241,159 research outputs found
Bronchial and arterial sleeve resection for centrally-located lung cancers
The use of bronchial and arterial sleeve resections for the treatment of centrally-located lung cancers, when available, has become the option of choice in comparison with pneumonectomy (PN). Technical expertise, in particular in vascular reconstruction, and perioperative management improved over time allowing excellent short-term and long-term results. This is even truer if considering literature data from the main experiences published in the last years. These evidences have given to such lung sparing reconstructive procedures more and more acceptance among the surgical community. This article focuses on the main technical aspects and literature data regarding bronchovascular sleeve resections
In Vivo Fluorescence Imaging of E-Selectin: Quantitative Detection of Endothelial Activation in Arthritis
Rheumatoid arthritis (RA) is a chronic progressive systemic inflammatory disease, characterized by synovial inflammation and localized destruction of cartilage and bone. Heterogeneity in the clinical presentation of RA and uncertainty about which patients will respond to treatment makes diagnosis and management challenging. Fluorescent imaging in the near infrared (NIR) spectrum significantly decreases tissue autofluorescence offering unique potential to detect specific molecular targets in vivo. E-selectin or endothelial adhesion molecule-1 (ELAM-1), a 115kDa glycoprotein induced on endothelial cells in response to pro-inflammatory cytokines involved in RA, such as interleukin (IL)-1 beta and tumour necrosis factor alpha (TNF alpha). E-selectin has been well validated as a potential biomarker of disease activity.
My study aimed to investigate whether E-selectin targeted optical imaging in vivo could be developed as a sensitive, specific and quantifiable preclinical molecular imaging technique, and also whether this approach could be used to delineate the molecular effects of novel therapies. I utilised anti-E-selectin antibody labelled with NIR fluorophore in a mouse model of paw swelling induced by intra-plantar injection of TNF alpha, and in acute collagen-induced arthritis (CIA) in DBA/1 mice, a widely used model of RA. E-selectin generated signal, localised to points of maximal clinical inflammation in the inflamed mouse paw in both models with significant differences to control antibody. Binding of anti-E-selectin antibody was also demonstrated by immunohistochemistry in both models. The ability of E-selectin targeted imaging to detect sub-clinical endothelial activation was also investigated, demonstrating that E-selectin may be an excellent way of determining subclinical vascular activation in CIA. Finally the effect of novel targeted therapy – RB200 which blocks epidermal growth factor (EGF) signalling was investigated. This demonstrated that E-selectin targeted signal could be absolutely abrogated to a level seen in unimmunised healthy control animals, following combination treatment with RB200 and the TNF alpha inhibitor etanercept.
E-selectin targeted optical imaging is a viable in vivo imaging technique that can also be applied to quantify disease and investigate the effects of novel molecular therapies. It holds significant promise as a molecular imaging technique for future translation into the clinic for patients with rheumatoid arthritis and other inflammatory diseases
Recommended from our members
Patient and Disease-Specific Induced Pluripotent Stem Cells for Discovery of Personalized Cardiovascular Drugs and Therapeutics.
Human induced pluripotent stem cells (iPSCs) have emerged as an effective platform for regenerative therapy, disease modeling, and drug discovery. iPSCs allow for the production of limitless supply of patient-specific somatic cells that enable advancement in cardiovascular precision medicine. Over the past decade, researchers have developed protocols to differentiate iPSCs to multiple cardiovascular lineages, as well as to enhance the maturity and functionality of these cells. Despite significant advances, drug therapy and discovery for cardiovascular disease have lagged behind other fields such as oncology. We speculate that this paucity of drug discovery is due to a previous lack of efficient, reproducible, and translational model systems. Notably, existing drug discovery and testing platforms rely on animal studies and clinical trials, but investigations in animal models have inherent limitations due to interspecies differences. Moreover, clinical trials are inherently flawed by assuming that all individuals with a disease will respond identically to a therapy, ignoring the genetic and epigenomic variations that define our individuality. With ever-improving differentiation and phenotyping methods, patient-specific iPSC-derived cardiovascular cells allow unprecedented opportunities to discover new drug targets and screen compounds for cardiovascular disease. Imbued with the genetic information of an individual, iPSCs will vastly improve our ability to test drugs efficiently, as well as tailor and titrate drug therapy for each patient
Laser-induced generation of singlet oxygen and its role in the cerebrovascular physiology
For over 55 years, laser technology has expanded from laboratory research to widespread fields, for example telecommunication and data storage amongst others. Recently application of lasers in biology and medicine presents itself as one of the emerging areas. In this review, we will outline the recent advances in using lasers for the generation of singlet oxygen, traditionally used to kill tumour cells or induce thrombotic stroke model due to damage vascular effects. Over the last two decade, completely new results on cerebrovascular effects of singlet oxygen generated during photodynamic therapy (PDT) have been shown alongside promising applications for delivery of drugs and nanoparticles into the brain for therapy of brain cancer. Furthermore, a "gold key” has been found to overcome the limitations of PDT, such as low light penetration and high toxicity of photosensitizers, by direct generation of singlet oxygen using quantum-dot laser diodes emitting in the near infrared (NIR) spectral range. It is our motivation to highlight these pioneering results in this review, to improve understanding of the biological role of singlet oxygen and to provide new perspectives for improving clinical application of laser based therapy in further research
