
1

An Efficient Test Relaxation Technique for
Synchronous Sequential Circuits

Aiman El-Maleh and Khaled Al-Utaibi

Abstract— Testing systems-on-a-chip(SOC) involves applying
huge amounts of test data, which is stored in the tester memory
and then transferred to the circuit under test (CUT) during
test application. Therefore, practical techniques, such as test
compressionand compaction, are required to reduce the amount
of test data in order to reduce both the total testing time
and the memory requirements for the tester. Test-setrelaxation
can improve the efficiency of both test compression and test
compaction. In addition, the relaxation process can identifyself-
initializing test sequences for synchronous sequential circuits. In
this paper, we propose an efficient test relaxation technique for
synchronous sequential circuits that maximizes the number of
unspecified bits while maintaining the same fault coverage as the
original test set.

I. I NTRODUCTION

RAPID advancement in VLSI technology has lead to a
new paradigm in designing integrated circuits where a

system-on-a-chip (SOC) is constructed based on pre-designed
and pre-verified cores such as CPUs, digital signal processors,
and RAMs. Testing these cores requires a large a mount
of test data which is continuously increasing with the rapid
increase in the complexity of SOC. This has a direct impact
on the total testing time and the memory requirements of the
testing equipment. Hence, reducing the amount of test data is
considered as one of the challenging problems in testing.

Test compression and compaction techniques are widely
used to reduce the storage and test time by reducing the size of
the test data. The objective of test set compression is to reduce
the number of bits needed to represent the test set. Several
test compression techniques have been proposed [1]–[15]. In
test compaction, the number of test vectors is reduced into
a smaller number that achieves the same fault coverage. Test
compaction techniques can be classified into two categories:
dynamic compactionandstatic compaction. Dynamic compac-
tion schemes such as [16]–[19] try to reduce the number of
test vectors during test vector generation. Static compaction
schemes, on the other hand, perform compaction on test se-
quences after they are generated. Several static test compaction
techniques have been proposed for synchronous sequential
circuits. The techniques proposed in [20] use overlapping of
self-initializing test sequences. Four compaction techniques
based on insertion, omission, selection and restoration have
been proposed in [21], [22]. The technique in [23] compacts
test sequences by removing inert subsequences under certain
conditions.

Manuscript received December 20, 2003; revised December 30, 2003. This
work was supported by King Fahd University of Petroleum and Minerals,
Dharan 31261, Saudi Arabia.

A. El-Maleh and K. Al-Utaibi are with King Fahd University of Petroleum
and Minerals. Emails:{aimane, alutaibi}@ccse.kfupm.edu.sa

Test compression techniques can achieve better results if
the test set is composed of test cubes (i.e. if the test set
is partially specified). In fact, some compression techniques
such as, LFSR-reseeding [1], [2], require the test vectors to
be partially specified. Even those techniques which require
fully specified test data can benefit from unspecified bits in
the test set. For example, variable-to-fixed-length coding [3]
and variable-to-variable-length coding [4], [5] are known to
perform better for long runs of 0’s. Hence, assigning 0’s to
the don’t care values in the test set will improve the efficiency
of these techniques. Similarly, run-length coding techniques
[6] can specify the don’t care values in a way that will reduce
test vector activity (i.e. the number of transitions from 0 to
1 and vice versa), which in turn improves the compression
efficiency.

Test compaction techniques can also benefit from a par-
tially specified test. For example, when merging two test
sequences using the overlapping compaction techniques de-
scribed in [20], a don’t care value, ’X’, can be merged with
any one of the values: ’0’, ’1’, and ’X’. Therefore, increasing
the number of X’s in a test set will reduce the number of
conflicts that may occur while merging two test sequences,
and hence, improves the efficiency of the compaction process.

Test-relaxation can also efficiently identify self-initializing
test sequences, which have interesting applications in test
sequence compaction for sequential circuits. A test sequence is
said to be self-initializing if the values of the memory-elements
in the first time frame of the sequence are all X’s. In other
words, the values of the memory-elements of the first time
frame do not affect the faults detected by the sequence. Thus,
self-initializing test sequences can be identified by finding
time frames where the values of all memory-elements are not
required for fault detection. As will be shown in this paper,
the proposed test relaxation technique can identify circuit lines
that have no effect on the detected faults.

In this paper, we propose an efficient test relaxation tech-
nique for synchronous sequential circuits that maximizes the
number of unspecified bits while maintaining the same fault
coverage as the original test set. The rest of this paper is orga-
nized as follows. Section 2 defines the targeted problem, and
summarizes previous work. Section 3 illustrates our idea with
an example. Section 4 formally describes our test relaxation
algorithm. Section 5 describes the selection criteria used by
our technique. Experimental results are given in section 6, and
section 7 concludes the paper.

II. PROBLEM DEFINITION AND ILLUSTRATIVE EXAMPLE

The problem of test relaxation for synchronous sequential
circuits, i.e. extracting a partially specified test set from a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by King Fahd University of Petroleum and Minerals

https://core.ac.uk/display/266084539?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

fully-specified one, has not been solved effectively in the
literature. This problem, which is targeted in this paper, can
be defined as follows.Given a synchronous sequential circuit
and a fully specified test set, generate a partially specified
test set that maintains the same fault coverage as the fully
specified one while maximizing the number of unspecified bits.
One obvious way to solve this problem is to use a bitwise-
relaxation technique, where we test for every bit in the test set
whether changing it to an ’X’ reduces the fault coverage or
not. Obviously, this technique isO(nm) fault simulation runs,
wheren is the width of one test vector, andm is the number of
test vectors. Obviously, this technique is impractical for large
circuits.

