74,530 research outputs found

    A review of modular strategies and architecture within manufacturing operations

    Get PDF
    This paper reviews existing modularity and modularization literature within manufacturing operations. Its purpose is to examine the tools, techniques, and concepts relating to modular production, to draw together key issues currently dominating the literature, to assess managerial implications associated with the emerging modular paradigm, and to present an agenda for future research directions. The review is based on journal papers included in the ABI/Inform electronic database and other noteworthy research published as part of significant research programmes. The research methodology concerns reviewing existing literature to identify key modular concepts, to determine modular developments, and to present a review of significant contributions to the field. The findings indicate that the modular paradigm is being adopted in a number of manufacturing organizations. As a result a range of conceptual tools, techniques, and frameworks has emerged and the field of modular enquiry is in the process of codifying the modular lexicon and developing appropriate modular strategies commensurate with the needs of manufacturers. Modular strategies and modular architecture were identified as two key issues currently dominating the modular landscape. Based on this review, the present authors suggest that future research areas need to focus on the development and subsequent standardization of interface protocols, cross-brand module use, supply chain power, transparency, and trust. This is the first review of the modular landscape and as such provides insights into, first, the development of modularization and, second, issues relating to designing modular products and modular supply chains

    Network-Configurations of Dynamic Friction Patterns

    Full text link
    The complex configurations of dynamic friction patterns-regarding real time contact areas- are transformed into appropriate networks. With this transformation of a system to network space, many properties can be inferred about the structure and dynamics of the system. Here, we analyze the dynamics of static friction, i.e. nucleation processes, with respect to "friction networks". We show that networks can successfully capture the crack-like shear ruptures and possible corresponding acoustic features. We found that the fraction of triangles remarkably scales with the detachment fronts. There is a universal power law between nodes' degree and motifs frequency (for triangles, it reads T(k)\proptok{\beta} ({\beta} \approx2\pm0.4)). We confirmed the obtained universality in aperture-based friction networks. Based on the achieved results, we extracted a possible friction law in terms of network parameters and compared it with the rate and state friction laws. In particular, the evolutions of loops are scaled with power law, indicating the aggregation of cycles around hub nodes. Also, the transition to slow rupture is scaled with the fast variation of local heterogeneity. Furthermore, the motif distributions and modularity space of networks -in terms of withinmodule degree and participation coefficient-show non-uniform general trends, indicating a universal aspect of energy flow in shear ruptures

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Modularity and Delayed Product Differentiation in Assemble-to-order Systems: Analysis and Extensions from a Complexity Perspective

    Get PDF
    The paper assumes a product design around modular architectures and discusses the suitability of the principle of delayed product differentiation in assemble-to-order environments. We demonstrate that this principle does not enable one to make optimal decisions concerning how variety should proliferate in the assembly process. Therefore, we propose to complement this principle in that we additionally consider the variety induced complexity throughout the assembly process. The weighted Shannon entropy is proposed as a measure for the evaluation of this complexity. Our results show that the delayed product differentiation principle is reliable when the selection probabilities of module variants at each assembly stage are equal and the pace at which value is added in the whole assembly process is constant. Otherwise, the proposed measure provides different results. Furthermore, the entropy measure provides interesting clues concerning eventual reversals of assembly sequences and supports decisions regarding what modules in an assembly stage could be substituted by a common module.modularity; complexity; ATO; delayed product differentiation

    Modularization Assessment of Product Architecture

    Get PDF
    Modularization refers to the opportunity for mixing-and-matching of components in a modular product design in which the standard interfaces between components are specified to allow for a range of variation in components to be substituted in a product architecture. It is through mixing-and-matching of these components, and how these components interface with one another, that new systems are created. Consequently, the degree of modularization inherent in a system is highly dependent upon the components and the interface constraints shared among the components, modules, and sub-systems. In this paper, a mathematical model is derived for analyzing the degree of modularization in a given product architecture by taking into consideration the number of components, number of interfaces, the composition of new-to-the-firm (NTF) components, and substitutability of components. An analysis of Chrysler windshield wipers controller suggests that two product architectures may share similar interface constraints, but the opportunity for modularization of one module is significant higher than the other due to the higher substitutability of its components and lower composition of NTF components.Product architecture, modularization, substitutability, new product development

    On Validating an Astrophysical Simulation Code

    Full text link
    We present a case study of validating an astrophysical simulation code. Our study focuses on validating FLASH, a parallel, adaptive-mesh hydrodynamics code for studying the compressible, reactive flows found in many astrophysical environments. We describe the astrophysics problems of interest and the challenges associated with simulating these problems. We describe methodology and discuss solutions to difficulties encountered in verification and validation. We describe verification tests regularly administered to the code, present the results of new verification tests, and outline a method for testing general equations of state. We present the results of two validation tests in which we compared simulations to experimental data. The first is of a laser-driven shock propagating through a multi-layer target, a configuration subject to both Rayleigh-Taylor and Richtmyer-Meshkov instabilities. The second test is a classic Rayleigh-Taylor instability, where a heavy fluid is supported against the force of gravity by a light fluid. Our simulations of the multi-layer target experiments showed good agreement with the experimental results, but our simulations of the Rayleigh-Taylor instability did not agree well with the experimental results. We discuss our findings and present results of additional simulations undertaken to further investigate the Rayleigh-Taylor instability.Comment: 76 pages, 26 figures (3 color), Accepted for publication in the ApJ
    corecore