26 research outputs found

    Linearization Errors in Discrete Goal-Oriented Error Estimation

    Full text link
    Goal-oriented error estimation provides the ability to approximate the discretization error in a chosen functional quantity of interest. Adaptive mesh methods provide the ability to control this discretization error to obtain accurate quantity of interest approximations while still remaining computationally feasible. Traditional discrete goal-oriented error estimates incur linearization errors in their derivation. In this paper, we investigate the role of linearization errors in adaptive goal-oriented error simulations. In particular, we develop a novel two-level goal-oriented error estimate that is free of linearization errors. Additionally, we highlight how linearization errors can facilitate the verification of the adjoint solution used in goal-oriented error estimation. We then verify the newly proposed error estimate by applying it to a model nonlinear problem for several quantities of interest and further highlight its asymptotic effectiveness as mesh sizes are reduced. In an adaptive mesh context, we then compare the newly proposed estimate to a more traditional two-level goal-oriented error estimate. We highlight that accounting for linearization errors in the error estimate can improve its effectiveness in certain situations and demonstrate that localizing linearization errors can lead to more optimal adapted meshes

    An a posteriori error estimate of the outer normal derivative using dual weights

    Get PDF
    We derive a residual based a-posteriori error estimate for the outer normal flux of approximations to {the diffusion problem with variable coefficient}. By analyzing the solution of the adjoint problem, we show that error indicators in the bulk may be defined to be of higher order than those close to the boundary, which lead to more economic meshes. The theory is illustrated with some numerical examples.Comment: 27 pages, 13 figures, 3 table

    Multigoal-oriented optimal control problems with nonlinear PDE constraints

    Full text link
    In this work, we consider an optimal control problem subject to a nonlinear PDE constraint and apply it to the regularized pp-Laplace equation. To this end, a reduced unconstrained optimization problem in terms of the control variable is formulated. Based on the reduced approach, we then derive an a posteriori error representation and mesh adaptivity for multiple quantities of interest. All quantities are combined to one, and then the dual-weighted residual (DWR) method is applied to this combined functional. Furthermore, the estimator allows for balancing the discretization error and the nonlinear iteration error. These developments allow us to formulate an adaptive solution strategy, which is finally substantiated via several numerical examples

    Goal-oriented error analysis of iterative Galerkin discretizations for nonlinear problems including linearization and algebraic errors

    Full text link
    We consider the goal-oriented error estimates for a linearized iterative solver for nonlinear partial differential equations. For the adjoint problem and iterative solver we consider, instead of the differentiation of the primal problem, a suitable linearization which guarantees the adjoint consistency of the numerical scheme. We derive error estimates and develop an efficient adaptive algorithm which balances the errors arising from the discretization and use of iterative solvers. Several numerical examples demonstrate the efficiency of this algorithm.Comment: submitte

    Neural network guided adjoint computations in dual weighted residual error estimation

    Get PDF
    In this work, we are concerned with neural network guided goal-oriented a posteriori error estimation and adaptivity using the dual weighted residual method. The primal problem is solved using classical Galerkin finite elements. The adjoint problem is solved in strong form with a feedforward neural network using two or three hidden layers. The main objective of our approach is to explore alternatives for solving the adjoint problem with greater potential of a numerical cost reduction. The proposed algorithm is based on the general goal-oriented error estimation theorem including both linear and nonlinear stationary partial differential equations and goal functionals. Our developments are substantiated with some numerical experiments that include comparisons of neural network computed adjoints and classical finite element solutions of the adjoints. In the programming software, the open-source library deal.II is successfully coupled with LibTorch, the PyTorch C++ application programming interface
    corecore