A partially specified test set can also be obtained using
ATPG. It is known that any ATPG in generating a test for a
fault generates test cubes including the required assignments
to excite and propagate the fault. These test cubes are filled
with random values to allow the detection of other faults. If
the random filling is disabled, a relaxed test can be obtained.
Using this approach to generate a relaxed test set has several
disadvantages. First, to get a relaxed test it is not possible to
take advantages of random test pattern generation. It is well-
known that random test pattern generation is an integrated
phase of any ATPG as it can detect a large percentage of the
faults (typically between 50 and 80 percent [24]) in combi-
national circuits in a much faster time than deterministic test
pattern generation. Disabling random test pattern generation
and random filling will certainly slow down the ATPG. For
sequential circuits, due to the complexity of the problem, many
heuristics are used to obtain as high fault coverage as possible.
For example, genetic algorithm which is based on random test
generation has been used in sequential ATPG. Such techniques
will not generate a relaxed test set.

The advantage of the proposed technique is that it is ATPG
independent. The ATPG can freely use all heuristics to achieve
the highest fault coverage in the least time. The generated test
can also be compacted. Then, test relaxation is applied to relax
the test set.

Recently, two test relaxation techniques for combinational
and full-scan sequential circuits were proposed in [25], [26].
The main idea of both techniques is to determine logic values
in the fully-specified test set that are necessary to cover
(i.e. detect) all faults which are detectable by this test set.
Unnecessary logic values are set to X’s. However, as far
as synchronous sequential circuits are concerned, the only
existing solution to the problem of relaxing a given test set
is the bitwise-relaxation method.

The techniques proposed in [25], [26] justify detected faults
based on fault-free values only, which may result in fault
masking. Each one of these techniques handles this problem
in a different manner. In the first technique, when a fault effect
is propagated to at least one input of a gate, then all inputs
of this gate are justified. The second technique, on the other
hand, uses some rules based on fault-reachability analysis to
avoid fault masking.

Our proposed technique is based on fault-free/faulty value
justification. A synchronous sequential circuit can be repre-
sented as a linear iterative array of combinational cells. Each

A

B

0/0

G2

G3

G4

G1

G5

0/0

0/1

0/0

1/0

0/0

1/0

A

B

0/1

G3

G4
G5

1/1

0/0

0/1

1/1

0/0

1/1
G2

G1

Time Frame i

Time Frame i+1

Fig. 1. Circuit of Example 1.

cell represents one time frame in which the current states of
the flip-flops become pseudo-inputs (yi), and the next states
become pseudo-outputs (Yi). So, we need to fault simulate the
circuit under the given test set to determine faults detected
in every time frame. Then, we can justify fault-free/faulty
values necessary to detect these faults starting from the last
time frame backwards. The justification process is performed
frame by frame. In every time framei, all fault-free/faulty
values necessary to detect a newly detected fault are justified
starting from primary-outputs towards primary-inputs and/or
memory-elements. If the fault-free/faulty value of a primary-
input is required to justify any one of the newly detected faults,
then the value of this primary-input should be specified in the
test set. On the other hand, required values on the memory-
elements need to be justified when the next time frame,i− 1,
is processed. The general behavior of the proposed technique
is illustrated by the following example.

Example 1: Consider the iterative-array-model shown in
Fig. 1. This model represents two time frames of a syn-
chronous sequential circuit under two test vectors:ti = 01
and ti+1 = 00. Assume that the only newly detected fault is
A/1, i.e., other faults are either previously detected by earlier
test vectors, or not part of the fault list. Inti, the faultA/1
is excited and propagated to the memory elementG5, but is
not yet detected. Inti+1, the faultA/1 is propagated to the
primary-output,G4, where it gets detected. So, in order to
justify this fault, it is enough to justify the fault-free/faulty
values on the primary-output,G4, in ti+1. The assignment
G4 = 1/0 can be satisfied by the two assignmentsG2 = X/0
and G3 = 1/0. Next, we justify the assignmentG2 = X/0.
This can be satisfied by the assignmentG1 = X/0, which
in turn can be satisfied by either one of the two inputsA or
B (i.e one of these inputs can be relaxed). The assignment
G3 = 1/0, on the other hand, needs to be justified through
G5. SinceG5 is a memory-element, its fault-free/faulty values
should be justified in the previous time frame (ti). Therefore,
we need to justify the faulty-free/faulty values ofG5 in time
frameti. These values can be satisfied by the two assignments
A = 0/1 andB = X/1. Since the fault-free/faulty values of
both inputs are required, none of these inputs can be relaxed

3

in this time frame.

III. PROPOSEDTECHNIQUE

Before describing the proposed technique, we give the
following definitions.

Definition 1: The good value of a gate g, denoted by
GoodValue(g), is the value of the gate under the fault-free
machine.

Definition 2: The faulty value of a gate g, denoted by
FaultyValue(g), is the value of the gate under the faulty
machine.

Definition 3: The justify value of a gate g, denoted by
JustifyValue(g), is the fault-free/faulty assignment that needs
to be justified by g.

Due to the nature of sequential circuits (i.e. feedback from
memory-elements), a fault excited in one time frame might
propagate through several time frames before it gets detected.
Hence, several time frames need to be traced back to justify
such faults. Therefore, we need to store enough information
about fault propagation, detection and justification in order
to perform the justification process frame by frame. Seven
lists are used to store the required information:POJusti-
ficationList [1 · · ·n], PPOJustificationList[1 · · ·n], MEJusti-
ficationList[1 · · ·F], FaultPropagationList[1 · · ·F], PPInput-
List [1 · · ·n] [1 · · ·D], EventList [1 · · ·L], and RelaxedTest-
Set[1 · · ·n] [1 · · ·NPI], wheren is the number of test vectors
to be relaxed,F is the total number of faults in the given
circuit, L is the number of levels in the given circuit,NPI
is the number of primary inputs of the given circuit, andD
is the number of memory-elements in the given circuit. The
purpose of each one of these seven lists is explained below.

