3,324 research outputs found

    Hand gesture recognition based on signals cross-correlation

    Get PDF

    A Fuzzy Logic Architecture for Rehabilitation Robotic Systems

    Get PDF
    Robots are highly incorporated in rehabilitation in the last decade to compensate lost functions in disabled individuals. By controlling the rehabilitation robots from far, many benefits are achieved. These benefits include but not restricted to minimum hospital stays, decreasing cost, and increasing the level of care. The main goal of this work is to have an effective solution to take care of patients from far. Tackling the problem of the remote control of rehabilitation robots is undergoing and highly challenging. In this paper, a remote wrist rehabilitation system is presented. The developed system is a sophisticated robot ensuring the two wrist movements (Flexion /extension and abduction/adduction). Additionally, the proposed system provides a software interface enabling the physiotherapists to control the rehabilitation process remotely. The patient’s safety during the therapy is achieved through the integration of a fuzzy controller in the system control architecture. The fuzzy controller is employed to control the robot action according to the pain felt by the patient. By using fuzzy logic approach, the system can adapt effectively according to the patients’ conditions. The Queue Telemetry Transport Protocol (MQTT) is considered to overcome the latency during the human robot interaction. Based on a Kinect camera, the control technique is made gestural. The physiotherapist gestures are detected and transmitted to the software interface to be processed and be sent to the robot. The acquired measurements are recorded in a database that can be used later to monitor patient progress during the treatment protocol. The obtained experimental results show the effectiveness of the developed remote rehabilitation system

    Bayesian fusion of hidden Markov models for understanding bimanual movements

    Get PDF
    Understanding hand and body gestures is a part of a wide spectrum of current research in computer vision and human-computer interaction. A part of this can be the recognition of movements in which the two hands move simultaneously to do something or imply a meaning. We present a Bayesian network for fusing hidden Markov models in order to recognise a bimanual movement. A bimanual movement is tracked and segmented by a tracking algorithm. Hidden Markov models are assigned to the segments in order to learn and recognize the partial movement within each segment. A Bayesian network fuses the HMMs in order to perceive the movement of the two hands as a single entity

    Adaptive probability scheme for behaviour monitoring of the elderly using a specialised ambient device

    Get PDF
    A Hidden Markov Model (HMM) modified to work in combination with a Fuzzy System is utilised to determine the current behavioural state of the user from information obtained with specialised hardware. Due to the high dimensionality and not-linearly-separable nature of the Fuzzy System and the sensor data obtained with the hardware which informs the state decision, a new method is devised to update the HMM and replace the initial Fuzzy System such that subsequent state decisions are based on the most recent information. The resultant system first reduces the dimensionality of the original information by using a manifold representation in the high dimension which is unfolded in the lower dimension. The data is then linearly separable in the lower dimension where a simple linear classifier, such as the perceptron used here, is applied to determine the probability of the observations belonging to a state. Experiments using the new system verify its applicability in a real scenario
    • 

    corecore