overall test time. These ideas
elements as explained in Example 2. ill be investigated in future work.

Table V shows the percentage of X’s obtained using cost
functions based on general values. If we compare the results
in this table with those in Table I, we find that cost functions In this paper, we have proposed an efficient test relaxation
based on actual values extract more X's for most of thechnique for synchronous sequential circuits. Comparison
circuits, especially for the circuitsl423ands4863 Using cost between our technique and the bitwise-relaxation method for
functions based on actual values achieves an improvementaafumber of ISCAS89 benchmarks showed that our technique

VI. CONCLUSION



TABLE Il
COST FUNCTION EFFECT ON THE EXTRACTED PERCENTAGE QK'S.

A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1
Circuit B=0 B=1 B=0 B=10 B=30 B=50 B=70 B=90
51423 37.882 | 50.863 | 57.059 | 62.431 | 63.686 | 63.961 | 64.039 | 63.020
51488 43.515| 72.457 | 56.624 | 66.218 | 69.968 | 71.250 | 71.571 | 72.244
51494 44.448 | 72.661 | 57.410 | 66.687 | 70.502 | 71.767 | 72.098 | 72.741
s3271 57.361 | 78.860 | 82.060 | 82.017 | 82.033 | 81.979 | 81.892 | 81.908
s3330 66.548 | 85.251 | 84.805| 85.446 | 85.407 | 85.484 | 85.506 | 85.506
s3384 69.247 | 71.703 | 77.755 | 77.799 | 77.784 | 77.755 | 77.755| 77.755
s4863 72.114 | 78.934 | 83.406 | 82.846 | 82.582 | 82.393 | 82.038 | 81.735
s5378 77.788 | 85.692 | 82.130 | 84.110 | 85.053 | 85.085 | 85.094 | 86.056
s15850.1s| 80.982 | 87.364 | 86.274 | 88.594 | 88.880 | 89.198 | 90.888 | 90.195
s38417s | 85.958 | 90.990 | 87.112 | 91.924 | 92.226 | 93.353 | 93.988 | 93.988
s38584s | 83.920 | 91.801 | 87.455| 90.057 | 91.152 | 91.441 | 92.071 | 92.272
AVG 65.433 | 78.780 | 76.554 | 79.830 | 80.843 | 81.242 | 81.540 | 81.584

TABLE IV
PERCENTAGE OFX'S OBTAINED USING DIFFERENT WEIGHTS OF THE UNADJUSTED COST FUNCTIONS

A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1
Circuit B=0 B=1 B=0 B=10 B=30 B=50 B=70 B=90
51423 37.882 | 50.863 | 60.314 | 64.157 | 66.000 | 66.784 | 66.902 | 66.980
51488 43515 | 72.521 | 45.288 | 47.714 | 48.152 | 48.942 | 48.622 | 48.248
51494 44.448 | 72.671 | 47.500 | 50.050 | 50.512 | 51.396 | 51.084 | 50.552
s3271 57.361 | 81.062 | 82.060 | 82.315 | 82.445| 82.478 | 82.494 | 82.462
s3330 66.548 | 85.251 | 85.182 | 85.169 | 85.342 | 85.476 | 85.536 | 85.584
s3384 69.247 | 71.790 | 77.755 | 77.799 | 77.784 | 77.755| 77.755 | 77.755
s4863 72.114 | 77.630 | 83.406 | 83.287 | 83.173 | 83.169 | 83.126 | 83.094
s5378 77.788 | 85.692 | 84.771 | 86.075| 86.350 | 86.347 | 86.269 | 86.241
s15850.1s| 80.982 | 87.423 | 86.711 | 89.131 | 89.659 | 90.077 | 92.032 | 91.547
s38417s | 85.958 | 91.002 | 87.123 | 91.938 | 92.783 | 93.895 | 94.863 | 94.167
s38584s | 83.920 | 91.801 | 87.486 | 90.074 | 91.185| 91.462 | 92.174 | 92.416
AVG 65.433 | 78.882| 75.236 | 77.064 | 77.580| 77.980 | 78.259 | 78.095

TABLE V
PERCENTAGE OFX'S OBTAINED USING DIFFERENT WEIGHTS OF GENERAIWVALUES COST FUNCTIONS

CKT A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1
NAME B=0 B=1 B=0 B=10 B=30 B=50 B=70 B=90
51423 37.882 | 47.176 | 45.569 | 49.569 | 48.863 | 48.745 | 47.765| 47.765
51488 43.515| 65.556 | 70.150 | 68.365| 68.301 | 68.301 | 68.226 | 68.226
51494 44.448 | 66.888 | 72.339 | 70.633 | 70.592 | 70.592 | 70.552 | 70.552
s3271 57.361 | 66.150 | 82.174 | 80.975| 78.024 | 77.748 | 77.362 | 76.283
s3330 66.548 | 81.315| 84.619 | 84.931 | 83.382 | 83.110 | 82.375| 82.535
s3384 69.247 | 71.414 | 77.842 | 77.784 | 74.014 | 73.393 | 73.393 | 72.916
s4863 72.114 | 74.127 | 83.102 | 79.009 | 76.759 | 74.576 | 74.163 | 74.029
s5378 77.788 | 85.423 | 82.303 | 84.207 | 85.069 | 86.012 | 86.012 | 86.012
s15850.1s| 80.982 | 87.801 | 86.391 | 88.696 | 88.877 | 89.181 | 90.842 | 90.136
s38417s | 85.958 | 87.771 | 86.639 | 87.039 | 86.243 | 86.338 | 86.257 | 86.353
s38584s | 83.920 | 87.826 | 87.080 | 87.883 | 87.368 | 87.416 | 87.699 | 87.613
AVG 65.433 | 74.677 | 78.019 | 78.099 | 77.045| 76.856 | 76.786 | 76.584




TABLE VI
MEMORY USAGE OF THE PROPOSED TECHNIQUE COMPARED TO THE [10]
SPACE COMPLEXITY.
[11]
Circuit No No. No. Space Memory
TVs FFs | Faults | Complexity Usage [12]
Name n D F nxDxF (Bytes)
s1423 150 7 1515 1590750 3499008 [13]
$1488 1245 6 1506 11249820 1067008
51494 1170 6 1486 10431720 1217536
s3271 | 709 | 116 | 3270 | 268937880 | 6712320 (14]
$3330 578 | 132 | 2870 | 218969520 | 4657152
$3384 161 | 183 | 3380 99584940 4455424 [15]
s4863 518 | 104 | 4764 | 256646208 | 4111360
s5378 912 | 179 | 3231 | 527454288 | 20268032
s15850.1s| 8478 | 374 | 11725 | 37177301700| 73940992 [16]
$38417s | 7526 | 1146 | 31180 | 2.68921E+11| 253977600
$38584s | 11353 | 1103 | 36303 | 4.54599E+11| 362776576 [17]

: ) 18
is faster by several orders of magnitude. The percentage[oil
X’s obtained by our technique is close to the percentage

of X's obtained by the bitwise-relaxation method. We ha

9

demonstrated that the use of cost functions has a significant

impact on the percentage of X's extracted.
Having a relaxed test set increases the effectiveness of bot
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