The purpose of thePOJustificationListis to store newly de-
tected faults in every time frame. These faults will be justified
backwards starting from the time frames where they first get
detected. During fault simulation, if a faultf propagates to one
or more memory-elements, then these memory-elements, their
faulty values, and the corresponding time frame are added to
the FaultPropagationList. ThePPOJustificationListis used to
store faults that can’t be completely justified during a certain
time frame. Notice that if one or more memory-elements
are required to justify a faultf during some time framei,
then f can’t be completely justified during this time frame.
Hence, the fault is added to thePPOJustificationList[i − 1]
and the memory-elements along with their required fault-
free/faulty values are added toMEJustificationList[f], and the
justification of f will continue during time framei − 1. The
purpose of thePPInputList is to store logical values of the
memory elements in every time frame. This enables us to
perform logic simulation of any time frame independent of
other time frames. TheEventListkeeps track of the gates that
need to be justified for a certain fault. Gates are inserted
in event list according to their levels in the circuit. The
RelaxedTestSet, as the name indicates, represents the relaxed
test set. Initially, all the bits in this set are X’s. However, more
bits will be specified throughout the relaxation process in order
to justify the detected faults.

Fig. 2 shows an outline of the proposed test relaxation
technique which consists of three phases. The first phase
initializes the seven lists.

Fault simulation is performed in the second phase starting
from the first time frame up to the last time framen. The
initial states of all memory elements are assumed to be X’s.
The purpose of this process is to identify newly detected faults.
These faults are stored inPOJustificationList[i] for every test
vector i. During fault simulation, if a faultf propagates to
one or more memory-elements, then these memory-elements
together with their faulty values and the corresponding time
frame are added toFaultPropagationList[f]. The information
in this list will be used to compute faulty values of the circuit
during the justification phase. Another important operation that
is performed in this phase is to store logical values of the
memory-elements into thePPInputListfor all time frames.

The third phase starts from the last time frame (n) down to
the first one. In every time frame,i, the algorithm performs
the following. First, it logic simulates the circuit under the
test vectori to determine the good value of every gate. Then,
it checks PPOJustificationList[i] for any fault that has not
been completely justified in time framei + 1 and tries to
justify it in the current time frame (i.e. time framei). Next,
it checksPOJustificationList[i] for newly detected faults and
justifies them. Justifying a fault,f , involves two operations:
(1) Computing the faulty-values of the circuit under the faultf
and (2) Backward justification. These operations are described
below.

Local fault simulation is used to compute the faulty-values
of the circuit under a given faultf . The process starts by in-
jecting the faultf at its corresponding line in the circuit. Then,
it sets the faulty-values of the memory-elements according to
the faulty-values propagating from time framei − 1. These
values are stored in theFaultPropagationListin the second
phase. Next, the fault effects on the faulty-line and memory-
elements are forward propagated to determine the faulty-values
of all gates in the circuit.

Fig. 3 shows the justification process of a faultf in time
frame t. In this algorithm, the event list is processed level
by level starting from the maximum level. In each level, the
required values on a gateg (i.e. JustifyValue(g)) are satisfied
according to the following procedure. First, the algorithm
determines the corresponding values (v1/v2) on the input(s) of
the gateg. For example, if the required values on the output
of an inverter are0/1, then the corresponding required values
on the input of this gate are1/0. The next step is to justify
v1/v2 through the input(s) ofg as follows.

If g is a primary-input (PI), then we need to specify its
value whenever the required fault-free/faulty value is not ’X’.

A requirement on a memory-element (DFF) can’t be justi-
fied in the current time frame (e.g. time framei). Therefore,
the memory-element together with itsJustifyValueare added
to MEJustificationList[f], and the faultf is added to the
PPOJustificationList[i− 1].

If g is an inverter (NOT) or a buffer (BUF), then its input
is required to justifyv1/v2. Hence, the input ofg is added to
the proper level in the event list. If the fault-free/faulty value
of anXORor XNORgate is required, then the fault-free/faulty

4

Algorithm Main()

/* initialization phase */
for every level, l, of the given circuitdo

EventList[l] ← φ
for every fault, f , in the fault list of the given circuitdo

FaultPropagationList[f] ← φ
MEJustificationList[f] ← φ

for every test vectori do
POJustificationList[i] ← φ
PPOJustificationList[i] ← φ
for every primary inputj do

RelaxedTestSet[i][j] ← ’X’
for every memory-elementj do

PPInputList[i][j] ← ’X’

/* Fault simulation phase*/
for i ← 1 to n do

/* fault simulate the circuit under test vectori */
for every fault, f , newly detected ini do

/* add f to POJustificationList[i] */
for every fault f propagating to time framei + 1 do

/* add all memory-elements reachable fromf
together with their faulty values and the
corresponding time framei to FaultPropa-
gationList[f] */

/* store logical values of all memory-elements into
PPInputList[i] */

/* Fault justification phase */
for i ← n downto 1 do

logic simulate the circuit under the test vectori
whilePPOJustificationList[i] 6= φ do

/* removef from PPOJustificationList[i] */
/* compute faulty values of the circuit based on

the injected faultf and the fault propagation
stored inFaultPropagationList[f] */

while MEJustificationList[f] 6= φ do
/* remove memory-elementd from MEJusti-

ficationList[f] */
/* let j be the input ofd & add j to Event-

List[level(j)] */
Justify(f , i)
whilePOJustificationList[i] 6= φ do

/* removef from POJustificationList[i] */
/* compute faulty values of the circuit based on

the injected faultf and the fault propagation
stored inFaultPropagationList[f] */

/* let j be a primary-output at which the faultf
gets detected & addj to EventList[level(j)] */

Justify(f , i)

Fig. 2. Main algorithm.