Influence of Long-term Cytotoxic Chemotherapy on the Condition of Peripheral Venous Channel
The necessity of long-term venous access in cancer patients appears at frequent and long-term courses of cytotoxic therapy. Peripheral veins of forearms are most often used for these aims. The conditions of peripheral venous channel in 32 cancer patients, who underwent the long-term treatment with antitumor preparations were analyzed in the article on own investigatory material.The methods of dopplerography, morphological and immunohystochemical studies were used. The qualitative and quantitative dopplerographic changes in forearm veins in different terms after chemotherapy start were revealed in most patients. The conclusion was made about unsuitability of forearm peripheral veins for the long term administration of cytostatics and the necessity to create the alternative vascular access that would correspond to the criteria of safety, reliability and long-term exploitation
Engaging the Immune Response to Normalize the Tumor Microenvironment
Solid tumors exist as heterogeneous populations comprised not only of malignant cells, but various other cell types, including cells that make up the vasculature, that can strongly influence tumorgenicity. Many forms of solid cancers are highly vascularized due to dysregulated angiogenesis. The tumor vasculature is classified by leaky, chaotic blood vessels consisting of several components including vascular endothelial cells and pericytes, as well vascular progenitors, resulting in vascular permeability and high interstitial pressure. As a result, the tumor vasculature limits the access of immune effector cells to the tumor, and may in part be responsible for the modest success observed in many current anti-cancer immunotherapies. Current first-line therapeutics in the advanced stage disease setting include anti-angiogenic small molecule drugs that have yielded high objective clinical response rates, however these responses tend to be transient in nature, with most patients becoming drug-refractory. Anti-tumor vasculature vaccines may promote the reconditioning of the tumor microenvironment by coordinately promoting a pro-inflammatory environment and the specific immune targeting of tumor-associated stromal cell populations that contribute to vasculature destabilization. Implementing a vaccine with these therapeutic effects is a promising treatment option that may extend disease-free intervals and overall patient survival. I show that vaccines specifically targeting tumor vasculature populations can “normalize” the tumor microenvironment, as shown by upregulation of proinflammatory molecules within the tumor as well as vascular remodeling promoting enhanced recruitment of CD8+ T cells, resulting in superior anti-tumor efficacy
Updated management of malignant biliary tract tumors: an illustrative review
The management of malignant biliary tumors (MBTs) is complex and requires a multidisciplinary approach. Guidelines and methods of staging for biliary tumors have recently been released by main international societies, altering the clinical and radiologic approach to this pathologic condition. The aim of the present review is to detail the updated role of imaging in preoperative staging and follow-up and to illustrate clinical/therapeutic pathways. In addition, future perspectives on imaging and targeted/embolization therapies are outlined
Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibroblasts and proliferation: A new potential target for antifibrotic therapy
Background: Fibrosis may be considered the hallmark of systemic sclerosis (SSc), the end stage triggered by different pathological events. Transforming growth factor-β (TGF-β) and platelet-derived growth factor BB (PDGF-BB) are profibrotic molecules modulating myofibroblast differentiation and proliferation, respectively. There is evidence linking CD248 with these two molecules, both highly expressed in patients with SSc, and suggesting that CD248 may be a therapeutic target for several diseases. The aim of this work was to evaluate the expression of CD248 in SSc skin and its ability to modulate SSc fibrotic process. Methods: After ethical approval was obtained, skin biopsies were collected from 20 patients with SSc and 10 healthy control subjects (HC). CD248 expression was investigated in the skin, as well as in bone marrow mesenchymal stem cells (MSCs) treated with TGF-β or PDGF-BB, by immunofluorescence, qRT-PCR, and Western blotting. Finally, in SSc-MSCs, the CD248 gene was silenced by siRNA. Results: Increased expression of CD248 was found in endothelial cells and perivascular stromal cells of SSc skin. In SSc-MSCs, the levels of CD248 and α-smooth muscle actin expression were significantly higher than in HC-MSCs. In both SSc- and HC-MSCs, PDGF-BB induced increased expression of Ki-67 when compared with untreated cells but was unable to modulate CD248 levels. After CD248 silencing, both TGF-β and PDGF-BB signaling were inhibited in SSc-MSCs. Conclusions: CD248 overexpression may play an important role in the fibrotic process by modulating the molecular target, leading to perivascular cells differentiation toward myofibroblasts and interfering with its expression, and thus might open a new therapeutic strategy to inhibit myofibroblast generation during SSc
Galectin-3. One molecule for an alphabet of diseases, from A to Z
Galectin-3 (Gal-3) regulates basic cellular functions such as cell–cell and cell–matrix interactions, growth, proliferation, differentiation, and inflammation. It is not surprising, therefore, that this protein is involved in the pathogenesis of many relevant human diseases, including cancer, fibrosis, chronic inflammation and scarring affecting many different tissues. The papers published in the literature have progressively increased in number during the last decades, testifying the great interest given to this protein by numerous researchers involved in many different clinical contexts. Considering the crucial role exerted by Gal-3 in many different clinical conditions, Gal-3 is emerging as a new diagnostic, prognostic biomarker and as a new promising therapeutic target. The current review aims to extensively examine the studies published so far on the role of Gal-3 in all the clinical conditions and diseases, listed in alphabetical order, where it was analyzed
- …