Algorithm Justify(f ,i)
for every level, l, of the given circuitdo

while EventList[l] 6= φ do
/* remove gateg from theEventList[l] */
(v1,v2)←JustifyValue(g)
if g is (NOT|NAND|NOR) then

(v1,v2) ← (v̄1,v̄2)
caseg is

(1) PI:
if v1 6=’X’ then

RelaxedTestSet[i][g]← v1

else if v2 6=’X’ then
RelaxedTestSet[i][g]← v2

(2) DFF:
/* add f to PPOJustificationList[i− 1] */
/* add g andJustifyValue(g) to MEJustifica-

tionList[f] */
(3) BUF|NOT:

/* let j be the input ofg */
JustifyValue(j)←(v1, v2)
/* add j to EventList[level(j)] */

(4) XOR|XNOR:
for every input, j, of g do

(v1, v2) ← (GoodValue(j), FaultyValue(j))
JustifyValue(j) ← (v1, v2)
/* add j to EventList[level(j)] */

(5) AND|OR|NAND|NOR:
if v1 andv2 are controlling values ofg then

/* find an input,j, of g that satisfiesv1 */
/* find an input,k, of g that satisfiesv2 */
if j=k then

JustifyValue(j)←(v1,v2)
else

JustifyValue(j)←(v1,’X’)
JustifyValue(k)←(’X’, v2)

/* add j to EventList[level(j)] */
/* add k to EventList[level(k)] */

else if v1 is a controlling value ofg then
/* find an input,j, of g that satisfyv1 */
JustifyValue(j)←(v1,v2)
/* add j to EventList[level(j)] */
for every input k of g such thatk 6= j do

JustifyValue(k)←(’X’, v2)
/* add k to EventList[level(k)] */

else if v2 is a controlling value ofg then
/* find an input,j, of g that satisfyv2 */
JustifyValue(j)←(v1,v2)
/* add j to EventList[level(j)] */
for every input k of g such thatk 6= j do

JustifyValue(k)←(v1,’X’)
/* add k to EventList[level(k)] */

else
for every input, j, of g do

JustifyValue(j)←(v1,v2)
/* add j to EventList[level(j)] */

Fig. 3. Justify algorithm.

5

values on every input of the gate are required as well.
If g is anAND, OR, NANDor NORgate, then we have four

different possibilities. First, bothv1 and v2 are controlling
values ofg. In this case, the algorithm searches for an input
that satisfies both values and adds it to the event list. Ifv1/v2

can’t be satisfied by a single input, then it will be justified
through two different inputs. In case onlyv1 is a controlling
value ofg, the algorithm will find an inputj with a fault-free
value that satisfiesv1. Sincev2 is a non-controlling value (or
an ’X’), then all inputs ofg are required to justify this value.
Therefore, inputj is added to the event list to justify the value
v1/v2, while other inputs are added to the event list to justify
the value X/v2. In the third case, onlyv2 is controlling value
of g. This can be handled exactly as done in the previous
case except thatv2 is justified through one input, whilev1

is justified through all the inputs ofg. Finally, if neitherv1

nor v2 is a controlling value ofg, then all the inputs ofg are
required to justify the valuev1/v2. Hence, all inputs ofg are
added to the event list.

IV. SELECTION CRITERIA

When justifying a controlling value through the inputs of
a given gate, there could be more than one choice. In this
case the priority is given to the input that is already selected
to justify other gates. Otherwise, cost functions are used to
guide the selection. Cost functions give a relative measure on
the number of primary inputs required to justify a given value.
Hence, they can guide the relaxation procedure to justify the
required values with the smallest number of assignments on
the primary inputs.

The cost functions proposed in [26] combine theregular
recursive controllability cost functions [24] with new cost
functions calledfanout-basedcost functions. The regular cost
functions are computed as follows. For every gateg, we com-
pute two cost functionsCreg0(g) andCreg1(g). For example,
if g is an AND gate withi inputs {I1, I2, · · ·, Ii}, then the
cost functions are computed as:

Creg0(g) = min
i

Creg0(Ii) (1)

Creg1(g) =
∑

i

Creg1(Ii) (2)

These costs functions are computed for other gates in a similar
manner. The fanout-based cost functions can be computed
for an AND gate as follows. Letg be an AND gate with
i inputs {I1, I2, · · ·, Ii}. Let F (g) denote the number of
fanout branches ofg. Then, the fanout-based cost functions
are computed as:

Cfan0(g) =
mini Cfan0(Ii)

F (g)
(3)

Cfan1(g) =
∑

i Cfan1(Ii)
F (g)

(4)

It is important to point out here that the cost of a primary-input
is assumed to be 1 in the regular cost function and1/F (g)
in the fanout-based cost function. The regular cost functions
are accurate for fanout-free circuits. However, when fanouts
exist, regular cost functions do not take advantage of the fact

G5

G1

G2

G3

G4

1

1

1

1

1

1

0

Time Frame 1

G5

G1

G2

G3

G4

1

1

1

1

1

1

0

Time Frame 2

(1, 1/2)

(2, 3/2)

(2, 3/2)

(4, 3/2)

(4, 3/2)

(4, 3/4)

(5, 7/4)

(5, 7/4)

(10, 7/4)

(10, 7/4)

.

.

.

Fig. 4. Circuit of Example 2.

that a stem can justify several required values. In general, the
fanout-based cost functions provide better selection criterion
than the regular cost functions. However, there are some cases
where the regular cost functions can perform better than the
fanout-based cost functions [26]. To take advantage of both
cost functions, a weighted sum cost function of the two cost
functions was proposed in [26]. The combined cost functions
are defined as shown below, whereA is the weight of the
regular cost function andB is the weight of the fanout-based
cost function.

C0(g) = A · Creg0(g) + B · Cfan0(g) (5)

C1(g) = A · Creg1(g) + B · Cfan1(g) (6)

In synchronous sequential circuits, the controllability values
of the circuit in one time frame depend on the controllability
values computed in the current time frame as well as the
values computed in the previous time frames. Therefore,
the controllability values should be computed in an iterative
manner starting from the first time frame up to the last time
frame. However, the iterative computation of the controllability
values may cause the regular cost to grow much faster than
the fanout-based cost such that the effect of the second cost
in the weighted sum becomes negligible. This is illustrated in
the following example.
Example 2: Consider the iterative model shown in Fig. 4.
The controllability values of each gate are shown as a tuple of
two values. The first value represents the regular cost, while
the second value represents the fanout-based cost. Let the
regular and fanout-based costs of all primary inputs equal to 1.
Assume that the regular and fanout-based costs of the memory-
element in the first time frame equal to 1 and0.5 respectively.
Then, in the first time frame, the regular and fanout-based
costs of (G3 = 1) are 4 and 1.5 respectively. After 10 time
frames, the regular cost of (G3 = 1) becomes3070, while the
fanout-based cost becomes2047

1024 ≈ 2.
The huge difference between the two costs in the previ-

6

G1

G4

1

1

1

0

1

1

1

1

G3

G2

1

1

Fig. 5. Circuit of Example 3.

ous example is due to the reconverging fanout branches of
G5. Therefore, the regular cost of a memory-element with
reconverging fanout branches should be adjusted to reduce the
difference between the two costs. This can be done as follows.
Let g be a memeory-element withn fanout branches. Assume
thatm out of then fanout branches reconverge at some gate in
the circuit, then the regular cost of every one of these branches
equals to the regular cost ofg divided bym. The cost of the
othern−m non-reconverging branches will be the regular cost
of g. In Fig. 2, both branches of the flip-flopG5 reconverge
at the gateG3. Therefore, the regular cost of each branch is
computed as the regular cost of the memory-element divided
by 2. After adjusting the regular costs on the fanout branches
of G5, the regular cost of (G3 = 1) becomes3 in the first
time frame and21 in the 10th time frame.

The cost functions described so far compute the controlla-
bility values of a gate assuming general values on the gate
inputs, i.e., the cost of 1 and the cost of 0 on all inputs is
assumed to be 1. Controllability values computed based on
this assumption are less accurate than those computed based
on the actual logical values as illustrated in Example 3. Note
that if a primary input has a logic value 1(0), then the cost of
0(1) for this input based on the actual logical values is∞.
Example 3: Consider the circuit shown in Fig. 5. If we
compute the cost of 1 (C1) for each gate assuming general
values on the input lines, then we get the following values:
C1(G1) = 3, C1(G2) = 1, C1(G3) = 2, and C1(G4) = 1.
These values suggest to justify the assignmentG4 = 1
throughG2 which results in three assignments on the primary
inputs. Now, if we compute the controllability values based
on the actual logical values, then we get the following values:
C1(G1) = 3, C1(G2) = 3, C1(G3) = 2, andC1(G4) = 2. In
this case,G3 = 1 will be selected to justify the assignment
G4 = 1. This assignment requires only two assignments on
the primary inputs.

In our work, cost functions are computed based on the actual
values.

V. EXPERIMENTAL RESULTS

In order to demonstrate the effectiveness of our proposed
test relaxation technique, we have performed some experi-
ments on a number of the ISCAS89 benchmark circuits shown
in Table I. The first column gives the name of the benchmark
circuit. Columns 2 to 8 give the number of primary inputs, the
number of primary outputs, the number ofD flip-flops, the

TABLE I

BENCHMARK CIRCUITS.

Circuit No. No. No. No. No. No. No.

Name I/Ps O/Ps FFs Gates TVs CFs DFs

s1423 17 5 7 490 150 1515 723

s1488 8 19 6 550 1245 1506 1453

s1494 8 19 6 558 1170 1486 1444

s3271 26 14 116 1035 709 3270 3238

s3330 40 73 132 815 578 2870 2103

s3384 43 26 183 1070 161 3380 2996

s4863 49 16 104 1600 518 4764 4633

s5378 35 49 179 1004 912 3231 1372

s15850.1s 237 310 374 9772 8478 11725 16618

s38417s 518 596 1146 22179 7526 31180 25282

s38584s 361 627 1103 19253 11353 36303 28348

total number of gates, the number of applied test vectors, the
number of collapsed faults (CFs), and the number of detected
faults(DFs), respectively. It is important to point out here that
the last three circuits are partially scanned using OPUS [27]
to increase their testability. Up to 30% of the flip-flops are
scaned based on SCOAP testability measures after breaking
all the loops in the circuit. The experiments were run on a
SUN Ultra60 (UltraSparc II 450MHz) with a RAM of 512MB.
We have used test sets generated by HITEC [28]. In addition
to that, we have used the fault simulator HOPE [29] for fault
simulation purposes.

In Table II, we compare the proposed test relaxation tech-
nique with the bitwise-relaxation method. The two techniques
are compared in terms of the percentage of X’s extracted, and
the CPU time taken for relaxation. It is important to point
out here that in order to have a fair comparison between
our technique and the bitwise-relaxation method, we have
constrained the bitwise-relaxation method such that all faults
detected at a particular time frame remain detected in the
same time frame after relaxation. However, the results obtained
by both constrained and unconstrained bitwise-relaxation are
shown in Table II.

It is clear that, for all the circuits, the CPU time taken by our
technique is less than that of the bitwise-relaxation method by
several orders of magnitude. The bitwise-relaxation method
requires enormous CPU times, and hence is impractical for
large circuits.

The percentage of X’s obtained by our technique is also
close to the percentage of X’s obtained by the bitwise-
relaxation method for most of the circuits. The difference in
the percentage of X’s ranges between 1% and 7% (3% and
11% when compared with the unconstrained bitwise-relaxation
method), while the average difference is about 3% (6% when
compared with the unconstrained bitwise-relaxation method).
It should be observed that the bitwise-relaxation method im-
plicitly chooses the output for detecting a fault that maximizes
the number of X’s according to the order used. However, our
technique does not do any optimization in selecting the best
output for detecting a fault. This can be investigated in future
work. In addition to that, the unconstrained bitwise-relaxation

7

TABLE II

TEST RELAXATION COMPARISON BETWEEN THE PROPOSED TECHNIQUE AND THE BITWISE-RELAXATION METHOD .

Percentage ofX ’s CPU Time (seconds)

Bitwise- Proposed Bitwise- Proposed

Circuit Relaxation Technique Diff. Relaxation Technique

s1423 69.922/74.392 63.020 6.902/11.37 943 1.750

s1488 76.154/81.090 72.244 3.910/8.846 12553 2.417

s1494 76.295/82.962 72.741 3.554/10.22 13146 3.100

s3271 83.894/85.527 81.908 1.986/3.619 87726 8.033

s3330 87.738/90.082 85.506 2.232/4.576 115585 5.633

s3384 78.579/81.655 77.755 0.824/3.900 16549 2.533

s4863 84.832/87.542 81.735 3.097/5.807 162894 7.800

s5378 87.738/88.969 86.056 1.682/2.913 218137 20.35

s15850.1s - 90.195 - - 513.7

s38417s - 93.988 - - 1648

s38584s - 92.272 - - 1764

method relaxes the test sequence in such a way that each fault
is detected by the last possible detecting test sequence. This
increases the number of X’s extracted as easy to detect faults
are detected by test sequences generated for hard-to-detect
faults.

Table III shows the effect of varying the weights of the
regular and fanout-based cost functions on the percentage
of X’s. Note that weightA is for the adjusted regular cost
function and weightB is for the fanout-based cost function.
As can be seen from the table, the use of cost functions results
in higher percentage of X’s. Also, it is worth mentioning here
that neither the adjusted regular cost function nor the fanout-
based cost function consistently performs better for all the
circuits. However, when both cost functions are combined,
better results are obtained. The table, also, shows that a weight
of 1 for the adjusted regular cost function and a weight of 90
for the fanout-based cost function seems to be a good heuristic
as it gives the highest percentage of X’s on average.

Table IV shows the percentage of X’s obtained using
unadjusted cost functions with different weights. The results
obtained for most of the circuits are close to those in Table III
except for the circuitss1488and s1494. These two circuits
show inconsistent results as compared to the other circuits. To
see this clearly, let’s consider the percentage of X’s obtained
using the weights{A = 0, B = 1} and {A = 1, B = 50}.
While the weights{A = 1, B = 50} result in an enormous
drop in the percentage of X’s for these two circuits, they
improve the results obtained for the remaining circuits. This
inconsistency occurs because the regular cost function in these
two circuits grows much faster than the fanout-based cost
function. This problem can be avoided by adjusting the regular
cost function to account for reconverging fanouts in memory-
elements as explained in Example 2.

Table V shows the percentage of X’s obtained using cost
functions based on general values. If we compare the results
in this table with those in Table III, we find that cost functions
based on actual values extract more X’s for most of the
circuits, especially for the circuitss1423ands4863. Using cost
functions based on actual values achieves an improvement of

15.26% fors1423and 7.706% fors4863under the weights
{A = 1, B = 90}. The average difference between the
percentage of X’s obtained using the actual values and those
obtained using the general values is more than 5%.

As shown in [30], the time complexity of our proposed test
relaxation technique isO(n×F×G); wheren is the number of
test vectors,F is the number of faults, andG is the number
of gates in the given circuit. This is the same as the time
complexity of fault simulation. Also, the space complexity is
O(n×D×F); whereD is the number of memory-elements in
the given circuit. Note that this worst case complexity occurs
when all faults are excited in the first time frame, propagated
to every time frame through all memory-elements, and not
detected until the last time frame. However, in practice, a fault
propagates through a portion of the time frames and through
a fraction of the memory-elements.

Table VI compares the space complexity and the actual
memory usage of the proposed technique for the considered
circuits. As can be seen from this table, the memory usage
by our test relaxation technique is significantly less than
the worst case requirement. It should be observed that the
memory usage by our technique can be reduced by storing
only information about propagated faults from the time of
their excitation until their detection. Currently, our technique
stores all faults that get excited and propagated even if they are
not detected or propagated to a primary output. Furthermore,
the memory requirement can be reduced significantly by
partitioning the fault list and performing test relaxation for
each partition separately. The relaxed test is then obtained
by the intersection of the relaxed test of each partition. Note
that test relaxation for different fault partitions can be done in
parallel, hence, speeding up the overall test time. These ideas
will be investigated in future work.

VI. CONCLUSION

In this paper, we have proposed an efficient test relaxation
technique for synchronous sequential circuits. Comparison
between our technique and the bitwise-relaxation method for
a number of ISCAS89 benchmarks showed that our technique

8

TABLE III

COST FUNCTION EFFECT ON THE EXTRACTED PERCENTAGE OFX ’ S.

A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1

Circuit B=0 B=1 B=0 B=10 B=30 B=50 B=70 B=90

s1423 37.882 50.863 57.059 62.431 63.686 63.961 64.039 63.020

s1488 43.515 72.457 56.624 66.218 69.968 71.250 71.571 72.244

s1494 44.448 72.661 57.410 66.687 70.502 71.767 72.098 72.741

s3271 57.361 78.860 82.060 82.017 82.033 81.979 81.892 81.908

s3330 66.548 85.251 84.805 85.446 85.407 85.484 85.506 85.506

s3384 69.247 71.703 77.755 77.799 77.784 77.755 77.755 77.755

s4863 72.114 78.934 83.406 82.846 82.582 82.393 82.038 81.735

s5378 77.788 85.692 82.130 84.110 85.053 85.085 85.094 86.056

s15850.1s 80.982 87.364 86.274 88.594 88.880 89.198 90.888 90.195

s38417s 85.958 90.990 87.112 91.924 92.226 93.353 93.988 93.988

s38584s 83.920 91.801 87.455 90.057 91.152 91.441 92.071 92.272

AVG 65.433 78.780 76.554 79.830 80.843 81.242 81.540 81.584

TABLE IV

PERCENTAGE OFX ’ S OBTAINED USING DIFFERENT WEIGHTS OF THE UNADJUSTED COST FUNCTIONS.

A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1

Circuit B=0 B=1 B=0 B=10 B=30 B=50 B=70 B=90

s1423 37.882 50.863 60.314 64.157 66.000 66.784 66.902 66.980

s1488 43.515 72.521 45.288 47.714 48.152 48.942 48.622 48.248

s1494 44.448 72.671 47.500 50.050 50.512 51.396 51.084 50.552

s3271 57.361 81.062 82.060 82.315 82.445 82.478 82.494 82.462

s3330 66.548 85.251 85.182 85.169 85.342 85.476 85.536 85.584

s3384 69.247 71.790 77.755 77.799 77.784 77.755 77.755 77.755

s4863 72.114 77.630 83.406 83.287 83.173 83.169 83.126 83.094

s5378 77.788 85.692 84.771 86.075 86.350 86.347 86.269 86.241

s15850.1s 80.982 87.423 86.711 89.131 89.659 90.077 92.032 91.547

s38417s 85.958 91.002 87.123 91.938 92.783 93.895 94.863 94.167

s38584s 83.920 91.801 87.486 90.074 91.185 91.462 92.174 92.416

AVG 65.433 78.882 75.236 77.064 77.580 77.980 78.259 78.095

TABLE V

PERCENTAGE OFX ’ S OBTAINED USING DIFFERENT WEIGHTS OF GENERAL-VALUES COST FUNCTIONS.

CKT A=0 A=0 A=1 A=1 A=1 A=1 A=1 A=1

NAME B=0 B=1 B=0 B=10 B=30 B=50 B=70 B=90

s1423 37.882 47.176 45.569 49.569 48.863 48.745 47.765 47.765

s1488 43.515 65.556 70.150 68.365 68.301 68.301 68.226 68.226

s1494 44.448 66.888 72.339 70.633 70.592 70.592 70.552 70.552

s3271 57.361 66.150 82.174 80.975 78.024 77.748 77.362 76.283

s3330 66.548 81.315 84.619 84.931 83.382 83.110 82.375 82.535

s3384 69.247 71.414 77.842 77.784 74.014 73.393 73.393 72.916

s4863 72.114 74.127 83.102 79.009 76.759 74.576 74.163 74.029

s5378 77.788 85.423 82.303 84.207 85.069 86.012 86.012 86.012

s15850.1s 80.982 87.801 86.391 88.696 88.877 89.181 90.842 90.136

s38417s 85.958 87.771 86.639 87.039 86.243 86.338 86.257 86.353

s38584s 83.920 87.826 87.080 87.883 87.368 87.416 87.699 87.613

AVG 65.433 74.677 78.019 78.099 77.045 76.856 76.786 76.584

9

TABLE VI

MEMORY USAGE OF THE PROPOSED TECHNIQUE COMPARED TO THE

SPACE COMPLEXITY.

Circuit No No. No. Space Memory

TVs FFs Faults Complexity Usage

Name n D F n×D × F (Bytes)

s1423 150 7 1515 1590750 3499008

s1488 1245 6 1506 11249820 1067008

s1494 1170 6 1486 10431720 1217536

s3271 709 116 3270 268937880 6712320

s3330 578 132 2870 218969520 4657152

s3384 161 183 3380 99584940 4455424

s4863 518 104 4764 256646208 4111360

s5378 912 179 3231 527454288 20268032

s15850.1s 8478 374 11725 37177301700 73940992

s38417s 7526 1146 31180 2.68921E+11 253977600

s38584s 11353 1103 36303 4.54599E+11 362776576

is faster by several orders of magnitude. The percentage of
X’s obtained by our technique is close to the percentage
of X’s obtained by the bitwise-relaxation method. We have
demonstrated that the use of cost functions has a significant
impact on the percentage of X’s extracted.

Having a relaxed test set increases the effectiveness of both
compression and compaction techniques. Also, the proposed
technique can be used for extracting self-synchronizing test
sequences which has interesting applications in test sequence
compaction for sequential circuits, which will be investigated
in future work.

ACKNOWLEDGMENT

The authors would like to thank King Fhad University of
Petroleum and Minerals for support.

REFERENCES

[1] B. Koenemann, “LFSR-Coded Test Patterns for Scan Designs,” inProc.
European Test Conference, 1991, pp. 237–242.

[2] S. Hellebrand, S. Tarnick, J. Rajski, and B. Courtois, “Generation of
Vector Patterns Through Reseeding of Multiple-Polynomial Feedback
Shift Registers,” inIEEE International Test Conference, Sep. 1992, pp.
120–129.

[3] A. Jas and N. Touba, “Test Vector Decompression via Cyclical Scan
Chains and Its Application to Testing Core-Based Designs,” inProc.
International Test Conference, 1998, pp. 458–464.

[4] A. Chandra and K. Chakrabarty, “Test Data Compression for System-
On-a-Chip using Golomb Codes,” inProc. of IEEE VLSI Test Sympo-
sium, 2000, pp. 113–120.

[5] ——, “Frequency-directed run-length (FDR) codes with application to
system-on-a-chip test data compression ,” in19th IEEE Proceedings on.
VTS, 2001, pp. 42–47.

[6] T. Yamaguchi, M. Tilgner, M. Ishida and D. S. Ha, “An Efficient Method
for Compressing Test Data,” inProc. International Test Conference, Nov.
1997, pp. 79–88.

[7] V. Iyengar, K. Chakrabarty and B. Murray, “Huffman Encoding of
Test Sets for Sequential Circuits,”IEEE Trans. on Instrumentation and
Measurement, vol. 47, no. 1, pp. 21–25, Feb. 1998.

[8] A. El-Maleh, S. Zahir, and E. Khan, “A Geometric-Primitive-Based
Compression Scheme for Testing Systems-on-a-Chip,” inProc. IEEE
VLSI Test Symposium, Apr. 2001, pp. 54–61.

[9] A. El-Maleh and R. Al-Abaji, “Extended Frequency-Directed Run
Length Code with Improved Application to System-on-a-chip Test Data
Compression,” inProc. of the 9th IEEE International Conference on
Electronics, Circuits and Systems, Sep. 2002, pp. 449–452.

[10] A. Jas, J. G. Dastidar and N. Touba, “Scan Vector Compres-
sion/Decompression Using Statistical Coding,” inProc. IEEE VLSI Test
Symposium, 1999, pp. 114–120.

[11] E. H. Volkerink, A. Khoche and S. Mira, “Packet-based Input Test Data
Compression Techniques,” inProc. International Test Conference, 2002,
pp. 154–163.

[12] A. R. Pandey, T. Patel, “Reconfiguration Technique for Reducing Test
Time and Test Data Volume in Illinois Scan Architecture Based De-
signs,” in Proc. IEEE VLSI Test Symposium, 2002, pp. 9–15.

[13] Lei Li and Krishnendu Chakrabarty, “Test Data Compression Using
Dictionaries with Fixed-Length Indices,” inProc. of IEEE VLSI Test
Symposium, 2003, pp. 219–224.

[14] I. Bayraktaroglu and A. Orailoglu, “Test volume and application time
reduction through scan chain concealment,” inProc. ACM/IEEE Design
Automation Conf., 2001, pp. 151–155.

[15] P. T. Gonciari, B. Al-Hashimi and N. Nicolici, “Improving compression
ratio, area overhead, and test application time for system-on-a-chip test
data compression/decompression,” inDesign Automation and Test in
Europe Conf., 2002, pp. 604–611.

[16] I. Pomeranz and S. M. Reddy, “On Generating Compact Test Sequences
for Synchronous Sequential Circuits,” inProc. EURODAC, Sep. 1995,
pp. 105–110.

[17] S. Chakradhar and A. Raghunathan, “Bottleneck Removal Algorithm for
Dynamic Compaction and Test Cycle Reduction,” inProc. EURODAC,
Sep. 1995, pp. 98–104.

[18] I. Pomeranz and S. M. Reddy, “Dynamic Test Compaction for Syn-
chronous Sequential Circuits using Static Compaction Techniques,” in
Proc. 26th Fault-Tolerant Computing Symp., June 1996, pp. 53–61.

[19] E. M. Rudnick and J. H. Patel, “Simulation-based Techniques for
Dynamic Test Sequence Compaction,” inProc. Intl. Conf. on Computer
Aided Design, Nov. 1996, pp. 67–75.

[20] R. Roy, T. Niermann, J. Patel, J. Abraham, and R. Saleh, “Compaction
of ATPG-Generated Test Sequences for Sequential Circuits,” Nov. 1988,
pp. 382–385.

[21] I. Pomeranz and S. M. Reddy, “On static compaction of test sequences
for synchronous sequential circuits,” inProc. Design Automation Conf.,
1996, pp. 215–220.

[22] ——, “Vector Restoration Based Static Compaction of Test Sequences
for Synchronous Sequential Circuits,” inProc. Int. Conf. on Computer
Design, Oct. 1997, pp. 360–365.

[23] M. S. Hsiao, E. M. Rudnick, and J. H. Patel, “Fast Static Compaction
Algorithms for Sequential Circuit Test Vectors,”IEEE Trans. on Com-
puters, vol. 48, no. 3, pp. 311–322, March 1999.

[24] M. Abramovici, M. Breuer and A. Friedman,Digital System Testing and
Testable Design. IEEE Press, 1990.

[25] S. Kajihara and K. Miyase, “On Identifying Don’t Care Inputs of Test
Patterns for Combinational Circuits,” inProc. IEEE ICCAD, Nov. 2001,
pp. 364–369.

[26] A. El-Maleh and A. Al-Suwaiyan, “An Efficient Test Relaxation Tech-
nique for Combinational & Full-Scan Sequential Circuits,” inProc. IEEE
VLSI Test Symposium, 2002, pp. 53–59.

[27] V. Chickermane and J. H. Patel, “A Fault Oriented Partial Scan Design
Approach,” inProc. of the Intl. Conf. on Computer-Aided Design, Nov.
1991, pp. 400–403.

[28] Thomas M. Niermann and Janak H. Patel, “HITEC: A test generation
package for sequential circuits,” inProc. of the European Conference
on Design Automation (EDAC), 1991, pp. 214–218.

[29] H. K. Lee and D. S. Ha, “HOPE: An Effecient Parallel Fault Simulator
for Synchronous Sequential Circuits,”IEEE Trans. on Computer Aided
Design, vol. 15, no. 9, pp. 1048–1058, Sep. 1996.

[30] K. Al-Utaibi, An Efficient Test-Pattern Relaxation Technique for Syn-
chronous Sequential Circuits. M.S. thesis, King Fhad University of
Petroleum and Minerals, Dhahran, 2002.

